The Effects of Different Mineral Clay Particles on Olive Yield and Olive Oil Quality of Two Cultivars Under Rainfed or Irrigated Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Site Location—Plant Material
2.2. Olive Oil Extraction Procedure
2.3. Olive Oil Analyses
2.4. Determination of Total Phenols
2.5. Antioxidant Capacity
2.6. Fatty Acids and Squalene Determination
2.7. Statistical Analysis
3. Results
3.1. Effects of the Treatments on Yield Components
3.2. Effects of the Treatments on Olive Oil Quality Indices
3.3. Effects of the Treatments on Olive Oil Phenol Content and Antioxidant Capacity
3.4. Effects of the Treatments on Olive-Oil-Free Fatty Acid Content
3.5. Hierarchical Cluster Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roussos, P.A. Climate Change Challenges in Temperate and Sub-Tropical Fruit Tree Cultivation. Encyclopedia 2024, 4, 558–582. [Google Scholar] [CrossRef]
- Bernardo, S.; Luzio, A.; Machado, N.; Ferreira, H.; Vives-Peris, V.; Malheiro, A.C.; Correia, C.; Gómez-Cadenas, A.; Moutinho-Pereira, J.; Dinis, L.-T. Kaolin Application Modulates Grapevine Photochemistry and Defence Responses in Distinct Mediterranean-Type Climate Vineyards. Agronomy 2021, 11, 477. [Google Scholar] [CrossRef]
- Fernandez, E.; Mojahid, H.; Fadón, E.; Rodrigo, J.; Ruiz, D.; Egea, J.A.; Ben Mimoun, M.; Kodad, O.; El Yaacoubi, A.; Ghrab, M. Climate change impacts on winter chill in Mediterranean temperate fruit orchards. Reg. Environ. Change 2023, 23, 7. [Google Scholar] [CrossRef]
- Lu, L.-C.; Chiu, S.-Y.; Chiu, Y.-h.; Chang, T.-H. Sustainability efficiency of climate change and global disasters based on greenhouse gas emissions from the parallel production sectors–A modified dynamic parallel three-stage network DEA model. J. Environ. Manag. 2022, 317, 115401. [Google Scholar] [CrossRef]
- Aslam, M.A.; Ahmed, M.; Hassan, F.-U.; Afzal, O.; Mehmood, M.Z.; Qadir, G.; Asif, M.; Komal, S.; Hussain, T. Impact of Temperature Fluctuations on Plant Morphological and Physiological Traits. In Building Climate Resilience in Agriculture; Jatoi, W.N., Mubeen, M., Ahmad, A., Cheema, M.A., Lin, Z., Hashmi, M.Z., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Brito, C.; Dinis, L.-T.; Silva, E.; Gonçalves, A.; Matos, C.; Rodrigues, M.A.; Moutinho-Pereira, J.; Barros, A.; Correia, C. Kaolin and salicylic acid foliar application modulate yield, quality and phytochemical composition of olive pulp and oil from rainfed trees. Sci. Hortic. 2018, 237, 176–183. [Google Scholar] [CrossRef]
- Roussos, P.A.; Denaxa, N.-K.; Damvakaris, T.; Stournaras, V.; Argyrokastritis, I. Effect of alleviating products with different mode of action on physiology and yield of olive under drought. Sci. Hortic. 2010, 125, 700–711. [Google Scholar] [CrossRef]
- Denaxa, N.-K.; Roussos, P.A.; Damvakaris, T.; Stournaras, V. Comparative effects of exogenous glycine betaine, kaolin clay particles and Ambiol on photosynthesis, leaf sclerophylly indexes and heat load of olive cv. Chondrolia Chalkidikis under drought. Sci. Hortic. 2012, 137, 87–94. [Google Scholar] [CrossRef]
- Sharma, R.; Reddy, S.V.R.; Datta, S. Particle films and their applications in horticultural crops. Appl. Clay Sci. 2015, 116, 54–68. [Google Scholar] [CrossRef]
- Nitzko, S.; Bahrs, E.; Spiller, A. Consumer willingness to pay for pesticide-free food products with different processing degrees: Does additional information on cultivation have an influence? Farming Syst. 2024, 2, 100059. [Google Scholar] [CrossRef]
- Brito, C.; Dinis, L.-T.; Moutinho-Pereira, J.; Correia, C. Kaolin, an emerging tool to alleviate the effects of abiotic stresses on crop performance. Sci. Hortic. 2019, 250, 310–316. [Google Scholar] [CrossRef]
- Boari, F.; Donadio, A.; Schiattone, M.I.; Cantore, V. Particle film technology: A supplemental tool to save water. Agric. Water Manag. 2015, 147, 154–162. [Google Scholar]
