Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (180)

Search Parameters:
Keywords = virome analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2696 KiB  
Article
Presence of Protozoan Viruses in Vaginal Samples from Pregnant Women and Their Association with Trichomoniasis
by Gegham Ghardyan, Lusine Abrahamyan, Karen Julhakyan, Hakob Davtyan, Norayr Martirosyan, Elina Arakelova, Hranush Avagyan, Sona Hakobyan, Tigranuhi Vardanyan, Naira Karalyan and Zaven Karalyan
Pathogens 2025, 14(8), 764; https://doi.org/10.3390/pathogens14080764 (registering DOI) - 1 Aug 2025
Abstract
This study was conducted in Armenia and included 32 pregnant women with TV infection and 30 healthy controls. The vaginal virome includes viruses that infect human cells and unicellular eukaryotes such as Trichomonas vaginalis (TV). Among these are Trichomonas vaginalis viruses (TVVs), double-stranded [...] Read more.
This study was conducted in Armenia and included 32 pregnant women with TV infection and 30 healthy controls. The vaginal virome includes viruses that infect human cells and unicellular eukaryotes such as Trichomonas vaginalis (TV). Among these are Trichomonas vaginalis viruses (TVVs), double-stranded RNA viruses from the Totiviridae family, and giant DNA viruses that replicate in protozoa. This study investigated the presence of TVVs and giant protozoan viruses in pregnant women with trichomoniasis in Armenia and explored their potential associations with adverse pregnancy outcomes. Vaginal and urethral samples were collected from 32 pregnant women with confirmed TV infection and 30 healthy pregnant controls. TVVs and giant viruses (Marseilleviridae, Mimiviridae, Phycodnaviridae) were detected using qRT-PCR. Viral RNA and DNA were extracted from clinical samples and TV cultures, followed by quantification and gene expression analysis. Selected TVVs were visualized via scanning electron microscopy. All TV-positive women carried at least one TVV strain, with 94% harboring multiple TVV types and TVV4 being the most common. TV infection was significantly associated with preterm birth and premature rupture of membranes (PPROM). Giant viruses were identified in all TV-positive cases but in only 40% of controls. Marseilleviridae gene expression was observed in TV cultures, suggesting possible interactions. These findings highlight a potential role for protozoan viruses in reproductive complications and warrant further investigation. Full article
(This article belongs to the Section Viral Pathogens)
8 pages, 405 KiB  
Brief Report
Characterization of DNA Viruses in Hindgut Contents of Protaetia brevitarsis Larvae
by Jean Geung Min, Namkyong Min, Binh T. Nguyen, Rochelle A. Flores and Dongjean Yim
Insects 2025, 16(8), 800; https://doi.org/10.3390/insects16080800 (registering DOI) - 1 Aug 2025
Abstract
The scarab species Protaetia brevitarsis, an edible insect, has been used in traditional medicine, as animal feed, and for converting agricultural organic wastes into biofertilizer. The intestinal tract, which contains a diverse array of microbiota, including viruses, plays a critical role in [...] Read more.
The scarab species Protaetia brevitarsis, an edible insect, has been used in traditional medicine, as animal feed, and for converting agricultural organic wastes into biofertilizer. The intestinal tract, which contains a diverse array of microbiota, including viruses, plays a critical role in animal health and homeostasis. We previously conducted a comparative analysis of the gut microbiota of third-instar larvae of P. brevitarsis obtained from five different farms and found significant differences in the composition of the gut bacterial microbiota between farms. To better understand the gut microbiota, the composition of DNA viruses in the hindgut contents of P. brevitarsis larvae obtained from five farms was investigated using metagenomic sequencing in this study. The β-diversity was significantly different between metagenomic data obtained from the five farms (PERMANOVA, pseudo-F = 46.95, p = 0.002). Family-based taxonomic analysis indicated that the relative abundance of viruses in the gut overall metagenome varied significantly between farms, with viral reads comprising approximately 41.2%, 15.0%, 4.3%, 4.0%, and 1.6% of metagenomic sequences from the farms Tohamsan gumbengi farm (TO), Secomnalagum gumbengi (IS), Gumbengi brothers (BR), Kyungpook farm (KB), and Jhbio (JH), respectively. More than 98% of the DNA viruses in the hindgut were bacteriophages, mainly belonging to the Siphoviridae family. At the species level, Phage Min1, infecting the genus Microbacterium, was detected in all farms, and it was the most abundant bacteriophage in intestinal microbiota, with a prevalence of 0.9% to 29.09%. The detected eukaryotic DNA viruses accounted for 0.01% to 0.06% of the intestinal microbiota and showed little or no relationship with insect viruses. Therefore, they most likely originated from contaminated feed or soil. These results suggest that the condition of substrates used as feed is more important than genetic factors in shaping the intestinal viral microbiota of P. brevitarsis larvae. These results can be used as reference data for understanding the hindgut microbiota of P. brevitarsis larvae and, more generally, the gut virome of insects. Full article
(This article belongs to the Topic Diversity of Insect-Associated Microorganisms)
Show Figures

