Characterization and Antimicrobial Resistance of Non-Typhoidal Salmonella from Poultry Carcass Rinsates in Selected Abattoirs of KwaZulu Natal, South Africa
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Design, Study Site, and Sample Collection
2.3. Microbiological Analysis and Cryopreservation of Isolates
Isolation and Identification of Salmonella
2.4. Salmonella Identification Using MALDI-TOF MS
2.5. PCR Serotyping of Salmonella Isolates
2.6. Agarose Gel Electrophoresis of PCR Amplicons
2.7. Antimicrobial Susceptibility
2.8. Evaluation of Antimicrobial Resistant Genes Using PCR
DNA Extraction
2.9. Evaluation of Salmonella spp. Virulence Genes
2.10. Agarose Gel Electrophoresis of PCR Amplicons
2.11. Quality Control
2.12. Statistical Analysis
3. Results
3.1. MALDI-TOF Identification
3.2. PCR Serotyping
3.3. Antimicrobial Susceptibility Testing
3.4. Evaluation of Virulence Genes Using PCR
3.5. Evaluation of Antimicrobial Resistance Genes Using PCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eng, S.K.; Pusparajah, P.; Ab Mutalib, N.S.; Ser, H.L.; Chan, K.G.; Lee, L.H. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci. 2015, 8, 284–293. [Google Scholar] [CrossRef]
- Gupta, S.K.; Sharma, P.; McMillan, E.A.; Jackson, C.R.; Hiott, L.M.; Woodley, T.; Humayoun, S.B.; Barrett, J.B.; Frye, J.G.; McClelland, M. Genomic comparison of diverse Salmonella serovars isolated from swine. PLoS ONE 2019, 14, e0224518. [Google Scholar] [CrossRef] [PubMed]
- Pulford, C.V.; Wenner, N.; Redway, M.L.; Rodwell, E.V.; Webster, H.J.; Escudero, R.; Kröger, C.; Canals, R.; Rowe, W.; Lopez, J. The diversity, evolution and ecology of Salmonella in venomous snakes. PLoS Negl. Trop. Dis. 2019, 13, e0007169. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Nontyphoidal Salmonella Disease. Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/diseases/nontyphoidal-salmonella-disease (accessed on 15 September 2024).
- Crump, J.A.; Heyderman, R.S. A perspective on invasive Salmonella disease in Africa. Clin. Infect. Dis. 2015, 61, S235–S240. [Google Scholar] [CrossRef]
- Feasey, N.A.; Dougan, G.; Kingsley, R.A.; Heyderman, R.S.; Gordon, M.A. Invasive non-typhoidal Salmonella disease: An emerging and neglected tropical disease in Africa. Lancet 2012, 379, 2489–2499. [Google Scholar] [CrossRef]
- Gilchrist, J.J.; MacLennan, C.A. Invasive nontyphoidal Salmonella disease in Africa. EcoSal Plus 2019, 8, 10–128. [Google Scholar] [CrossRef] [PubMed]
- Uche, I.V.; MacLennan, C.A.; Saul, A. A systematic review of the incidence, risk factors and case fatality rates of invasive Nontyphoidal Salmonella (iNTS) disease in Africa (1966 to 2014). PLoS Negl. Trop. Dis. 2017, 11, e0005118. [Google Scholar] [CrossRef]
- Ramatla, T.; Lekota, K.E.; Tawana, M.; Onyiche, T.E.; Thekisoe, E. One Health Perspective of Salmonella Serovars in South Africa Using Pooled Prevalence: Systematic Review and Meta-Analysis. Int. J. Microbiol. 2022, 2022, 8952669. [Google Scholar] [CrossRef]
- Muvhali1, M.; Smith, A.M.; Moipone Rakgantso, A.M.; Keddy, K.H. Investigation of Salmonella Enteritidis outbreaks in South Africa using multi-locus variable-number tandem-repeats analysis, 2013–2015. BMC Infect. Dis. 2017, 17, 661. [Google Scholar] [CrossRef]
- Ramtahal, M.A.; Somboro, A.M.; Amoako, D.G.; Abia, A.L.K.; Perrett, K.; Bester, L.A.; Essack, S.Y. Molecular Epidemiology of Salmonella enterica in Poultry in South Africa Using the Farm-to-Fork Approach. Int. J. Microbiol. 2022, 2022, 5121273. [Google Scholar] [CrossRef]
