Prevalence and Genomic Characterization of Vibrio parahaemolyticus Isolated from a Vast Amount of Aquatic Products in Huzhou, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Bacterial Isolation and Identification
2.3. Serotyping
2.4. Antimicrobial Susceptibility Testing (AST)
2.5. PCR Detection
2.6. Whole-Genome Sequencing (WGS)
2.7. Genomic Analysis
2.8. Statistical Analysis
3. Results
3.1. Prevalence and Characterization of V. parahaemolyticusin Aquatic Products
3.2. The Distribution of V. parahaemolyticus Serovars from Different Isolation Sources
3.3. MLST Analysis
3.4. Antimicrobial Susceptibility of V. parahaemolyticus Isolates
3.5. Analysis of Antimicrobial Resistance Genesand Virulence Factors
3.6. Phylogenetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bennett, A.; Rice, E.; Muhonda, P.; Kaunda, E.; Katengeza, S.; Liverpool-Tasie, L.S.O.; Belton, B.; Infante, D.M.; Ross, J.; Virdin, J.; et al. Spatial analysis of aquatic food access can inform nutrition-sensitive policy. Nat. Food. 2022, 3, 1010–1013. [Google Scholar] [CrossRef]
- Martinez-Urtaza, J.; Baker-Austin, C. Vibrio parahaemolyticus. Trends Microbiol. 2020, 28, 867–868. [Google Scholar] [CrossRef]
- Baker-Austin, C.; Trinanes, J.; Gonzalez-Escalona, N.; Martinez-Urtaza, J. Non-Cholera Vibrios: The Microbial Barometer of Climate Change. Trends Microbiol. 2017, 25, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Orth, K. Virulence determinants for Vibrio parahaemolyticus infection. Curr. Opin. Microbiol. 2013, 16, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Okuda, J.; Ishibashi, M.; Hayakawa, E.; Nishino, T.; Takeda, Y.; Mukhopadhyay, A.K.; Garg, S.; Bhattacharya, S.K.; Nair, G.B.; Nishibuchi, M. Emergence of a unique O3:K6 clone of Vibrio parahaemolyticus in Calcutta, India, and isolation of strains from the same clonal group from Southeast Asian travelers arriving in Japan. J. Clin. Microbiol. 1997, 35, 3150–3155. [Google Scholar] [CrossRef]
- Quilici, M.L.; Robert-Pillot, A.; Picart, J.; Fournier, J.M. Pandemic Vibrio parahaemolyticus O3:K6 spread, France. Emerg. Infect. Dis. 2005, 11, 1148–1149. [Google Scholar] [CrossRef]
- de Jesús Hernández-Díaz, L.; Leon-Sicairos, N.; Velazquez-Roman, J.; Flores-Villaseñor, H.; Guadron-Llanos, A.M.; Martinez-Garcia, J.J.; Vidal, J.E.; Canizalez-Roman, A. A pandemic Vibrio parahaemolyticus O3:K6 clone causing most associated diarrhea cases in the Pacific Northwest coast of Mexico. Front. Microbiol. 2015, 6, 221. [Google Scholar] [CrossRef]
- Abanto, M.; Gavilan, R.G.; Baker-Austin, C.; Gonzalez-Escalona, N.; Martinez-Urtaza, J. Global Expansion of Pacific Northwest Vibrio parahaemolyticus Sequence Type 36. Emerg. Infect. Dis. 2020, 26, 323–326. [Google Scholar] [CrossRef]
- Newton, A.E.; Garrett, N.; Stroika, S.G.; Halpin, J.L.; Turnsek, M.; Mody, R.K.; Centers for Disease Control and Prevention (CDC). Increase in Vibrio parahaemolyticus infections associated with consumption of Atlantic Coast shellfish-2013. MMWR Morb. Mortal. Wkly. Rep. 2014, 63, 335–336. [Google Scholar]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Cabanillas-Beltrán, H.; LLausás-Magaña, E.; Romero, R.; Espinoza, A.; García-Gasca, A.; Nishibuchi, M.; Ishibashi, M.; Gomez-Gil, B. Outbreak of gastroenteritis caused by the pandemic Vibrio parahaemolyticus O3:K6 in Mexico. FEMS Microbiol. Lett. 2006, 265, 76–80. [Google Scholar] [CrossRef]
