Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (289)

Search Parameters:
Keywords = virgin olive oil production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 914 KiB  
Review
Western Diet and Cognitive Decline: A Hungarian Perspective—Implications for the Design of the Semmelweis Study
by Andrea Lehoczki, Tamás Csípő, Ágnes Lipécz, Dávid Major, Vince Fazekas-Pongor, Boglárka Csík, Noémi Mózes, Ágnes Fehér, Norbert Dósa, Dorottya Árva, Kata Pártos, Csilla Kaposvári, Krisztián Horváth, Péter Varga and Mónika Fekete
Nutrients 2025, 17(15), 2446; https://doi.org/10.3390/nu17152446 - 27 Jul 2025
Viewed by 584
Abstract
Background: Accelerated demographic aging in Hungary and across Europe presents significant public health and socioeconomic challenges, particularly in preserving cognitive function and preventing neurodegenerative diseases. Modifiable lifestyle factors—especially dietary habits—play a critical role in brain aging and cognitive decline. Objective: This narrative review [...] Read more.
Background: Accelerated demographic aging in Hungary and across Europe presents significant public health and socioeconomic challenges, particularly in preserving cognitive function and preventing neurodegenerative diseases. Modifiable lifestyle factors—especially dietary habits—play a critical role in brain aging and cognitive decline. Objective: This narrative review explores the mechanisms by which Western dietary patterns contribute to cognitive impairment and neurovascular aging, with specific attention to their relevance in the Hungarian context. It also outlines the rationale and design of the Semmelweis Study and its workplace-based health promotion program targeting lifestyle-related risk factors. Methods: A review of peer-reviewed literature was conducted focusing on Western diet, cognitive decline, cerebrovascular health, and dietary interventions. Emphasis was placed on mechanistic pathways involving systemic inflammation, oxidative stress, endothelial dysfunction, and decreased neurotrophic support. Key findings: Western dietary patterns—characterized by high intakes of saturated fats, refined sugars, ultra-processed foods, and linoleic acid—are associated with elevated levels of 4-hydroxynonenal (4-HNE), a lipid peroxidation product linked to neuronal injury and accelerated cognitive aging. In contrast, adherence to Mediterranean dietary patterns—particularly those rich in polyphenols from extra virgin olive oil and moderate red wine consumption—supports neurovascular integrity and promotes brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) activity. The concept of “cognitive frailty” is introduced as a modifiable, intermediate state between healthy aging and dementia. Application: The Semmelweis Study is a prospective cohort study involving employees of Semmelweis University aged ≥25 years, collecting longitudinal data on dietary, psychosocial, and metabolic determinants of aging. The Semmelweis–EUniWell Workplace Health Promotion Model translates these findings into practical interventions targeting diet, physical activity, and cardiovascular risk factors in the workplace setting. Conclusions: Improving our understanding of the diet–brain health relationship through population-specific longitudinal research is crucial for developing culturally tailored preventive strategies. The Semmelweis Study offers a scalable, evidence-based model for reducing cognitive decline and supporting healthy aging across diverse populations. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

14 pages, 870 KiB  
Article
Evaluation of Packaging Effects on the Phenolic Profile and Sensory Characteristics of Extra Virgin Olive Oil During Storage Using Liquid Chromatography Coupled with Mass Spectrometry
by Mohamed M. Abuhabib, Francesc M. Campins-Machado, Julián Lozano-Castellón, Antònia Ninot, Agustí Romero-Aroca, Rosa M. Lamuela-Raventós, Maria Pérez and Anna Vallverdú-Queralt
Foods 2025, 14(14), 2532; https://doi.org/10.3390/foods14142532 - 19 Jul 2025
Viewed by 424
Abstract
The health benefits of extra virgin olive oil (EVOO), including improved cardiovascular health and metabolic function, are linked to its phenolic content. This study evaluated how storage duration and packaging affect the phenolic composition and sensory quality of Corbella EVOO. Oils were analyzed [...] Read more.
The health benefits of extra virgin olive oil (EVOO), including improved cardiovascular health and metabolic function, are linked to its phenolic content. This study evaluated how storage duration and packaging affect the phenolic composition and sensory quality of Corbella EVOO. Oils were analyzed at production and after 6 and 12 months of storage in two types of packaging: bag-in-box; stainless steel containers with a nitrogen headspace. UPLC-MS/MS profiling quantified 23 phenolic compounds, predominantly secoiridoids such as oleuropein and ligstroside aglycones. Oleuropein aglycone increased over time, whereas ligstroside aglycone peaked mid-storage before declining, likely converting to oleocanthal. Lignans and flavonoids degraded during storage, although luteolin increased, potentially due to glucoside hydrolysis. Bag-in-box packaging better preserved phenolic content than stainless steel. A sensory analysis corroborated the chemical findings, with oils stored in stainless steel showing greater reductions in pungency and astringency. A Pearson correlation linked bitterness with oleuropein aglycone (r = 0.44) and oleacein (r = 0.66), pungency with oleocanthal (r = 0.81), and astringency with oleacein (r = 0.86) and oleocanthal (r = 0.71). These findings highlight the importance of packaging in preserving the phenolic composition responsible for the sensory qualities of EVOO over time. Full article
(This article belongs to the Special Issue Application of Mass Spectrometry-Based Omics and Chemometrics in Food)
Show Figures