- Antunes, P.; Mourão, J.; Campos, J.; Peixe, L. Salmonellosis: The role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 110–121. [Google Scholar] [CrossRef]
- Gonçalves-Tenório, A.; Silva, B.N.; Rodrigues, V.; Cadavez, V.; Gonzales-Barron, U. Prevalence of pathogens in poultry meat: A Meta-Analysis of European Published Surveys. Foods 2018, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, B.; Mawad, A.M.M.; Saleh, M.; Kelley, W.G.; Harrington, P.J.; Lovestad, C.W.; Amezcua, J.; Sarhan, M.M.; El Zowalaty, M.E.; Ramadan, H. Salmonellosis: An overview of epidemiology, pathogenesis, and innovative approaches to mitigate the antimicrobial resistant infections. Antibiotics 2024, 13, 76. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control). The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar]
- Afema, J.A.; Byarugaba, D.K.; Shah, D.H.; Atukwase, E.; Nambi, M.; Sischo, W.M. Potential sources and transmission of Salmonella and antimicrobial resistance in Kampala, Uganda. PLoS ONE 2016, 11, e0152130. [Google Scholar] [CrossRef]
- Dione, M.M.; Geerts, S.M.S.; Antonio, M. Characterisation of novel strains of multiply antibiotic-resistant Salmonella recovered from poultry in Southern Senegal. J. Infect. Dev. Ctries 2012, 6, 436–442. [Google Scholar] [CrossRef]
- Akil, L.; Ahmad, H.A. Quantitative Risk Assessment Model of Human Salmonellosis Resulting from Consumption of Broiler Chicken. Diseases 2019, 7, 19. [Google Scholar] [CrossRef]
- Republic of South Africa Government Gazette 425 (21707). Meat Safety Act of 2000 (Act No. 40 of 2000). Available online: https://www.gov.za/sites/default/files/gcis_document/201409/a40-000.pdf (accessed on 1 March 2025).
- Republic of South Africa Government Gazette. Foodstuffs, Cosmetics, and Disinfectants Act of 1972 (Act No. 54 of 1972); Amended 2010. Available online: https://www.gov.za/sites/default/files/gcis_document/201504/act-54-1972.pdf (accessed on 1 March 2025).
- Hussain, M.A.; Wang, W.; Sun, C.; Gu, L.; Liu, Z.; Yu, T.; Ahmad, Y.; Jiang, Z.; Hou, J. Molecular Characterization of pathogenic Salmonella spp. from raw beef in Karachi, Pakistan. Antibiotics 2020, 9, 73. [Google Scholar] [CrossRef] [PubMed]
- Forgaciu, A.; Tabaran, A.; Colobatiu, L.; Mihaiu, R.; Dan, S.D.; Mihaiu, M. Concerning Increase in Antimicrobial Resistance Patterns of Pathogenic Strains of Salmonella Isolated in Poultry Meat Products. Antibiotics 2022, 11, 1469. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, S.; Butaye, P.; Maliehe, T.S.; Magwedere, K.; Basson, A.K.; Madoroba, E. Virulence Factors and Antimicrobial Resistance in Salmonella Species Isolated from Retail Beef in Selected KwaZulu-Natal Municipality Areas, South Africa. Appl. Sci. 2022, 12, 2843. [Google Scholar] [CrossRef]
- Naidoo, S.; Basson, A.K.; Butaye, P.; Madoroba, E. Salmonella enterica Subspecies enterica Serotypes Associated with Meat and Meat Products in African Countries: A Review. In Food Security and Safety; Babalola, O.O., Ed.; Springer Nature: Cham, Swizerland, 2021; pp. 763–789. [Google Scholar]
- Madoroba, E.; Gelaw, A.K.; Kapeta, D. Salmonella contamination, serovars and antimicrobial resistance profiles of cattle slaughtered in South Africa. Onderstepoort J. Vet. Res. 2016, 83, a1109. [Google Scholar] [CrossRef] [PubMed]