- Martinez-Urtaza, J.; Powell, A.; Jansa, J.; Rey, J.L.; Montero, O.P.; Campello, M.G.; López, M.J.; Pousa, A.; Valles, M.J.; Trinanes, J.; et al. Epidemiological investigation of a foodborne outbreak in Spain associated with U.S. West Coast genotypes of Vibrio parahaemolyticus. SpringerPlus 2016, 5, 87. [Google Scholar] [CrossRef]
- Jeong, H.W.; Kim, J.A.; Jeon, S.J.; Choi, S.S.; Kim, M.K.; Yi, H.J.; Cho, S.J.; Kim, I.Y.; Chon, J.W.; Kim, D.H.; et al. Prevalence, Antibiotic-Resistance, and Virulence Characteristics of Vibrio parahaemolyticus in Restaurant Fish Tanks in Seoul, South Korea. Foodborne Pathog. Dis. 2020, 17, 209–214. [Google Scholar] [CrossRef]
- Li, Y.; Xie, X.; Shi, X.; Lin, Y.; Qiu, Y.; Mou, J.; Chen, Q.; Lu, Y.; Zhou, L.; Jiang, M.; et al. Vibrio parahaemolyticus, Southern Coastal Region of China, 2007–2012. Emerg. Infect. Dis. 2014, 20, 685–688. [Google Scholar] [CrossRef]
- Jiang, D.; Han, H.; Guo, Y.; Zhang, R.; Zhan, L.; Zhou, Y.; Qiao, X.; Liu, H.; Ma, X.; Liu, J.; et al. Epidemiological Characteristics of Sporadic Foodborne Diseases Caused by Vibrio parahaemolyticus—China, 2013–2022. China CDC Wkly. 2024, 6, 1354–1359. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, J.; Chen, J.; Zhang, R.; Zhang, H.; Qi, X.; He, Y. Epidemiological characteristics of Vibrio parahaemolyticus outbreaks, Zhejiang, China, 2010–2022. Front. Microbiol. 2023, 14, 1171350. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Ji, L.; Dong, F.; Chen, L.; Yuan, R.; Zhang, P. Antimicrobial resistance and genomic analysis of Vibrio parahaemolyticus isolates from foodborne outbreaks, Huzhou, China, 2019–2023. Front. Microbiol. 2024, 15, 1439522. [Google Scholar] [CrossRef] [PubMed]
- Pang, R.; Li, Y.; Chen, M.; Zeng, H.; Lei, T.; Zhang, J.; Ding, Y.; Wang, J.; Wu, S.; Ye, Q.; et al. A database for risk assessment and comparative genomic analysis of foodborne Vibrio parahaemolyticus in China. Sci. Data 2020, 7, 321. [Google Scholar] [CrossRef]
- Roy, P.K.; Roy, A.; Jeon, E.B.; DeWitt, C.A.M.; Park, J.W.; Park, S.Y. Comprehensive analysis of predominant pathogenic bacteria and viruses in seafood products. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13410. [Google Scholar] [CrossRef]
- Dong, X.; Li, Z.; Wang, X.; Zhou, M.; Lin, L.; Zhou, Y.; Li, J. Characteristics of Vibrio parahaemolyticus isolates obtained from crayfish (Procambarus clarkii) in freshwater. Int. J. Food Microbiol. 2016, 238, 132–138. [Google Scholar] [CrossRef]
- Li, M.; Xu, H.; Tian, Y.; Zhang, Y.; Jiao, X.; Gu, D. Comparative genomic analysis reveals the potential transmission of Vibrio parahaemolyticus from freshwater food to humans. Food Microbiol. 2023, 113, 104277. [Google Scholar] [CrossRef] [PubMed]
- GB 4789.7-2013; National Food Safety Standard for Microbiological Examination of Food—Vibrio parahaemolyticus Examination. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2013.