Figure 1

12 pages, 6326 KiB  
Article
Two Cases of Feather Dystrophy in Free-Living Griffon Vultures (Gyps fulvus fulvus) Associated with Viral-like Inclusion Bodies
by Stefano Pesaro, Donatella Volpatti, Alice Baggio, Ranieri Verin, Fulvio Genero, Luca Sicuro, Livio Galosi, Lucia Biagini, Isabella Perlin, Patrizia Robino, Barbara Colitti, Daniele Avanzato and Giacomo Rossi
Animals 2025, 15(15), 2190; https://doi.org/10.3390/ani15152190 - 25 Jul 2025
Viewed by 188
Abstract
The griffon vulture (Gyps fulvus fulvus) is a scavenger species that plays a vital ecological role in carrion removal. Successful survival and reproduction in captive and wildlife conditions require optimal physical status and plumage integrity. Nutritional and environmental factors, systemic diseases, [...] Read more.
The griffon vulture (Gyps fulvus fulvus) is a scavenger species that plays a vital ecological role in carrion removal. Successful survival and reproduction in captive and wildlife conditions require optimal physical status and plumage integrity. Nutritional and environmental factors, systemic diseases, and various etiological agents can influence feather alterations. Although frequently documented in captive psittacine species, feather abnormalities are extremely rare in wild birds. Since 2020, two free-living griffon vultures in northeastern Italy have been found in poor physical condition, unable to fly due to partial feather loss and malformation of remiges and rectrices. Histopathologic examination of follicles and peri-follicular tissue revealed atrophy, keratin replacement, vasculitis, and calamus dystrophy with lymphohistiocytic perivasculitis. Immunohistochemical and ultrastructural analysis identified the presence of virus-like particles in epithelial and inflammatory cells. Although virome analysis did not confirm the presence of this virus in pooled affected samples, this study provides the first report of an emerging plumage disorder in free-ranging griffon vultures, which requires further characterization. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