- Mathole, M.A.; Muchadeyi, F.C.; Mdladla, K.; Malatji, D.P.; Dzomba, E.F.; Madoroba, E. Presence, distribution, serotypes and antimicrobial resistance profiles of Salmonella among pigs, chickens and goats in South Africa. Food Control 2017, 72, 219–224. [Google Scholar] [CrossRef]
- Ndlovu, L.; Butaye, P.; Maliehe, T.S.; Magwedere, K.; Mankonkwana, B.B.; Basson, A.K.; Ngema, S.S.; Madoroba, E. Virulence and antimicrobial resistance profiling of Salmonella serovars recovered from retail poultry offal in KwaZulu-Natal province, South Africa. Pathogens 2023, 12, 641. [Google Scholar] [CrossRef] [PubMed]
- Elnekave, E.; Hong, S.L.; Lim, S.; Hayer, S.S.; Boxrud, D.; Taylor, A.J.; Lappi, V.; Noyes, N.; Johnson, T.J.; Rovira, A.; et al. Circulation of plasmids harboring resistance genes to quinolones and/or extended spectrum cephalosporins in multiple Salmonella enterica serotypes from swine in the United States. Antimicrob. Agents Chemother. 2019, 63, e02602-18. [Google Scholar] [CrossRef]
- Elnekave, E.; Hong, S.; Mather, A.E.; Boxrud, D.; Taylor, A.J.; Lappi, V.; Johnson, T.J.; Vannucci, F.; Davies, P.; Hedberg, C.; et al. Salmonella enterica Serotype 4,[5],12:i:- in Swine in the United States Midwest: An Emerging Multidrug-Resistant Clade. Clin. Infect. Dis. 2018, 66, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.K.; Fareeq, A.; Hussein, S.; Mahmood, K.L.; Qurbani, K.; Ibrahim, R.H.; Mohamed, M.G. Antimicrobial resistance: Impacts, challenges, and future prospects. J. Med. Surg. Public Health 2024, 2, 100081. [Google Scholar] [CrossRef]
- Saxena, D.; Maitra, R.; Bormon, R.; Czekanska, M.; Meiers, J.; Titz, A.; Verma, S.; Chopra, S. Tackling the outer membrane: Facilitating compound entry into Gram-negative bacterial pathogens. NPJ Antimicrob. Resist. 2023, 1, 17. [Google Scholar] [CrossRef]
- Li, X.-Z.; Plésiat, P.; Nikaido, H. The challenge of efflux mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 2015, 28, 337–418. [Google Scholar] [CrossRef]
- Varela, M.F.; Stephen, J.; Lekshmi, M.; Ojha, M.; Wenzel, N.; Sanford, L.M.; Hernandez, A.J.; Parvathi, A.; Kumar, S.H. Bacterial Resistance to Antimicrobial Agents. Antibiotics 2021, 10, 593. [Google Scholar] [CrossRef]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef]
- Mkize, N. Molecular Detection and Genetic Characterization of Antimicrobial Resistance Genes in Foodborne Pathogens Isolated from Slaughtered Broiler Chickens in Durban. Master’s Thesis, University of KwaZulu-Natal, Durban, South Africa, 2016. [Google Scholar]
- Acheampong, G.; Owusu, M.; Owusu-Ofori, A.; Osei, I.; Sarpong, N.; Sylverken, A.; Kung, H.-J.; Cho, S.-T.; Kuo, C.-H.; Park, S.E.; et al. Chromosomal and plasmid-mediated fluoroquinolone resistance in human Salmonella enterica infection in Ghana. BMC Infect. Dis. 2019, 19, 898. [Google Scholar] [CrossRef] [PubMed]
- Mthembu, T.P.; Zishiri, O.T.; El Zowalaty, M.E. Genomic characterization of antimicrobial resistance in food chain and livestock-associated Salmonella species. Animals 2021, 11, 872. [Google Scholar] [CrossRef]
- Dinagde, B.M.; Mumed, B.A. A Review on Antimicrobial Resistance of Bovine Salmonellosis and Its Public Health Importance: One Health Approach. Integr. J. Vet. Biosci. 2023, 6, 1–8. [Google Scholar]
- Bhat, B.A.; Mir, R.A.; Qadri, H.; Dhiman, R.; Almilaibary, A.; Alkhanani, M.; Mir, M.A. Integrons in the development of antimicrobial resistance: Critical review and perspectives. Front. Microbiol. 2023, 4, 1231938. [Google Scholar] [CrossRef]