- Clinical and Laboratory Standards Institute. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious Bacteria. In CLSI Guideline M45, 3rd ed; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Chen, Y.; Cai, G.; Cai, R.; Hu, Z.; Wang, H. Tree Visualization By One Table (tvBOT): A web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res. 2023, 51, W587–W592. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Flint, S.H.; Palmer, J.S.; Gagic, D.; Fletcher, G.C.; On, S.L.W. Global expansion of Vibrio parahaemolyticus threatens the seafood industry: Perspective on controlling its biofilm formation. Lebensm. Wiss. Technol. 2022, 158, 113182. [Google Scholar] [CrossRef]
- Martinez-Urtaza, J.; van Aerle, R.; Abanto, M.; Haendiges, J.; Myers, R.A.; Trinanes, J.; Baker-Austin, C.; Gonzalez-Escalona, N. Genomic Variation and Evolution of Vibrio parahaemolyticus ST36 over the Course of a Transcontinental Epidemic Expansion. mBio 2017, 8, e01425-17. [Google Scholar] [CrossRef]
- Vu, T.T.T.; Alter, T.; Huehn, S. Prevalence of Vibrio spp. in Retail Seafood in Berlin, Germany. J. Food Prot. 2018, 81, 593–597. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, J.; Li, H.; Tan, S.; Chen, Y.; Yu, H. Prevalence, Antibiotic Susceptibility and Diversity of Vibrio parahaemolyticus Isolates in Seafood from South China. Front. Microbiol. 2017, 8, 2566. [Google Scholar] [CrossRef]
- Zheng, J.; Shi, B.; Sun, J.; Pan, Y.; Ding, Y.; Shi, X.; Zhang, J.; Zhang, H.; He, J.; Zhang, K.; et al. Global phylogeography and genomic characterization of Vibrio parahaemolyticus infections in Jilin province, China (2016–2022). Int. J. Food Microbiol. 2025, 428, 110993. [Google Scholar] [CrossRef]
- Guo, X.; Liu, B.; Chen, M.; Wang, Y.; Wang, L.; Chen, H.; Wang, Y.; Tu, L.; Zhang, X.; Feng, L. Genetic and serological identification of three Vibrio parahaemolyticus strains as candidates for novel provisional O serotypes. Int. J. Food Microbiol. 2017, 245, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Flores-Villaseñor, H.; Velázquez-Román, J.; León-Sicairos, N.; Angulo-Zamudio, U.A.; Lira-Morales, C.; Martínez-García, J.J.; Acosta-Smith, E.; Valdés-Flores, J.; Tapia-Pastrana, G.; Canizalez-Román, A. Serodiversity, antibiotic resistance, and virulence genes of Vibrio parahaemolyticus in oysters collected in coastal areas of northwestern Mexico between 2012 and 2020. Food Microbiol. 2024, 123, 104567. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, X.; Yuan, R.; Yan, W.; Xu, D.; Ji, L.; Chen, L. Emergence and predominance of a new serotype of Vibrio parahaemolyticus in Huzhou, China. Int. J. Infect. Dis. 2022, 122, 93–98. [Google Scholar] [CrossRef]
- Jones, J.L.; Lydon, K.A.; Kinsey, T.P.; Friedman, B.; Curtis, M.; Schuster, R.; Bowers, J.C. Effects of ambient exposure, refrigeration, and icing on Vibrio vulnificus and Vibrio parahaemolyticus abundances in oysters. Int. J. Food Microbiol. 2017, 253, 54–58. [Google Scholar] [CrossRef]
- Maiden, M.C. Multilocus sequence typing of bacteria. Annu. Rev. Microbiol. 2006, 60, 561–588. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, Q.; Sun, Y.; Li, F.; Sun, J.; Yang, S.; Yang, D.; Peng, Z.; Yang, B.; Xu, J.; et al. Antimicrobial susceptibility and genomic characterization of Vibrio parahaemolyticus isolated from aquatic foods in 15 provinces, China, 2020. Int. J. Food Microbiol. 2024, 418, 110737. [Google Scholar] [CrossRef] [PubMed]