23 pages, 2644 KiB  
Article
Severely Symptomatic Cucurbits in Croatia Dominantly Harbor a Complex of Potyviruses Including the Emerging Moroccan Watermelon Mosaic Virus
by Martin Jagunić, Dorotea Grbin, Marko Marohnić, Adrijana Novak, Ana Marija Čajkulić and Dijana Škorić
Agronomy 2025, 15(7), 1613; https://doi.org/10.3390/agronomy15071613 - 1 Jul 2025
Viewed by 481
Abstract
Potyviruses (family Potyviridae, genus Potyvirus), including emerging ones, pose a growing threat to cucurbit production. This study presents the first virome analysis of severely symptomatic cucurbits in continental Croatia, combining high-throughput sequencing (HTS) and RT-PCR diagnostics. Zucchini, cucumber, and butternut squash [...] Read more.
Potyviruses (family Potyviridae, genus Potyvirus), including emerging ones, pose a growing threat to cucurbit production. This study presents the first virome analysis of severely symptomatic cucurbits in continental Croatia, combining high-throughput sequencing (HTS) and RT-PCR diagnostics. Zucchini, cucumber, and butternut squash plants with severe virus-like symptoms sampled in 2021–2022 were found to consistently host a complex of potyviruses, including watermelon mosaic virus (WMV), zucchini yellow mosaic virus (ZYMV), and Moroccan watermelon mosaic virus (MWMV)—the latter being newly reported in Croatia and representing likely its northernmost detection in Europe. Phylogenetic analysis classified WMV isolates as emerging strains of subgroup EM3 and ZYMV as subgroup A1, consistent with European lineages. Croatian MWMV isolates formed a distinct subclade within the Mediterranean group, raising questions about its diversification trajectory. The findings highlight the expanding range of MWMV and underscore the value of HTS for early detection of emerging threats. These results have critical implications for cucurbit disease management, indicating the need to re-evaluate resistance claims in commercial cultivars and implement stricter phytosanitary surveillance in Croatia. The potential role of climate change in facilitating virus spread via aphid vectors is discussed, warranting further risk assessment and international monitoring efforts. Full article
Show Figures

Graphical abstract

18 pages, 1031 KiB  
Article
Microbiome Signatures and Inflammatory Biomarkers in Culture-Negative Neonatal Sepsis
by Morcos Hanna, Shixia Huang, Matthew Ross, Anaid Reyes, Dimuthu Perera, Anil Surathu, Sara Javornik Cregeen, Joseph Hagan and Mohan Pammi
Appl. Microbiol. 2025, 5(3), 57; https://doi.org/10.3390/applmicrobiol5030057 - 24 Jun 2025
Viewed by 310
Abstract
Overuse of antibiotics is a concern in ‘culture-negative sepsis’ but it is unclear whether this is due to infection with viruses, fungi or other microbes that are not easily cultured, or whether it results from inflammatory processes. In a prospective study, we enrolled [...] Read more.
Overuse of antibiotics is a concern in ‘culture-negative sepsis’ but it is unclear whether this is due to infection with viruses, fungi or other microbes that are not easily cultured, or whether it results from inflammatory processes. In a prospective study, we enrolled 50 preterm neonates with culture-positive sepsis (CP), culture-negative sepsis (CN), and asymptomatic preterm controls (CO). The microbiome of stool, skin, and blood, including bacterial, viral and fungal components and serum cytokine profiles were evaluated. The microbiome alpha or beta diversity did not differ between CN and CO groups. A MaAsLin analysis revealed increased relative abundances of specific bacterial and fungal genera in stool and skin samples in the CN group compared to CO. The virome analysis identified 24 viruses from skin samples, but they were not statistically different among the three groups. The cytokine and chemokine biomarker profiles were elevated in the CP group but were not statistically different between the CN and CO groups. Although the CN group had a longer hospital stay and higher BPD rates than the controls in unadjusted analyses, these differences were not significant after adjusting for gestational age and birth weight. The CN infants demonstrated microbial shifts without systemic immune activation or significantly worse clinical outcomes, supporting the rationale for discontinuing antibiotics in the absence of positive cultures. Full article
Show Figures