- Nair, D.; Thomas, J.V.; Dewi, G.; Noll, S.; Brannon, J.; Johny, A.K. Reduction of multidrug-resistant Salmonella enterica serovar Heidelberg using a dairy-originated probiotic bacterium, Propionibacterium freudenreichii freudenreichii B3523, in growing turkeys. J. Appl. Poultry Res. 2019, 28, 356–363. [Google Scholar] [CrossRef]
- Tao, S.; Chen, H.; Li, N.; Wang, T.; Liang, W. The spread of antibiotic resistance genes in vivo model. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 3348695. [Google Scholar] [CrossRef] [PubMed]
- Coburn, B.; Li, Y.; Owen, D.; Vallance, B.A.; Finlay, B.B. Salmonella enterica serovar Typhimurium pathogenicity island 2 is necessary for complete virulence in a mouse model of infectious enterocolitis. Infect. Immun. 2005, 73, 3219–3227. [Google Scholar] [CrossRef]
- Ibarra, J.A.; Steele-Mortimer, O. Salmonella—The ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell Microbiol. 2009, 11, 1579–1586. [Google Scholar]
- van Duijkeren, E.; Schink, A.K.; Roberts, M.C.; Wang, Y.; Schwarz, S. Mechanisms of bacterial resistance to antimicrobial agents. Microbiol. Spectrum 2018, 6, 51–82. [Google Scholar] [CrossRef]
- Marcus, S.L.; Brumell, J.H.; Pfeifer, S.G.; Finlay, B.B. Salmonella pathogenicity islands: Big virulence in small packages. Microb. Infect. 2000, 2, 145–156. [Google Scholar] [CrossRef]
- Lerminiaux, N.A.; MacKenzie, K.D.; Cameron, A.D.S. Salmonella Pathogenicity Island 1 (SPI-1): The evolution and stabilization of a core genomic type three secretion system. Microorganisms 2020, 8, 576. [Google Scholar] [CrossRef] [PubMed]
- Fookes, M.; Schroeder, G.N.; Langridge, G.C.; Blondel, C.J.; Mammina, C.; Connor, T.R.; Seth-Smith, H.S.; Vernikos, G.S.; Robinson, K.S.; Sanders, M.; et al. Salmonella bongori Provides Insights into the Evolution of the Salmonellae. PLoS Pathogens 2011, 7, e1002191. [Google Scholar] [CrossRef]
- Hayward, M.R.; Petrovska, L.; Jansen, V.A.A.; Woodward, M.J. Population structure and associated phenotypes of Salmonella enterica serovars Derby and Mbandaka overlap with host range. BMC Microbiol. 2016, 16, 15. [Google Scholar] [CrossRef]
- Urrutia, I.M.; Fuentes, J.A.; Valenzuela, L.M.; Ortega, A.P.; Hidalgo, A.A.; Mora, G.C. Salmonella Typhi shdA: Pseudogene or allelic variant? Infect. Genet. Evol. 2014, 26, 146–152. [Google Scholar] [CrossRef]
- Mthembu, T.P.; Zishiri, O.T.; El Zowalaty, M.E. Detection and molecular identification of Salmonella virulence genes in livestock production systems in South Africa. Pathogens 2019, 8, 124. [Google Scholar] [CrossRef]
- Foley, S.L.; Johnson, T.J.; Ricke, S.C.; Nayak, R.; Danzeisen, J. Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiol. Mol. Biol. Rev. 2013, 77, 582–607. [Google Scholar] [CrossRef]
- Ashari, K.S.; Roslan, N.S.; Omar, A.R.; Bejo, M.H.; Ideris, A.; Mat Isa, N. Genome sequencing and analysis of Salmonella enterica subsp. enterica serovar Stanley UPM 517: Insights on its virulence-associated elements and their potentials as vaccine candidates. PeerJ 2019, 7, e6948. [Google Scholar] [CrossRef]
- Siddiky, N.A.; Sarker, S.; Khan, S.R.; Rahman, T.; Kafi, A.; Samad, M.A. Virulence and antimicrobial resistance profile of non-typhoidal Salmonella enterica serovars recovered from poultry processing environments at wet markets in Dhaka, Bangladesh. PLoS ONE 2022, 17, e0254465. [Google Scholar] [CrossRef]
- South African Government. Fertilizers, Farm Feeds, Seeds and Remedies Act 36 of 1947. Available online: https://www.gov.za/sites/default/files/gcis_document/201505/act-36-1947.pdf (accessed on 24 February 2023).