Figure 1

15 pages, 8274 KiB  
Article
Effects of Extra Virgin Olive Oil and Petrolatum on Skin Barrier Function and Microtopography
by Ana Rubio-Santoyo, Raquel Sanabria-de la Torre, Trinidad Montero-Vílchez, María Sierra Girón-Prieto, Almudena Gómez-Farto and Salvador Arias-Santiago
J. Clin. Med. 2025, 14(13), 4675; https://doi.org/10.3390/jcm14134675 - 2 Jul 2025
Viewed by 959
Abstract
Background/Objectives: Natural oils are widely promoted and used around the world as part of skincare. Among them, extra virgin olive oil (EVOO) stands out for its broad range of organic compositions and well-known moisturizing properties. This study aimed to evaluate the effects [...] Read more.
Background/Objectives: Natural oils are widely promoted and used around the world as part of skincare. Among them, extra virgin olive oil (EVOO) stands out for its broad range of organic compositions and well-known moisturizing properties. This study aimed to evaluate the effects of topically applied EVOO compared to petrolatum on skin barrier function (SBF) and microtopography. Methods: A within-person randomized clinical trial was conducted in healthy adult volunteers. EVOO and petrolatum were applied to defined areas on the volar forearm. Parameters related to the SBF, including stratum corneum hydration (SCH), transepidermal water loss (TEWL), temperature, and erythema, were assessed. The skin microtopography was evaluated through two approaches: (1) topographic parameters—surface roughness, desquamation, smoothness, and wrinkles; and (2) stratum corneum (SC) composition—corneocytes subtypes and the desquamation index (DI). The participants completed a tolerability questionnaire for each product. Results: A total of 54 participants (50% female; mean age: 28.57 ± 11.02 years) completed the study. Both EVOO and petrolatum significantly improved the SBF by increasing SCH and reducing erythema and skin temperature. Petrolatum additionally reduced TEWL. Regarding the skin microtopography, both products decreased the desquamation index and reduced the prevalence of mature corneocyte types (types 2–5). These effects were more pronounced with petrolatum. Notably, EVOO significantly increased the proportion of early-stage corneocytes (type 1). Conclusions: Both EVOO and petrolatum effectively enhanced the SBF and improved the microtopographic features of the skin. While petrolatum exerted a stronger occlusive effect by reducing TEWL and desquamation, EVOO uniquely promoted epidermal renewal by increasing epidermal turnover. Full article
(This article belongs to the Section Dermatology)
Show Figures

Figure 1

17 pages, 2132 KiB  
Article
Development, Characterization, and Stability of Margarine Containing Oleogels Based on Olive Oil, Coconut Oil, Starch, and Beeswax
by Bárbara Viana Barbosa Naves, Thais Lomonaco Teodoro da Silva, Cleiton Antônio Nunes, Felipe Furtini Haddad and Sabrina Carvalho Bastos
Gels 2025, 11(7), 513; https://doi.org/10.3390/gels11070513 - 2 Jul 2025
Viewed by 563
Abstract
The removal of partially hydrogenated fats, as well as the substitution of saturated fats with healthier alternatives, has become increasingly common due to their well-established association with adverse health effects. As a result, the demand for alternative formulations in the food industry has [...] Read more.
The removal of partially hydrogenated fats, as well as the substitution of saturated fats with healthier alternatives, has become increasingly common due to their well-established association with adverse health effects. As a result, the demand for alternative formulations in the food industry has driven the development of a promising emerging technology: oleogels. Oleogels are a semi-solid material made by trapping liquid oil within a three-dimensional network formed by structuring agents. Within this context, this study aimed to develop and characterize margarines prepared with oleogels formulated from extra virgin olive oil, coconut oil, starch, and beeswax at varying concentrations. The proposed oleogel-based formulations exhibited a high melting temperature range and lower enthalpy. Although lipid oxidation levels differed between the commercial and oleogel-based margarines, they remained within acceptable limits. A significant difference in color was observed, with the oleogel formulations imparting a slight greenish hue compared to the commercial margarine. In terms of microstructure, the commercial margarine presented smaller and more uniformly distributed water droplets. Oleogel-based margarines demonstrated technological feasibility. Considering consumers’ growing interest in food innovation and health-conscious products, olive oil-based oleogel margarines represent a promising alternative, particularly due to the nutritional benefits associated with olive oil. Full article
(This article belongs to the Special Issue Food Gels: Fabrication, Characterization, and Application)
Show Figures