Figure 1

11 pages, 2347 KiB  
Communication
Discovery of a Rodent Hepacivirus in the Brazilian Amazon
by Nelielma G. Oliveira Prestes, Leonardo H. Almeida Hernández, Fábio Silva da Silva, Thito Y. Bezerra da Paz, Andressa O. Aragão, Bruno C. Veloso de Barros, Ricardo J. P. S. Guimarães, Rommel T. J. Ramos, Lívia Medeiros Neves Casseb, Sandro Patroca da Silva, Pedro Fernando da Costa Vasconcelos and Ana Cecília Ribeiro Cruz
Viruses 2025, 17(6), 830; https://doi.org/10.3390/v17060830 - 8 Jun 2025
Viewed by 519
Abstract
In the eastern Brazilian Amazon, the Viseu municipality has almost 70% of its territory deforested. Monitoring viruses from wildlife hosts enables the prevention and control of epizootic events and outbreaks. Seven samples from three marsupials and two rodents were screened by high-throughput sequencing [...] Read more.
In the eastern Brazilian Amazon, the Viseu municipality has almost 70% of its territory deforested. Monitoring viruses from wildlife hosts enables the prevention and control of epizootic events and outbreaks. Seven samples from three marsupials and two rodents were screened by high-throughput sequencing for virome analysis. The three samples from the two Proechimys roberti rodents, one from the liver, one from the brain, and one from a pooled viscera sample, showed the highest results in terms of viral abundance and richness. From these we obtained two strains of a new rodent hepacivirus (RHV), which belongs to a new putative genotype of an unclassified RHV species previously described in Panama and Northeast Brazil. The findings expand the host range of the cited RHV species, imply virus circulation in the study area, and suggest a viral tropism in the liver and perhaps in the brain. Full article
(This article belongs to the Special Issue Animal Virus Discovery and Genetic Diversity)
Show Figures

Figure 1

13 pages, 235 KiB  
Review
Impact of the Female Genital Microbiota on Outcomes of Assisted Reproductive Techniques
by Zacharias Fasoulakis, Dimitrios Papageorgiou, Athanasios Papanikolaou, Marianna Chatziioannou, Ioakeim Sapantzoglou, Afroditi Pegkou, George Daskalakis and Panos Antsaklis
Biomedicines 2025, 13(6), 1332; https://doi.org/10.3390/biomedicines13061332 - 29 May 2025
Viewed by 576
Abstract
The female genital microbiota plays a critical role in reproductive health and has recently emerged as a key factor influencing the outcomes of Assisted Reproductive Techniques (ARTs). Beyond traditional concerns about vaginal dysbiosis and infections such as bacterial vaginosis or mycoses, recent evidence [...] Read more.
The female genital microbiota plays a critical role in reproductive health and has recently emerged as a key factor influencing the outcomes of Assisted Reproductive Techniques (ARTs). Beyond traditional concerns about vaginal dysbiosis and infections such as bacterial vaginosis or mycoses, recent evidence highlights the broader impact of genital microbial communities, including the vaginal, cervical, and endometrial niches, on ART success rates. New findings suggest that specific bacterial profiles, as well as shifts in the virome and mycobiome, can significantly affect implantation and pregnancy outcomes. Non-invasive biomarkers such as menstrual blood have also been proposed for assessing endometrial receptivity. Furthermore, growing attention has been directed towards methodological challenges such as contamination risks during microbiota sampling which may influence study reliability. This review synthesizes the latest data on the relationship between the female genital microbiota and ART outcomes, with a focus on standardized microbiological analysis techniques and specific patient populations such as those experiencing recurrent implantation to optimize ART success based on microbiota profiling. Full article
(This article belongs to the Special Issue The Art of ART (Assisted Reproductive Technologies))
17 pages, 12772 KiB  
Article
Molecular Characterization of Tobacco Streak Virus, Beet Ringspot Virus, and Beet Ringspot Virus Satellite RNA from a New Natural Host, Phlox paniculata
by Elena Motsar, Anna Sheveleva, Fedor Sharko, Kristina Petrova, Natalia Slobodova, Ramil Murataev, Irina Mitrofanova and Sergei Chirkov
Plants 2025, 14(11), 1619; https://doi.org/10.3390/plants14111619 - 26 May 2025
Viewed by 472
Abstract
Phlox are ornamentals of great decorative value, grown throughout the world for their attractive flowers. Phlox cultivar collections at the Tsitsin Main Botanical Garden and the Botanical Garden of Lomonosov Moscow State University (both Moscow, Russia) were surveyed for virus diseases. Tobacco streak [...] Read more.
Phlox are ornamentals of great decorative value, grown throughout the world for their attractive flowers. Phlox cultivar collections at the Tsitsin Main Botanical Garden and the Botanical Garden of Lomonosov Moscow State University (both Moscow, Russia) were surveyed for virus diseases. Tobacco streak ilarvirus (TSV), beet ringspot nepovirus (BRSV), and BRSV satellite RNA (satRNA) were first detected in phlox when viromes of symptomatic Phlox paniculata plants were studied using high-throughput sequencing. The nearly complete genomes of three TSV and BRSV isolates and two BRSV satRNAs were assembled and characterized. TSV isolates shared 96.9–99.7% nucleotide sequence identity and were 82.2–89.1% identical to their closest relatives from broad bean, dahlia, and echinacea. BRSV isolates were distantly related to each other (83.7–89.3% identity) and were closest to those from oxalis and potato. BRSV satRNAs shared 90.6% identity and were 87.8–94.1% identical to satRNAs associated with tomato black ring virus L and S serotypes. Thus, TSV, BRSV, and BRSV satRNA were for the first time detected in a new natural host P. paniculata in Russia, adding to the list of known phlox viruses and expanding information on the host range, geographic distribution, and genetic diversity of these viruses. Full article
(This article belongs to the Special Issue Pathogenesis and Disease Control in Crops—2nd Edition)
Show Figures