- Mokgophi, T.M.; Gcebe, N.; Fasina, F.; Adesiyun, A.A. Molecular characterization of virulence and resistance genes in Salmonella strains isolated from chickens sold at the informal chicken market in Gauteng Province, South Africa. J. Food Saf. 2024, 44, e13110. [Google Scholar] [CrossRef]
- Zishiri, O.T.; Mkhize, N.; Mukaratirwa, S. Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from South Africa and Brazil. Onderstepoort J. Vet. Res. 2016, 83, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Madoroba, E.; Magwedere, K.; Chaora, N.S.; Matle, I.; Muchadeyi, F.; Mathole, M.A.; Pierneef, R. Microbial communities of meat and meat products: An exploratory analysis of the product quality and safety at selected enterprises in South Africa. Microorganisms 2021, 9, 507. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, e06406. [Google Scholar] [CrossRef] [PubMed]
- Charan, J.; Biswas, C. How to Calculate Sample Size for Different Study Designs in Medical Research? Ind. J. Psychol. Med. 2013, 35, 121–126. [Google Scholar] [CrossRef]
- Käsbohrer, A.; Tenhangen, B.A.; Appel, B.; Fetsch, A. Development of Harmonised Survey Methods for Food-Borne Pathogens in Foodstuffs in the European Union; European Food Safety Authority: Parma, Italy, 2010. [Google Scholar]
- ISO 6579-1:2017/Amd 1:2020; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp.—AMENDMENT 1: Broader Range of Incubation Temperatures, AMENDMENT to the Status of Annex D, and Correction of the Composition of MSRV and SC. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:6579:-1:ed-1:v1:amd:1:v1:en (accessed on 20 January 2025).
- Dieckmann, R.; Helmuth, R.; Erhard, M.; Malorny, B. Rapid classification and identification of Salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization–time of flight mass spectrometry. Appl. Environ. Microbiol. 2008, 74, 7767–7778. [Google Scholar] [CrossRef]
- Dieckmann, R.; Malorny, B. Rapid screening of epidemiologically important Salmonella enterica subsp. enterica serovars using Whole-Cell MALDI-TOF mass spectrometry. Appl. Environ. Microbiol. 2011, 77, 4136–4146. [Google Scholar]
- Wang, S.J.; Yeh, D.B. Designing of polymerase chain reaction primers for the detection of Salmonella Enteritidis in foods and faecal samples. Lett. Appl. Microbiol. 2002, 32, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Paião, F.G.; Arisitides, L.G.A.; Murate, L.S.; Vilas-Bôas, G.T.; Vilas-Boas, L.A.; Shimokomaki, M. Detection of Salmonella spp., Salmonella Enteritidis and Typhimurium in naturally infected broiler chickens by a multiplex PCR-based assay. Braz. J. Microbiol. 2013, 44, 37–41. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, M100, 33rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023. [Google Scholar]
- Lauteri, C.; Festino, A.R.; Conter, M.; Vergara, A. Prevalence and antimicrobial resistance profile in Salmonella spp. isolates from swine food chain. Ital. J. Food Saf. 2022, 11, 9980. [Google Scholar] [CrossRef]