Graphical abstract

18 pages, 1568 KiB  
Article
Coupling of Temporal-Check-All-That-Apply and Nose-Space Analysis to Investigate the In Vivo Flavor Perception of Extra Virgin Olive Oil and Carriers’ Impact
by Danny Cliceri, Iuliia Khomenko, Franco Biasioli, Flavia Gasperi and Eugenio Aprea
Foods 2025, 14(13), 2343; https://doi.org/10.3390/foods14132343 - 1 Jul 2025
Viewed by 332
Abstract
The perceived quality of extra virgin olive oil (EVOO) arises from the multisensory integration of multimodal stimuli, primarily driven by non-volatile and volatile organic compounds (VOCs). Given that EVOO is frequently consumed in combination with other foods, cross-modal interactions, encompassing both internal and [...] Read more.
The perceived quality of extra virgin olive oil (EVOO) arises from the multisensory integration of multimodal stimuli, primarily driven by non-volatile and volatile organic compounds (VOCs). Given that EVOO is frequently consumed in combination with other foods, cross-modal interactions, encompassing both internal and external elements, play a crucial role in shaping its sensory perception. A more realistic representation of EVOO perception can be achieved by considering these cross-modal effects and their temporal dynamics. This study employed dynamic sensory and instrumental techniques to investigate the product-related mechanisms that influence EVOO flavor perception. Ten trained panelists (mean age = 41.5 years; 50% female) evaluated two EVOO samples under two consumption conditions: alone and accompanied by a solid carrier (bread or chickpeas). Temporal Check-All-That-Apply (TCATA) and nose-space analysis using Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) were conducted simultaneously. Sensory descriptors and mass spectral peaks were analyzed through temporal curve indices (Area Under the Curve, Maximum Citation/Concentration, Time to Maximum), which were then used to construct multi-dimensional sensory and VOC release maps. Findings revealed that the composition and texture of the food carriers had a greater influence on temporal flavor perception than the variability in VOCs released by the different EVOO samples. These results underscore the importance of considering cross-modal sensory interactions when predicting EVOO flavor perception. The carriers modulated both the perception and VOC release, with effects dependent on their specific composition and texture. This methodological approach enabled a deeper understanding of the dynamic relationship between VOC release and EVOO sensory experience. Full article
Show Figures

Graphical abstract

25 pages, 2431 KiB  
Article
Chemical, Sensory, and Nutraceutical Profiling, and Shelf-Life Assessment of High-Quality Extra Virgin Olive Oil Produced in a Local Area near Florence (Italy)
by Carlotta Breschi, Lorenzo Cecchi, Federico Mattagli, Bruno Zanoni, Tommaso Ugolini, Francesca Ieri, Luca Calamai, Maria Bellumori, Nadia Mulinacci, Fabio Boncinelli, Valentina Canuti and Silvio Menghini
Molecules 2025, 30(13), 2811; https://doi.org/10.3390/molecules30132811 - 30 Jun 2025
Viewed by 410
Abstract
Consumers are increasingly willing to pay a premium for high-quality extra virgin olive oils (HQ-EVOOs) with specific sensory or nutraceutical properties, and originating from particular botanical or geographical origins. Regarding geographic origin, Italy is one of the main producers, with many local production [...] Read more.
Consumers are increasingly willing to pay a premium for high-quality extra virgin olive oils (HQ-EVOOs) with specific sensory or nutraceutical properties, and originating from particular botanical or geographical origins. Regarding geographic origin, Italy is one of the main producers, with many local production areas, each characterized by its own distinctive typicity. The aim of this study is the chemical, sensory, and nutraceutical profiling of HQ-EVOO produced over two production years in Montespertoli (province of Florence) by 12 producers involved in the “MontEspertOlio” project, funded by the Tuscan Region. Oils were produced based on a production process previously defined and specifically applied to this territory. The shelf-life of the oil was also evaluated over a 12-month period. Legal quality parameters were analyzed according to EU regulation. Phenolic compounds, tocopherols, fatty acid composition, and volatile compounds were analyzed using HPLC-DAD, HPLC-FLD, HS-SPME-GC-MS, and GC-FID, respectively. Finally, sensory analysis was conducted using the Panel Test method. Results showed that Montespertoli HQ-EVOO is characterized by distinctive sensory and chemical traits that fully match consumer preferences, even across two production years characterized by different growing conditions. The shelf-life performance was excellent over 12 months, also showing a protective effect of greater bottle sizes against oxidation. Full article
Show Figures