Figure 1

17 pages, 3642 KiB  
Article
High-Throughput Sequencing Reveals Apple Virome Diversity and Novel Viruses in the Czech Republic
by Karima Ben Mansour, Igor Koloniuk, Jana Brožová, Marcela Komínková, Jaroslava Přibylová, Tatiana Sarkisova, Jiří Sedlák, Josef Špak and Petr Komínek
Viruses 2025, 17(5), 650; https://doi.org/10.3390/v17050650 - 29 Apr 2025
Cited by 1 | Viewed by 605
Abstract
Apple viruses pose significant threat to global apple production. In this study, HTS technology was used to investigate the apple virome in the Czech Republic. Previously reported viruses, including ACLSV, ASPV, ASGV, ApMV, AGCaV, and CCGaV, were confirmed, and near-complete genomes were assembled. [...] Read more.
Apple viruses pose significant threat to global apple production. In this study, HTS technology was used to investigate the apple virome in the Czech Republic. Previously reported viruses, including ACLSV, ASPV, ASGV, ApMV, AGCaV, and CCGaV, were confirmed, and near-complete genomes were assembled. Additionally, two novel viruses, ARWV1 and ARWV2 were identified for the first time in the Czech Republic. Phylogenetic analyses showed low genetic variability among ARWV2 isolates, suggesting a possible recent introduction or limited diversification. In contrast, ARWV1 isolates displayed distinct clustering in the coat protein coding region, separating symptomatic and asymptomatic samples, indicating a potential involvement of genetic determinants in symptom expression. Mixed infections were prevalent, with multiple molecular variants of ACLSV, ASPV, and AGCaV detected within individual samples, along with co-infections involving viruses from different families. Recombination analysis identified frequent recombination events in ACLSV and ASPV, often involving non-apple parental sequences, suggesting their potential for cross-host infections. Additionally, an interspecific recombination event was detected in an almond ApMV isolate, with PNRSV as a minor parent. These findings highlight the impact of agricultural practices on viral evolution and host adaptation. This study demonstrates the utility of HTS as a powerful tool for uncovering viral diversity, recombination events, and evolutionary dynamics. Full article
(This article belongs to the Special Issue Diversity and Coinfections of Plant or Fungal Viruses, 3rd Edition)
Show Figures