- Prasertsee, T.; Nattakarn, K.; Panuwat, Y.; Pannita, S.; Chokesajjawatee, N.; Patchanee, P. Repetitive sequence-based PCR fingerprinting and the relationship of antimicrobial resistance characteristics and corresponding genes among Salmonella strains from pig production. Asian Pac. J. Trop. Dis. 2016, 6, 390–395. [Google Scholar] [CrossRef]
- Kozak, G.K.; Boerlin, P.; Janecko, N.; Smith, R.J.; Jardine, C. Antimicrobial Resistance in Escherichia coli Isolates from Swine and Wild Small Mammals in the Proximity of Swine Farms and in Natural Environments in Ontario, Canada. Appl. Environ. Microbiol. 2009, 75, 559–566. [Google Scholar] [CrossRef]
- Kikuvi, G.M.; Ombui, J.N.; Mitema, E.S. Serotypes and antimicrobial residence profiles of Salmonella isolates from pigs at slaughter in Kenya. J. Infect. Dev. Ctries 2010, 4, 243–248. [Google Scholar] [CrossRef]
- El-Tayeb, M.; Ibrahim, A.S.S.; Al-Salamah, A.A.; Almaary, K.; Elbadawi, Y.B. Prevalence, serotyping and antimicrobials resistance mechanism of Salmonella enterica isolated from clinical and environmental samples in Saudi Arabia. Braz. J. Microbiol. 2017, 48, 499–508. [Google Scholar] [CrossRef]
- Siddiky, N.A.; Sarker, M.S.; Khan, M.; Begum, R.; Kabir, M.E.; Karim, M.R.; Rahman, M.T.; Mahmud, A.; Samad, M.A. Virulence and Antimicrobial Resistance Profiles of Salmonella enterica Serovars Isolated from Chicken at Wet Markets in Dhaka, Bangladesh. Microorganisms 2021, 9, 952. [Google Scholar] [CrossRef]
- Kumar, G.; Kumar, S.; Jangid, H.; Dutta, J.; Shidiki, A. The rise of non-typhoidal Salmonella: An emerging global public health concern. Front. Microbiol. 2025, 16, 1524287. [Google Scholar] [CrossRef]
- Kidanemariam, A.; Engelbrecht, M.; Picard, J. Retrospective study on the incidence of Salmonella isolations in animals in South Africa, 1996 to 2006. J. S. Afr. Vet. Assoc. 2010, 81, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Nazari Moghadam, M.; Rahimi, E.; Shakerian, A.; Momtaz, H. Prevalence of Salmonella Typhimurium and Salmonella Enteritidis isolated from poultry meat: Virulence and antimicrobial-resistant genes. BMC Microbiol. 2023, 23, 168. [Google Scholar] [CrossRef] [PubMed]
- Alghoribi, M.F.; Doumith, M.; Alrodayyan, M.; Al Zayer, M.; Köster, W.L.; Muhanna, A.; Aljohani, S.M.; Balkhy, H.H.; Desin, S.S. S. enteritidis and S. typhimurium Harboring SPI-1 and SPI-2 Are the Predominant serotypes associated with human salmonellosis in Saudi Arabia. Front. Cell. Infect. Microbiol. 2019, 9, 187. [Google Scholar] [CrossRef] [PubMed]
- Kime, L.; Randall, C.P.; Banda, F.I.; Coll, F.; Wright, J.; Richardson, J.; Empel, J.; Parkhill, J.; O’Neill, A.J. Transient silencing of antibiotic resistance by mutation represents a significant potential source of unanticipated therapeutic failure. mBio 2019, 10, e01755-19. [Google Scholar] [CrossRef]
- Deekshit, V.K.; Srikumar, S. To be, or not to be’—The dilemma of ‘silent’ antimicrobial resistance genes in bacteria. J. Appl. Microbiol. 2022, 133, 2902–2914. [Google Scholar] [CrossRef]
- Tamburini, E.; Mastromei, G. Do bacterial cryptic genes really exist? Res. Microbiol. 2000, 151, 179–182. [Google Scholar] [CrossRef]
- Stasiak, M.; Mackiw, E.; Kowalska, J.; Kucharek, K.; Postupolski, J. Silent genes: Antimicrobial resistance and antibiotic production. Pol. J. Microbiol. 2021, 70, 421–429. [Google Scholar] [CrossRef]