Figure 1

17 pages, 2607 KiB  
Article
Unveiling the Cardioprotective Potential of Hydroxytyrosol: Insights from an Acute Myocardial Infarction Model
by Alejandra Bermúdez-Oria, Eugenia Godoy, Virginia Pérez, Camila Musci Ferrari, Martin Donato, Juan Fernández-Bolaños, Tamara Zaobornyj and Verónica D’Annunzio
Antioxidants 2025, 14(7), 803; https://doi.org/10.3390/antiox14070803 - 28 Jun 2025
Viewed by 539
Abstract
Cardiovascular diseases remain the leading cause of death worldwide, highlighting the urgent need for novel therapeutic strategies. The Mediterranean diet is renowned for its cardiovascular benefits, largely attributed to extra virgin olive oil (EVOO) and its phenolic compounds, particularly hydroxytyrosol (HT). HT, a [...] Read more.
Cardiovascular diseases remain the leading cause of death worldwide, highlighting the urgent need for novel therapeutic strategies. The Mediterranean diet is renowned for its cardiovascular benefits, largely attributed to extra virgin olive oil (EVOO) and its phenolic compounds, particularly hydroxytyrosol (HT). HT, a potent antioxidant and anti-inflammatory agent, has demonstrated significant therapeutic potential in mitigating myocardial damage following acute myocardial infarction (AMI). However, there is a notable lack of published evidence regarding the effects of HT administration in the context of acute ischemia/reperfusion (I/R) injury, making this study a novel contribution to the field. This study aimed to evaluate the cardioprotective effects of HT using the Langendorff technique in an isolated mouse heart ischemia/reperfusion (I/R) model. Mice were administered a single intraperitoneal dose of HT (10 mg/kg) 24 h prior to the I/R protocols, and parameters such as the infarct size, mitochondrial function, and redox balance were assessed. The results revealed a remarkable 57% reduction in infarct size in HT-treated mice compared to untreated controls. HT treatment also improved mitochondrial bioenergetics, as evidenced by the increased membrane potential (ΔΨm), enhanced oxygen consumption, and reduced hydrogen peroxide (H2O2) production. Furthermore, HT restored the activity of the mitochondrial respiratory complexes, notably Complex I, even under I/R conditions. These findings highlight the efficacy of HT in reducing oxidative stress and preserving mitochondrial function, critical factors in cardiac disease. In conclusion, HT emerges as a promising therapeutic agent for ischemic heart disease, demonstrating both preventive and restorative potential. Future research should explore its clinical applicability to advance cardiovascular disease management. Full article
(This article belongs to the Special Issue Antioxidant Activity of Olive Extracts and Their Applications)
Show Figures