Figure 1

18 pages, 6360 KiB  
Article
Phylodynamic of Tomato Brown Rugose Fruit Virus and Tomato Chlorosis Virus, Two Emergent Viruses in Mixed Infections in Argentina
by Julia M. Ibañez, Romina Zambrana, Pamela Carreras, Verónica Obregón, José M. Irazoqui, Pablo A. Vera, Tatiana E. Lattar, María D. Blanco Fernández, Andrea F. Puebla, Ariel F. Amadio, Carolina Torres and Paola M. López Lambertini
Viruses 2025, 17(4), 533; https://doi.org/10.3390/v17040533 - 5 Apr 2025
Viewed by 985
Abstract
Tobamovirus fructirugosum (ToBRFV) and Crinivirus tomatichlorosis (ToCV) are emerging viral threats to tomato production worldwide, with expanding global distribution. Both viruses exhibit distinct biological characteristics and transmission mechanisms that influence their spread. This study aimed to reconstruct the complete genomes of ToBRFV and [...] Read more.
Tobamovirus fructirugosum (ToBRFV) and Crinivirus tomatichlorosis (ToCV) are emerging viral threats to tomato production worldwide, with expanding global distribution. Both viruses exhibit distinct biological characteristics and transmission mechanisms that influence their spread. This study aimed to reconstruct the complete genomes of ToBRFV and ToCV from infected tomato plants and wastewater samples in Argentina to explore their global evolutionary dynamics. Additionally, it compared the genetic diversity of ToBRFV in plant tissue and sewage samples. Using metagenomic analysis, the complete genome sequences of two ToBRFV isolates and two ToCV isolates from co-infected tomatoes, along with four ToBRFV isolates from sewage, were obtained. The analysis showed that ToBRFV exhibited higher genetic diversity in environmental samples than in plant samples. Phylodynamic analysis indicated that both viruses had a recent, single introduction in Argentina but predicted different times for ancestral diversification. The evolutionary analysis estimated that ToBRFV began its global diversification in June 2013 in Israel, with rapid diversification and exponential growth until 2020, after which the effective population size declined. Moreover, ToCV’s global expansion was characterized by exponential growth from 1979 to 2010, with Turkey identified as the most probable location with the current data available. This study highlights how sequencing and monitoring plant viruses can enhance our understanding of their global spread and impact on agriculture. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

14 pages, 2997 KiB  
Article
Diversity of Hepatitis E Viruses in Rats in Yunnan Province and the Inner Mongolia Autonomous Region of China
by Li-Li Li, Xiao-Hua Ma, Xiao-Wei Nan, Jing-Lin Wang, Jing Zhao, Xiao-Man Sun, Jin-Song Li, Gui-Sen Zheng and Zhao-Jun Duan
Viruses 2025, 17(4), 490; https://doi.org/10.3390/v17040490 - 28 Mar 2025
Cited by 1 | Viewed by 566
Abstract
Hepatitis E virus (HEV) is one of the most common pathogens causing acute hepatitis. Rat HEV, a member of the genus Rocahepevirus, infects mainly rat but can also cause human zoonotic infection. A survey of the virome of rats via next-generation sequencing [...] Read more.
Hepatitis E virus (HEV) is one of the most common pathogens causing acute hepatitis. Rat HEV, a member of the genus Rocahepevirus, infects mainly rat but can also cause human zoonotic infection. A survey of the virome of rats via next-generation sequencing (NGS) was performed in Yunnan Province and Inner Mongolia in China. Further screening of rat HEV was conducted by nested PCR. The complete genome of six representative strains were obtained by NGS and RT-PCR. The virome analysis revealed that multiple reads were annotated as Hepeviridae. The screening results showed that HEV was detected in 9.6% (34 of 355) of the rat samples and phylogenetically classified into three lineages. The sequences from Yunnan clustered with Rocahepevirus ratti, named the YnRHEV group, and those from Inner Mongolia were separated into two lineages, named the NmRHEV-1 and NmRHEV-2 groups. Complete sequence analysis showed that YnRHEV had very high sequence identity to a human HEV strain identified in immunosuppressed patients (88.7% to 94.3%), a reminder of the risk of cross-species transmission of rodent HEV. Notably, NmRHEV-1 and the most closely related rat HEV, RtCb-HEV/HeB2014, were divergent from other HEV. The phylogenetic analyses and lower sequence identities of the complete genome suggested the NmRHEV-1 to be a novel putative genus of the subfamily Orthohepevirinae. NmRHEV-2 shared the highest sequence identities (70.6% to 72.0%) with the species Rocahepevirus eothenomi, which may represent a putative novel genotype. This study revealed high genetic diversity of Hepeviridae in rats in China and a potentially zoonotic Rocahepevirus ratti strain. Full article
(This article belongs to the Special Issue Animal Virus Discovery and Genetic Diversity)
Show Figures