- Charlier, J.; Barkema, H.W.; Becher, P.; De Benedictis, P.; Hansson, I.; Hennig-Pauka, I.; La Ragione, R.; Larsen, L.E.; Madoroba, E.; Maes, D.; et al. Disease Control Tools to Secure Animal and Public Health in a Densely Populated World. Lancet Planet. Health 2022, 6, e812–e824. [Google Scholar] [CrossRef]
- Wee, B.A.; Muloi, D.M.; van Bunnik, B.A.D. Quantifying the transmission of antimicrobial resistance at the human and livestock interface with genomics. Clin. Microbiol. Infect. 2020, 26, 1612–1616. [Google Scholar] [CrossRef]
- Wibisono, F.M.; Faridah, H.D.; Effendi, M.H.; Wibisono, F.J.; Witaningrum, A.M.; Tyasningsih, W.; Ugbo, E.N. Detection of invA virulence gene of multidrug-resistant Salmonella species isolated from the cloacal swab of broiler chickens in Blitar district, East Java, Indonesia. Vet. World 2021, 14, 3126–3131. [Google Scholar] [CrossRef]
- Rahn, K.; De Grandis, S.A.; Clarke, R.C.; Curtiss, R.; Gyles, C.L. Amplification of an invA gene sequence of Salmonella Typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell Probes 1992, 6, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Galán, J.E.; Curtiss, R., 3rd. Distribution of the invA, -B, -C, and -D genes of Salmonella Typhimurium among other Salmonella serovars: invA mutants of Salmonella Typhi are deficient for entry into mammalian cells. Infect. Immun. 1991, 59, 2901–2908. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, E.P.; Melo, R.T.; Oliveira, M.R.M.; Monteiro, G.P.; Peres, P.A.B.M.; Fonseca, B.B.; Giombelli, A.; Rossi, D.A. Characteristics of virulence, resistance and genetic diversity of strains of Salmonella Infantis isolated from broiler chicken in Brazil. Pesq. Vet. Bras. 2020, 40, 29–38. [Google Scholar] [CrossRef]
Target Genes | Sequence (5′ to 3′) | Size (bp) |
---|---|---|
Insertion Element (IE-1) | F-AGTGCCATACTTTTAATGAC R-ACTATGTCGATACGGTGGG | 316 |
F Flic-C | F-CCCGCTTACAGGTGGACTAC R-AGCGGGTTTTCGGTGGTTGT | 432 |
Target Gene | Sequence (5′ to 3′) | Amplicon Size (bp) |
---|---|---|
aadA2 | F-CGGTGACCATCGAAATTTCG R-CTATAGCGCGGAGCGTCTCGC | 250 |
aadB | F-GAGGAGTTGGACTATGGATT R-CGGATGCAGGAAGATCAA | 208 |
aac(3)IV | F-TGCTGGTCCACAGCTCCTTC F-TGCTGGTCCACAGCTCCTTC | 653 |
blaTEM | F-CCGTGTCGCCCTTATTCCC R-GCCTGACTCCCCGTCGTG | 780 |
blaPSE | F-CGCTTCCCGTTAACAAGTAC R-CTGGTTCATTTCAGATAGCG | 465 |
catA1 | F-GGCATTTCAGTCAGTTG R-CATTAAGCATTCTGCCG | 551 |
tetA | F-GTAATTCTGAGCACTGT R-CCTGGACAACATTGCTT | 954 |
tetB | F-ACGTTACTCGATGCCAT R-AGCACTTGTCTCCTGTT | 1170 |
tetC | F-AACAATGCGCTCATCGT R-GGAGGCAGACAAGGTAT | 1138 |
dfrA1 | F-GTGAAACTATCACTAATGG R-TTAACCCTTTTGCCAGATTT | 474 |
dfrB | F-GATCACGTGCGCAAGAAATC R-AAGCGCAGCCACAGGATAAAT | 141 |
Target Gene | Sequence (5′ to 3′) | Amplicon Size (bp) |
---|---|---|
invA | F-GTGAAATTATCGCCACGTTCGGGCAA R-TCATCGCACCGTCAAAGGAACC | 284 |
agfA | F-TCCACAATGGGGCGGCGGCG R-CCTGACGCACCATTACGCTG | 350 |
IpfA | F-CTTTCGCTGCTGAATCTGGT R-CAGTGTTAACAGAAACCAGT | 250 |
SivH | F-GTATGCGAACAAGCGTAACAC R-CAGAATGCGAATCCTTCGCAC | 763 |
Processing Stages | Percentage (%) of Salmonella Positive Samples (n) | CI (%) | Abattoir | ||