Graphical abstract

17 pages, 442 KiB  
Article
Comparison of Selected Quality Parameters of Olive Oils Derived from Conventional and Organic Farming
by Dorota Derewiaka, Karolina Majdak, Paulina Pakosz and Beata Drużyńska
Appl. Sci. 2025, 15(13), 7158; https://doi.org/10.3390/app15137158 - 25 Jun 2025
Viewed by 359
Abstract
This research aimed to qualitatively analyze the composition of selected extra virgin olive oils from organic and conventional farming available on the Polish market. Determination of the fatty acid profile, determination of the sterol content, and measurement of the acidic and peroxide numbers [...] Read more.
This research aimed to qualitatively analyze the composition of selected extra virgin olive oils from organic and conventional farming available on the Polish market. Determination of the fatty acid profile, determination of the sterol content, and measurement of the acidic and peroxide numbers of the olive oils were performed. Moreover, the content of phenolic acids was determined using the HPLC method, and the antioxidant activity was examined using, e.g., the FRAP and DPPH methods, to establish the differences between the analyzed olive oil samples. The most abundant fatty acids in the olive oil were monounsaturated fatty acids (65.60–78.50%) with oleic acid (59.54–75.36%), saturated fatty acids (14.60–20.49%) with palmitic acid (10.93–16.45%), and polyunsaturated fatty acids (7.80–15.04%) with linoleic acid (6.24–14.34%). The phytosterol fraction consisted of β-sitosterol, campesterol, stigmasterol, clerosterol, ∆5-avenasterol, cycloartenol, 24-methylenecycloartenol, and citrostadienol, and its concentration ranged from 775.23 to 1115.70 mg/kg of the olive oils. The conventional method of olive cultivation influenced campesterol concentration in the extra virgin olive oils, and the concentration was higher in such products than in organic. Tests conducted on the reduction of iron ions (FRAP method) showed that the olive oil obtained from conventional farming (except for one product) had slightly higher antioxidant activity (0.23–0.30 μmol TE/g of olive oil) than that obtained from organic farming (0.19–0.26 μmol TE/g of olive oil). The total content of phenolic acids (oleuropein, hydroxytyrosol, and tyrosol) in the extra virgin olive oils ranged from 133.20 to 226.82 mg/kg. Full article
(This article belongs to the Special Issue Application of Natural Components in Food Production)
Show Figures

Figure 1

16 pages, 767 KiB  
Article
Flavouring Tunisian Extra Virgin Olive Oil (EVOO) with Cloves: Quality Indices, Stability, and Consumers’ Purchase Survey
by Monia Ennouri, Slim Smaoui and Theodoros Varzakas
Foods 2025, 14(12), 2114; https://doi.org/10.3390/foods14122114 - 16 Jun 2025
Viewed by 488
Abstract
The objective of our study is to monitor the stability of Extra Virgin Olive Oil (EVOO) flavoured with cloves. Two flavouring processes were tested, namely the maceration of cloves in olive oil and the grinding of cloves with olives. The analysis of the [...] Read more.
The objective of our study is to monitor the stability of Extra Virgin Olive Oil (EVOO) flavoured with cloves. Two flavouring processes were tested, namely the maceration of cloves in olive oil and the grinding of cloves with olives. The analysis of the obtained oils showed that the process of the simultaneous grinding of the cloves with the olives produced a better oil quality than the maceration process in terms of richness in total phenols. The co-crushing method increased the total phenols in the olive oil by 34.24% and 73.37%, compared to the maceration method with an increase of only 17.1% and 52.35%, respectively, for the 2 and 4% of cloves addition. Fluorescence spectroscopy analysis of the oils supplied useful and complementary results. The aromatized olive oil developed by simultaneous grinding was subjected to ageing acceleration at 60 °C in the dark for 165 days. Results indicated that the acidity and the value of the specific extinction coefficient K232 of the control EVOO followed the standards of the International Olive Oil Council. During accelerated storage, the degradation of total phenols was marked as less for the flavoured EVOOs than for the control samples. After 165 days of storage, the colour of all olive oil samples was modified, with this change being the most apparent for unflavoured oil with a 45.6% and 46.4% decrease in L and b* vs. 38.8% and 22.4% for C1, and 45.5% and 37.2% for C2 respectively. After 165 days of storage, all the oil samples were darker and red. Flavouring EVOO with cloves offered a better stability to the oil. A consumer survey involving 224 participants revealed that despite the fact that only 30% were familiar with flavoured oils, 83.9% expressed a willingness to purchase clove-flavoured olive oil if it became available on the market. Flavoured oils offer a good alternative to multiply olive oil-based products and thus offer additional opportunities for the marketing of olive oils. Full article
Show Figures