Figure 1

15 pages, 2783 KiB  
Article
AliMarko: A Pipeline for Virus Identification Using an Expert-Guided Approach
by Nikolay Popov, Ignat Sonets, Anastasia Evdokimova, Maria Molchanova, Vera Panova, Elena Korneenko, Alexander Manolov and Elena Ilina
Viruses 2025, 17(3), 355; https://doi.org/10.3390/v17030355 - 28 Feb 2025
Viewed by 774
Abstract
Viruses are ubiquitous across all kingdoms of cellular life, posing a significant threat to human health, and analyzing viral communities is challenging due to their genetic diversity and lack of a single, universally conserved marker gene. To address this challenge, we developed the [...] Read more.
Viruses are ubiquitous across all kingdoms of cellular life, posing a significant threat to human health, and analyzing viral communities is challenging due to their genetic diversity and lack of a single, universally conserved marker gene. To address this challenge, we developed the AliMarko pipeline, a tool designed to streamline virus identification in metagenomic data. Our pipeline uses a dual approach, combining mapping reads with reference genomes and a de novo assembly-based approach involving an HMM-based homology search and phylogenetic analysis, to enable comprehensive detection of viral sequences, including low-coverage and divergent sequences. We applied our pipeline to total RNA sequencing of bat feces and identified a range of viruses, quickly validating viral sequences and assessing their phylogenetic relationships. We hope that the AliMarko pipeline will be a useful resource for the scientific community, facilitating the interpretation of viral communities and advancing our understanding of viral diversity and its impact on human health. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

27 pages, 3950 KiB  
Review
The Complex Role of Gut Microbiota in Systemic Lupus Erythematosus and Lupus Nephritis: From Pathogenetic Factor to Therapeutic Target
by Emanuele Parodi, Marialuisa Novi, Paolo Bottino, Edoardo La Porta, Guido Merlotti, Luigi Mario Castello, Franca Gotta, Andrea Rocchetti and Marco Quaglia
Microorganisms 2025, 13(2), 445; https://doi.org/10.3390/microorganisms13020445 - 18 Feb 2025
Cited by 2 | Viewed by 2465
Abstract
The role of gut microbiota (GM) and intestinal dysbiosis in triggering the onset and/or modulating the severity and progression of lupus nephritis (LN) has been the object of intense research over the last few years. Some alterations at the phyla level, such as [...] Read more.
The role of gut microbiota (GM) and intestinal dysbiosis in triggering the onset and/or modulating the severity and progression of lupus nephritis (LN) has been the object of intense research over the last few years. Some alterations at the phyla level, such as the abundance of Proteobacteria and reduction in Firmicutes/Bacteroidetes (F/B) ratio and in α-diversity have been consistently reported in systemic lupus erythematosus (SLE), whereas a more specific role has been ascribed to some species (Bacteroides thetaiotaomicron and Ruminococcus gnavus) in LN. Underlying mechanisms include microbial translocation through a “leaky gut” and subsequent molecular mimicry, immune dysregulation (alteration of IFNγ levels and of balance between Treg and Th17 subsets), and epigenetic interactions. Levels of bacterial metabolites, such as butyrate and other short-chain fatty acids (SCFAs), appear to play a key role in modulating LN. Beyond bacterial components of GM, virome and mycobiome are also increasingly recognized as important players in the modulation of an immune response. On the other hand, microbiota-based therapy appears promising and includes diet, prebiotics, probiotics, symbiotics, and fecal microbiota transplantation (FMT). The modulation of microbiota could correct critical alterations, such as F/B ratio and Treg/Th17 imbalance, and blunt production of autoantibodies and renal damage. Despite current limits, GM is emerging as a powerful environmental factor that could be harnessed to interfere with key mechanisms leading to SLE, preventing flares and organ damage, including LN. The aim of this review is to provide a state-of-the-art analysis of the role of GM in triggering and modulating SLE and LN on the one hand, while exploring possible therapeutic manipulation of GM to control the disease on the other hand. Full article
(This article belongs to the Special Issue Gut Microbiota in DiseaseThird Edition)
Show Figures