- Elmahdi, S.; DaSilva, L.V.; Parveen, S. Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A review. Food Microbiol. 2016, 57, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Akinbowale, O.L.; Peng, H.; Barton, M.D. Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. J. Appl. Microbiol. 2006, 100, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
- Zaafrane, S.; Maatouk, K.; Alibi, S.; Ben Mansour, H. Occurrence and antibiotic resistance of Vibrio parahaemolyticus isolated from the Tunisian coastal seawater. J. Water Health 2022, 20, 369–384. [Google Scholar] [CrossRef]
- Baker-Austin, C.; Oliver, J.D.; Alam, M.; Ali, A.; Waldor, M.K.; Qadri, F.; Martinez-Urtaza, J. Vibrio spp. infections. Nat. Rev. Dis. Primers. 2018, 4, 8. [Google Scholar] [CrossRef]
- Maluping, R.P.; Lavilla-Pitogo, C.R.; DePaola, A.; Janda, J.M.; Krovacek, K.; Greko, C. Antimicrobial susceptibility of Aeromonas spp., Vibrio spp. and Plesiomonas shigelloides isolated in the Philippines and Thailand. Int. J. Antimicrob. Agents 2005, 25, 348–350. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Q.; Ouyang, F.; Ke, B.; Jiang, S.; Liu, J.; Yan, J.; Li, B.; Tan, W.; He, D. Molecular epidemiology and antimicrobial resistance of Vibrio parahaemolyticus isolates from the Pearl River Delta region, China. Int. J. Food Microbiol. 2025, 429, 111025. [Google Scholar] [CrossRef]
- Dutta, D.; Kaushik, A.; Kumar, D.; Bag, S. Foodborne Pathogenic Vibrios: Antimicrobial Resistance. Front. Microbiol. 2021, 12, 638331. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Zheng, N.; Ge, C.; Yao, H. Occurrence and distribution of antibiotics and antibiotic resistance genes in the guts of shrimp from different coastal areas of China. Sci. Total Environ. 2022, 815, 152756. [Google Scholar] [CrossRef]
- Wang, X.; Yu, D.; Chen, L. Antimicrobial resistance and mechanisms of epigenetic regulation. Front. Cell. Infect. Microbiol. 2023, 13, 1199646. [Google Scholar] [CrossRef]
- Raghunath, P. Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) in Vibrio parahaemolyticus. Front. Microbiol. 2015, 5, 805. [Google Scholar] [CrossRef] [PubMed]
- Parveen, S.; Hettiarachchi, K.A.; Bowers, J.C.; Jones, J.L.; Tamplin, M.L.; McKay, R.; Beatty, W.; Brohawn, K.; Dasilva, L.V.; Depaola, A. Seasonal distribution of total and pathogenic Vibrio parahaemolyticus in Chesapeake Bay oysters and waters. Int. J. Food Microbiol. 2008, 128, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Iwade, Y.; Tokuoka, E.; Nishio, T.; Otomo, Y.; Araki, E.; Konuma, H.; Nakagawa, H.; Tanaka, H.; Sugiyama, K.; et al. Epidemiological evidence of lesser role of thermostable direct hemolysin (TDH)-related hemolysin (TRH) than TDH on Vibrio parahaemolyticus pathogenicity. Foodborne Pathog. Dis. 2015, 12, 131–138. [Google Scholar] [CrossRef]
- Portaliou, A.G.; Tsolis, K.C.; Loos, M.S.; Zorzini, V.; Economou, A. Type III Secretion: Building and Operating a Remarkable Nanomachine. Trends Biochem. Sci. 2016, 41, 175–189. [Google Scholar] [CrossRef]
- Janecko, N.; Bloomfield, S.J.; Palau, R.; Mather, A.E. Whole genome sequencing reveals great diversity of Vibrio spp in prawns at retail. Microb. Genom. 2021, 7, 000647. [Google Scholar] [CrossRef]
SamplingSites | Locations | Coordinate | |
---|---|---|---|
Latitude | Longitude | ||
Wet market | Wuxing | 30°50′19″ N | 120°9′13″ E |
Supermarket | Wuxing | 30°54′30″ N | 120°6′3″ E |
Restaurant | Wuxing | 30°51′52″ N | 120°5′43″ E |
Aquaculture site | Wuxing | 30°53′45″ N | 120°12′6″ E |
Wet market | Nanxun | 30°51′38″ N | 120°25′9″ E |
Supermarket | Nanxun | 30°52′10″ N | 120°26′14″ E |
Restaurant | Nanxun | 30°52′19″ N | 120°25′3″ E |