Figure 1

27 pages, 2222 KiB  
Article
Impact of Extra-Virgin Olive Oil Storage Conditions on Phenolic Content and Wound-Healing Properties
by Francesca Blasi, Maria Rachele Ceccarini, Stefano Bistarelli, Francesco Galli, Lina Cossignani, Desirée Bartolini and Federica Ianni
Foods 2025, 14(12), 2104; https://doi.org/10.3390/foods14122104 - 15 Jun 2025
Viewed by 769
Abstract
Storage conditions significantly impact the quality and functional properties of extra-virgin olive oil (EVOO). This study investigated the impact of light and dark storage on the nutritional quality of Umbrian EVOO and its effectiveness in tissue repair. The research aimed to simulate real-world [...] Read more.
Storage conditions significantly impact the quality and functional properties of extra-virgin olive oil (EVOO). This study investigated the impact of light and dark storage on the nutritional quality of Umbrian EVOO and its effectiveness in tissue repair. The research aimed to simulate real-world conditions occurring during transport, retail, and domestic storage. Light exposure accelerated EVOO oxidation, significantly affecting peroxide levels (ranging from 5.19 to 24.30 meq O2/kg of oil), total antioxidant capacity (measured spectrophotometrically, collectively ranging from 399.47 to 684.63 mg TE/kg of oil), and phenolic compound concentrations, particularly secoiridoids, lignans, and flavonoids (measured by HPLC, collectively ranging from 41.92 to 169.74 mg/kg of oil). Statistically significant differences (p < 0.01) were recorded between the control sample and the others in almost all cases, after storage. For instance, both light and dark exposure over a 24-month period resulted in a marked reduction (p < 0.01) in oleocanthal, pinoresinol, luteolin, and apigenin. Pigment levels were also affected, representing a rapid and cost-effective indicator of product oxidative degradation. The loss of phenolic compounds (especially oleacein and oleocanthal, which showed the most significant reductions of approximately 75% and 60%, respectively), impaired the EVOO’s wound-healing properties, affecting key tissue regeneration processes such as keratinocyte migration, hyaluronic acid synthesis, and angiogenesis. Notably, oleocanthal and oleacein, present at higher concentrations in fresh extracts, emerged as the primary contributors to the observed dermal effects and wound-healing processes, demonstrating a significant highest efficacy (p < 0.0001) in promoting wound closure. These findings underscore the critical role of EVOO storage in preserving its sensory properties and labile components with tissue repair and regeneration functions. Full article
Show Figures

Figure 1

21 pages, 4386 KiB  
Article
The Effects of Different Mineral Clay Particles on Olive Yield and Olive Oil Quality of Two Cultivars Under Rainfed or Irrigated Conditions
by Petros Anargyrou Roussos, Asimina-Georgia Karyda, Georgios-Ioannis Mavromanolakis, Dimitrios Gkliatis and Maria Zoti
Horticulturae 2025, 11(4), 341; https://doi.org/10.3390/horticulturae11040341 - 21 Mar 2025
Cited by 1 | Viewed by 594
Abstract
The olive tree is the emblematic tree of the Mediterranean basin, enduring intense irradiance and heat stress during prolonged dry summers. Particle film technology is a relatively new tool for mitigating both biotic and abiotic stress factors. In the present trial, two Greek [...] Read more.
The olive tree is the emblematic tree of the Mediterranean basin, enduring intense irradiance and heat stress during prolonged dry summers. Particle film technology is a relatively new tool for mitigating both biotic and abiotic stress factors. In the present trial, two Greek olive cultivars, i.e., rainfed ‘Megaron’ and irrigated ‘Koroneiki’, were used to test the efficacy of kaolin, talc, and, for the first time, attapulgite clay particles as single and double foliar applications on the quantitative and qualitative traits of production. Clay particle treatments generally increased yield, resulting in higher olive oil production per tree. Oil quality parameters remained within the standards for extra virgin olive oil across all treatments. Talc differed from the other clay minerals, particularly in its effect on the free acid composition of the oil. Attapulgite application enhanced yield and oil production in ‘Koroneiki’, especially when compared to double kaolin application. Conversely, kaolin double application resulted in the highest yield and oil production in the ‘Megaron’ cultivar. These findings indicate that the efficacy of particle film treatments varies depending on multiple factors, yet they remain a valuable tool for mitigating the adverse effects of climate change on olive production. As this is the first study to test talc and attapulgite on olive trees, further research is required to fully elucidate the potential of particle film technology. Full article
(This article belongs to the Special Issue Orchard Management Under Climate Change: 2nd Edition)
Show Figures