Figure 1

17 pages, 2409 KiB  
Article
The Spleen Virome of Australia’s Endemic Platypus Is Dominated by Highly Diverse Papillomaviruses
by Subir Sarker, Saranika Talukder, Ajani Athukorala and Pam L. Whiteley
Viruses 2025, 17(2), 176; https://doi.org/10.3390/v17020176 - 26 Jan 2025
Cited by 1 | Viewed by 1335
Abstract
The platypus (Ornithorhynchus anatinus), a unique monotreme, represents a pivotal point in mammalian evolution with its distinctive traits, such as electroreception and venom production. Despite its evolutionary significance, the viral diversity within platypuses remains poorly understood. This study employed next-generation sequencing [...] Read more.
The platypus (Ornithorhynchus anatinus), a unique monotreme, represents a pivotal point in mammalian evolution with its distinctive traits, such as electroreception and venom production. Despite its evolutionary significance, the viral diversity within platypuses remains poorly understood. This study employed next-generation sequencing to investigate the virome of the dead platypuses, uncovering a range of novel and divergent viruses. Among the identified viruses were four complete genomes of papillomaviruses (OaPV1–4) exhibiting substantial divergence from known strains, suggesting a novel genus within the subfamily Secondpapillomavirinae. Additionally, five novel parvoviruses were detected, including two with complete genomes, highlighting the complex viral ecosystem of the platypus. Phylogenetic analysis placed these viruses in unique evolutionary branches, further demonstrating the platypus’s evolutionary significance. A circular DNA virus, a tombus-like virus, and a nodamuvirus were also identified, expanding the understanding of viral diversity in monotremes. These findings offer crucial insights into viral evolution in one of the most unique mammalian lineages, emphasising the need for further exploration to assess ecological and pathological impacts on platypus populations. Full article
(This article belongs to the Special Issue Animal Virus Discovery and Genetic Diversity)
Show Figures

Figure 1

11 pages, 2450 KiB  
Article
Assessment of Torquetenominivirus (TTMV) and Torquetenomidivirus (TTMDV) as Complementary Biomarkers to Torquetenovirus (TTV)
by Lilia Cinti, Pietro Giorgio Spezia, Piergiorgio Roberto, Gianluca Russo, Quirino Lai, Carolina Carillo, Federica Frasca, Guido Antonelli and Fabrizio Maggi
Int. J. Mol. Sci. 2025, 26(3), 1022; https://doi.org/10.3390/ijms26031022 - 25 Jan 2025
Cited by 1 | Viewed by 1192
Abstract
Recent studies have identified Torquetenovirus (TTV) as a promising biomarker of immune competence, particularly in assessing the vaccine response of solid organ transplant (SOT) recipients. However, given the individual variability of viral load, it is not yet possible to define "normal levels”. Nevertheless, [...] Read more.
Recent studies have identified Torquetenovirus (TTV) as a promising biomarker of immune competence, particularly in assessing the vaccine response of solid organ transplant (SOT) recipients. However, given the individual variability of viral load, it is not yet possible to define "normal levels”. Nevertheless, TTV is just one component of the broader Anelloviridae family, which also includes Torquetenominivirus (TTMV) and Torquetenomidivirus (TTMDV). This study explores whether the viremia of TTMV and TTMDV offers a stronger predictive marker for vaccine efficacy in SOT recipients. A cohort of 168 SOT patients (142 kidney and 26 lung transplant recipients) who received the BNT162B2 mRNA vaccine was examined, with viral loads quantified through virus-specific real-time PCR. While TTV remains a potentially useful biomarker for evaluating immune response, the combined analysis of all anelloviruses viremia provides deeper insights, particularly in cases where TTV is undetectable. Notably, only TTMV exhibited a pattern similar to TTV, suggesting its potential as an alternative biomarker when TTV is absent from the patient’s virome. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Back to TopTop