Aquaculture site | Nanxun | 30°43′17″ N | 120°15′39″ E |
Wet market | Deqing | 30°32′33″ N | 119°57′56″ E |
Supermarket | Deqing | 30°31′43″ N | 119°58′7″ E |
Restaurant | Deqing | 30°32′7″ N | 119°58′36″ E |
Wet market | Changxing | 30°59′2″ N | 119°54′54″ E |
Supermarket | Changxing | 31°0′13″ N | 119°54′21″ E |
Restaurant | Changxing | 31°1′39″ N | 119°54′49″ E |
Aquaculture site | Changxing | 31°5′49″ N | 119°52′50″ E |
Wet market | Anji | 30°38′0″ N | 119°41′37″ E |
Supermarket | Anji | 30°37′42″ N | 119°41′15″ E |
Restaurant | Anji | 30°38′39″ N | 119°41′13″ E |
Aquaculture site | Anji | 30°47′29″ N | 119°39′46″ E |
Location | Seafood | Freshwater Food | Total | |||
---|---|---|---|---|---|---|
Fish | Shellfish | Fish | Shrimp | Snails | ||
Supermarket | 20.0%(6/30) | 18.1%(4/22) | 21.7%(23/106) | 23.2%(19/82) | / | 21.7%(52/240) |
Wet market | 22.2%(12/54) | 23.7%(9/38) | 25.0%(47/188) | 27.4%(34/124) | 21.2%(11/52) | 24.8%(113/456) |
Restaurant | 21.4%(9/42) | 23.1%(6/26) | 23.3%(20/86) | 26.7%(20/75) | 26.1%(12/46) | 24.4%(67/275) |
Aquaculture site | / | / | 20.9%(43/206) | 22.6%(31/137) | / | 21.6%(74/343) |
Total | 21.7%(46/212) | 23.6%(260/1102) | 23.3% (306/1314) |
Antimicrobial Catagories | Antimicrobials | Breakpoints (MIC, µg/mL) | Number of Isolates (Percentage) | ||||
---|---|---|---|---|---|---|---|
Susceptible | Intermediate | Resistant | Susceptible | Intermediate | Resistant | ||
Phenicols | CHL | ≤8 | 16 | ≥32 | 303 (99.0) | 3 (1.0) | 0 (0) |
Folate pathway inhibitors | SXT | ≤2/38 | – | ≥4/76 | 294 (96.1) | 0 (0) | 12 (3.9) |
Penems | ETP | ≤0.5 | 1 | ≥2 | 306 (100.0) | 0 (0) | 0 (0) |
MEM | ≤1 | 2 | ≥4 | 306 (100.0) | 0 (0) | 0 (0) | |
Cephems | CTX | ≤1 | 2 | ≥4 | 302 (98.7) | 0 (0) | 4 (1.3) |
CAZ | ≤4 | 8 | ≥16 | 304 (99.3) | 2 (0.7) | 0 (0) | |
CZA | ≤8/4 | – | ≥16/4 | 306 (100.0) | 0 (0) | 0 (0) | |
Tetracyclines | TET | ≤4 | 8 | ≥16 | 297 (97.0) | 6 (2.0) | 3 (1.0) |
TIG | ≤0.5 | – | >0.5 | 306 (100.0) | 0 (0) | 0 (0) | |
Quinolones | CIP | ≤0.06 | 0.12–0.5 | ≥1 | 305 (99.6) | 1 (0.4) | 0 (0) |
NAL | ≤16 | – | ≥32 | 300 (98.0) | 0 (0) | 6 (2.0) | |
Macrolides | AZM | ≤16 | – | ≥32 | 301 (98.0) | 0 (0) | 5 (2.0) |
Aminoglycosides | AMI | ≤16 | 32 | ≥32 | 181 (51.2) | 117 (38.2) | 8 (2.6) |
STR | ≤8 | 16 | ≥32 | 111 (36.3) | 59 (19.3) | 136 (44.4) | |
β-lactam | AMP | ≤8 | 16 | ≥32 | 72 (23.5) | 36 (11.8) | 198 (64.7) |
SAM | ≤8/4 | 16/8 | ≥32/16 | 261 (85.3) | 43 (14.1) | 2 (0.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, W.; Chen, L.; Ji, L.; Yuan, R.; Dong, F.; Zhang, P. Prevalence and Genomic Characterization of Vibrio parahaemolyticus Isolated from a Vast Amount of Aquatic Products in Huzhou, China. Foods 2025, 14, 2481. https://doi.org/10.3390/foods14142481
Yan W, Chen L, Ji L, Yuan R, Dong F, Zhang P. Prevalence and Genomic Characterization of Vibrio parahaemolyticus Isolated from a Vast Amount of Aquatic Products in Huzhou, China. Foods. 2025; 14(14):2481. https://doi.org/10.3390/foods14142481
Chicago/Turabian StyleYan, Wei, Liping Chen, Lei Ji, Rui Yuan, Fenfen Dong, and Peng Zhang. 2025. "Prevalence and Genomic Characterization of Vibrio parahaemolyticus Isolated from a Vast Amount of Aquatic Products in Huzhou, China" Foods 14, no. 14: 2481. https://doi.org/10.3390/foods14142481
APA StyleYan, W., Chen, L., Ji, L., Yuan, R., Dong, F., & Zhang, P. (2025). Prevalence and Genomic Characterization of Vibrio parahaemolyticus Isolated from a Vast Amount of Aquatic Products in Huzhou, China. Foods, 14(14), 2481. https://doi.org/10.3390/foods14142481