Figure 1

21 pages, 7975 KiB  
Article
Olive Plant Treated with Different Geo-Material Foliar Film (Zeolite and Kaolin Based): Leaf Characteristics and Oil Quality
by Annalisa Rotondi, Tommaso Ganino, Andrea Calderoni, Margherita Rodolfi, Rohini Dhenge and Lucia Morrone
Horticulturae 2025, 11(3), 338; https://doi.org/10.3390/horticulturae11030338 - 20 Mar 2025
Viewed by 740
Abstract
Organic agriculture has few tools against pests and diseases and is constantly looking for effective and sustainable products such as geomaterials, i.e., zeolite. This study evaluates the physiological and morphological responses of olive plants (Olea europaea) to foliar applications of different [...] Read more.
Organic agriculture has few tools against pests and diseases and is constantly looking for effective and sustainable products such as geomaterials, i.e., zeolite. This study evaluates the physiological and morphological responses of olive plants (Olea europaea) to foliar applications of different geo-materials, specifically kaolin, natural zeolite, and ammonium-enriched zeolite. The research examines leaf anatomical modifications, including internal tissue structures, trichome and stomatal density, chlorophyll content, and gas exchange parameters, alongside the impact on fruit development and extra virgin olive oil (EVOO) quality. Results indicate that kaolin application negatively influenced transpiration and stomatal conductance, an effect corroborated by increased xylem vessel wall thickness. However, the reduction in stomatal conductance was attributed to a functional rather than morphological adaptation, as no significant changes in stomatal density or size were observed. Both geo-material treatments altered leaf surface properties, particularly peltate trichome characteristics. Notably, ammonium-enriched zeolite application enhanced photosynthetic rate during early olive development, likely due to its nutritional role, and contributed to increased fruit size and oil yield. These findings highlight the potential of geo-material-based foliar treatments as an effective strategy to optimize plant physiological performance and improve olive oil production in sustainable agricultural systems. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

13 pages, 1730 KiB  
Article
Changes in the Quality Parameters and Antimicrobial Activity of Ozonated Virgin and Pomace Olive Oils Under Different Storage Conditions
by Paula Dominguez Lacueva, Paula Corella Guillamón and María J. Cantalejo Díez
Foods 2025, 14(6), 999; https://doi.org/10.3390/foods14060999 - 15 Mar 2025
Cited by 1 | Viewed by 912
Abstract
Ozonated olive oils have emerged as a promising alternative for natural antimicrobial agents in the food industry due to their potential to inhibit microbial growth. However, the stability and effectiveness of these oils under different storage conditions has not been thoroughly explored. This [...] Read more.
Ozonated olive oils have emerged as a promising alternative for natural antimicrobial agents in the food industry due to their potential to inhibit microbial growth. However, the stability and effectiveness of these oils under different storage conditions has not been thoroughly explored. This study examines the changes in the physicochemical properties and antimicrobial activity of ozonated virgin olive oil (VOO) and pomace olive oil (POO), stored at 4 °C and 20 °C for 6 months. The peroxide index (PI), acidity index (AI), iodine value (IV), and viscosity (V) were analyzed, along with their antimicrobial activity against Escherichia coli (STCC 45), Pseudomonas aeruginosa (STCC109), and Staphylococcus aureus (STCC 239). The results showed that both oils underwent changes in their physicochemical properties and antimicrobial activity over time. The PI initially increased up to day 30, with VOO reaching a peak value of 741.44 ± 32.16 meq O2/kg and POO reaching 1067.23 ± 56.56 meq O2/kg, but after this point, it began to decrease in both oils and at both temperatures (4 °C and 20 °C). The acidity index (AI) increased over time, particularly in POO, which reached a final value of 6.32 ± 0.14 mg KOH/g. Both oils showed a reduction in iodine value (IV), and an increase in viscosity (V) over time. In terms of antimicrobial activity, P. aeruginosa remained stable with an average inhibition zone of 9.41 ± 0.23 mm, while E. coli showed the greatest increase in activity over time, reaching 21.31 ± 4.01 mm in POO at 20 °C. On the other hand, S. aureus exhibited the highest average antimicrobial activity, with a mean inhibition diameter of 14.49 ± 0.36 mm, and the largest inhibition zone of Ø = 18.97 ± 1.46 mm observed after 180 days of storage. A Spearman correlation analysis revealed a strong positive relationship (ρ > 0.85, p < 0.05) among PI, AI, and the antimicrobial activity with storage duration. This study provides novel insights into the stability of ozonated oils, offering valuable perspectives for their application in the food industry, especially using pomace olive oil, a key by-product in olive oil production. Full article
Show Figures