---|---|---|---|---|---|
LT A | LT B | HT | |||
Scalding water | 0(0/80) | 0 | - | 0(0/80) | - |
Evisceration | 21.01 (32/138) | 16.4–31 | - | 0(0/23) | 27.83 (32/115) |
Final water | 10.28 (27/282) | 6.4–14 | 39.58 (19/48) | 0(0/118) | 6.9 (8/116) |
Total | 11.8 (59/500) | 9.5–15 | 39.58 (19/48) | 0(0/221) | 17.32 (40/231) |
Sites | Serovars | invA (%) | agfA (%) | IpfA (%) | sivH (%) |
---|---|---|---|---|---|
LT A | S. Enteritidis | 100 (13/13) | 76.92 (10/13) | 76.92 (10/13) | 84.62 (11/13) |
S. Typhimurium | 100 (5/5) | 60 (3/5) | 40 (2/5) | 100 (5/5) | |
HT | S. Enteritidis | 100 (8/8) | 87.5 (7/8) | 75 (6/8) | 87.5 (7/8) |
S. Typhimurium | 93.33 (28/30) | 86.7 (26/30) | 73.33 (22/30) | 80 (24/30) | |
Non-serotyped | 100 (3/3) | 66.67 (2/3) | 100 (3/3) | 100 (3/3) |
Site | Serovars | aadA2 % | aac(3)IV % | aadB % | blaTEM % | blaPSE % | tetA % | tetB % | tetC % | catA1 % | dfrA1 % |
---|---|---|---|---|---|---|---|---|---|---|---|
LT A | S. Typhimurium | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 75 (3/4) | 0(0) | 0 (0) | 0 (0) | 0 (0) |
S. Enteritidis | 0 (0) | 0 (0) | 0 (0) | 7.7 (1/13) | 0 (0) | 84.6 (11/13) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
HT | S. Typhimurium | 6.5 (2/31) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 48.4 (15/31) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
S. Enteritidis | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 14.3 (1/7) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Non-serotyped | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 66.7 (2/3) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Total | 3.4 (2/59) | 0 (0) | 0 (0) | 1.7 (1/59) | 0 (0) | 54.3 (32/59) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
p-value | 0.4015 | - | - | 7.140 | - | 0.0215 * | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mankonkwana, B.B.; Madoroba, E.; Magwedere, K.; Butaye, P. Characterization and Antimicrobial Resistance of Non-Typhoidal Salmonella from Poultry Carcass Rinsates in Selected Abattoirs of KwaZulu Natal, South Africa. Microorganisms 2025, 13, 1786. https://doi.org/10.3390/microorganisms13081786
Mankonkwana BB, Madoroba E, Magwedere K, Butaye P. Characterization and Antimicrobial Resistance of Non-Typhoidal Salmonella from Poultry Carcass Rinsates in Selected Abattoirs of KwaZulu Natal, South Africa. Microorganisms. 2025; 13(8):1786. https://doi.org/10.3390/microorganisms13081786
Chicago/Turabian StyleMankonkwana, Bongi Beatrice, Evelyn Madoroba, Kudakwashe Magwedere, and Patrick Butaye. 2025. "Characterization and Antimicrobial Resistance of Non-Typhoidal Salmonella from Poultry Carcass Rinsates in Selected Abattoirs of KwaZulu Natal, South Africa" Microorganisms 13, no. 8: 1786. https://doi.org/10.3390/microorganisms13081786
APA StyleMankonkwana, B. B., Madoroba, E., Magwedere, K., & Butaye, P. (2025). Characterization and Antimicrobial Resistance of Non-Typhoidal Salmonella from Poultry Carcass Rinsates in Selected Abattoirs of KwaZulu Natal, South Africa. Microorganisms, 13(8), 1786. https://doi.org/10.3390/microorganisms13081786