Figure 1

12 pages, 1704 KiB  
Article
Exploring the Sensory and Volatile Profiles Associated with the Antioxidant Activity of Monovarietal Extra Virgin Olive Oil of the Leccio Del Corno Cultivar with Remarkable Resistance to the Bacterium Xylella fastidiosa
by Maria Teresa Frangipane, Lara Costantini, Stefania Garzoli, Nicolò Merendino and Riccardo Massantini
Agriculture 2025, 15(6), 619; https://doi.org/10.3390/agriculture15060619 - 14 Mar 2025
Viewed by 713
Abstract
In recent decades, the production of extra virgin olive oil has doubled, with a high export value. In Italy, the large number of olive varieties, with around 500 registered, allows the production of highly valued monovarietal oils with a significant impact on sensory [...] Read more.
In recent decades, the production of extra virgin olive oil has doubled, with a high export value. In Italy, the large number of olive varieties, with around 500 registered, allows the production of highly valued monovarietal oils with a significant impact on sensory profiles. Due to its excellent adaptation to the cold and its remarkable resistance to the bacterial pathogen Xylella fastidiosa (subsp. pauca), the sensory and volatile profiles of the Leccio del Corno monovarietal oil were investigated in relation to quality and antioxidant activity. Our study has revealed that Leccio del Corno oil has high antioxidant activity (TPC: 3.29 mg GAE/g, FRAP: 1.31 mmol Fe2+/g, ABTS•+: 1.27 mmol TE/g). This gives it high nutritional value for human consumption, and increases its ability to preserve itself over time. From a sensory point of view, it presents a specific sensory imprint with pleasant notes of almond (3 ± 0.07), artichoke (2.4 ± 0.06), and, to a slight extent, tomato (1 ± 0.16). Regarding the volatile component, 2-hexenal (E) was the most abundant compound in our research, accounting for 41.0%. The use of the Leccio del Corno variety, with its remarkable resistance to the bacterium Xylella fastidiosa, for the production of a monovarietal extra virgin olive oil of excellent quality could, therefore, be a valid alternative for restoring production capacity while increasing olive biodiversity in areas affected by this bacterium. Full article
Show Figures

Figure 1

19 pages, 1090 KiB  
Review
High Polyphenol Extra Virgin Olive Oil and Metabolically Unhealthy Obesity: A Scoping Review of Preclinical Data and Clinical Trials
by Konstantina Liva, Athanasios A. Panagiotopoulos, Alexandra Foscolou, Charalampia Amerikanou, Alkistis Vitali, Stavros Zioulis, Konstantina Argyri, Georgios I. Panoutsopoulos, Andriana C. Kaliora and Aristea Gioxari
Clin. Pract. 2025, 15(3), 54; https://doi.org/10.3390/clinpract15030054 - 7 Mar 2025
Cited by 2 | Viewed by 5576
Abstract
Background/Objectives: During the last decade, there has been an increased interest in phenolic compound-rich natural products as natural therapies for regulating the molecular pathways behind central obesity and associated metabolic disorders. The present scoping review presents the outcomes of clinical and preclinical [...] Read more.
Background/Objectives: During the last decade, there has been an increased interest in phenolic compound-rich natural products as natural therapies for regulating the molecular pathways behind central obesity and associated metabolic disorders. The present scoping review presents the outcomes of clinical and preclinical studies examining the anti-obesity effects of high phenolic extra virgin olive oil (HP-EVOO) and its possible underlying molecular mechanisms. Methods: Studies published between 2014 and 2024 were searched via MEDLINE, Scopus, Cochrane, the Web of Science, Semantic Scholar, Google Scholar, Science.gov, and Clinicaltrials.gov databases. A combination of keywords and Boolean logic was used to search throughout the last decade in all databases, including “hyperglycemia” or “hypertension” or “metabolic syndrome” or “dyslipidemia” or “hyperlipidemia” or “hypoglycemia” or “obesity” or “macrovascular diabetic complications” or “microvascular diabetic complications” or “cardiovascular disease” or “overweight” or “insulin sensitivity” or “insulin resistance” and “extra virgin olive oil” or “high phenolic olive oil” and “human” or “animal model”. Results: The 10-year literature survey identified 21 studies in both animal models and humans, indicating that HP-EVOO improves inflammation, glycemic control, oxidative stress and endothelial function, potentially protecting against metabolic syndrome, hypertension and type 2 diabetes, even compared to EVOO. Moreover, HP-EVOO’s antiplatelet effect and improvement in HDL functionality reduce cardiovascular risk. Conclusions: The evidence presented in this study demonstrates that HP-EVOO represents an effective preventive and therapeutic dietary approach to cardiometabolic diseases. Full article
(This article belongs to the Special Issue The Effect of Dietary Compounds on Inflammation-Mediated Diseases)
Show Figures

Figure 1

Back to TopTop