- Rotondi, A.; Bertazza, G.; Faccini, B.; Ferretti, G.; Morrone, L. Effect of different foliar particle films (kaolin and zeolitite) on chemical and sensory properties of olive oil. Agronomy 2022, 12, 3088. [Google Scholar] [CrossRef]
- Glenn, D.M.; Puterka, G.J. Particle films: A new technology for agriculture. Hortic. Rev. 2010, 31, 1–44. [Google Scholar]
- Denizhan, H.; İkinci, A.; Karaat, F.E. Physiological Influences of Solid and Transparent Foliar Reflective Material Treatments in Almond Trees. Appl. Fruit Sci. 2024, 66, 931–940. [Google Scholar] [CrossRef]
- Glenn, D.; Puterka, G. Particle film technology: An overview of history, concepts and impact in horticulture. In Proceedings of the XXVI International Horticultural Congress: Key Processes in the Growth and Cropping of Deciduous Fruit and Nut Trees 636, Toronto, ON, Canada, 11–17 August 2002; pp. 509–511. [Google Scholar]
- Taskin, S.; Ertan, E. Exogenous applications of kaolin and glycine betaine increased the yield and quality of olive fruit and olive oil. Erwerbs-Obstbau 2023, 65, 337–346. [Google Scholar]
- Antonakou, M.; Arapogiannis, T.; Roussos, P. Surround® (kaolin 95% w/w) WP crop protectant: A new broad spectrum crop protect against insects, sun burn and heat stress on many crops. In Proceedings of the International Symposium on: Organic Agriculture in Mediterranean Problems and Perspectives, Chania, Crete, Greece, 26–29 May 2022; pp. 9–11. [Google Scholar]
- Saour, G.; Makee, H. Effects of kaolin particle film on olive fruit yield, oil content and quality. Adv. Hortic. Sci. 2003, 17, 204–206. [Google Scholar]
- Nazeri, M.; Tabatabaei, S.J.; Mollayi, N. The effect of talc, kaolin, and zinc oxide on heat stress in pomegranate cv. Malas saveh. Iran. J. Plant Physiol. 2024, 1, 4809. [Google Scholar]
- Roussos, P.A.; Karabi, A.; Anastasiou, L.; Assimakopoulou, A.; Gasparatos, D. Apricot Tree Nutrient Uptake, Fruit Quality and Phytochemical Attributes, and Soil Fertility under Organic and Integrated Management. Appl. Sci. 2023, 13, 2596. [Google Scholar] [CrossRef]
- Martinelli, F.; Remorini, D.; Saia, S.; Massai, R.; Tonutti, P. Metabolic profiling of ripe olive fruit in response to moderate water stress. Sci. Hortic. 2013, 159, 52–58. [Google Scholar] [CrossRef]
- Saavedra Del, R.G.; Escaff, G.M.; Hernandéz, V.J. Kaolin effects in processing tomato production in Chile. Acta Hortic. 2006, 724, 191–198. [Google Scholar] [CrossRef]
- Melgarejo, P.; Martınez, J.; Hernández, F.; Martınez-Font, R.; Barrows, P.; Erez, A. Kaolin treatment to reduce pomegranate sunburn. Sci. Hortic. 2004, 100, 349–353. [Google Scholar]
- Steiman, S.R.; Bittenbender, H.C.; Idol, T.W. Analysis of kaolin particle film use and its application on coffee. HortScience 2007, 42, 1605–1608. [Google Scholar] [CrossRef]
- Maletsika, P.; Nanos, G. Leaf and Fruit Responses to Kaolin Particle Film Applied onto Mature Olive Trees. J. Biol. Agric. Healthc. 2015, 5, 17–27. [Google Scholar]
- Brito, C.; Gonçalves, A.; Silva, E.; Martins, S.; Pinto, L.; Rocha, L.; Arrobas, M.; Rodrigues, M.Â.; Moutinho-Pereira, J.; Correia, C.M. Kaolin foliar spray improves olive tree performance and yield under sustained deficit irrigation. Sci. Hortic. 2021, 277, 109795. [Google Scholar]
- Gholami, A.R.; Hashempour, A.; Hadjiamiri, A. Growth, physiological and biochemical response of six commercial olive cultivars to kaolin foliar application in warm conditions. J. Plant Process Funct. 2021, 10, 15–26. [Google Scholar]
- Abdel Ghani, N.; Galal, M.; El-Sayed, M.; El-Marsafawy, S.M.; Omran, M. Effect of Spraying Kaolin and Calcium Carbonate on the Productivity of “Aggezi and Picual” Olive cvs. J. Plant Prod. 2013, 4, 1035–1050. [Google Scholar]
- Petoumenou, D.G. Enhancing yield and physiological performance by foliar applications of chemically inert mineral particles in a rainfed vineyard under Mediterranean conditions. Plants 2023, 12, 1444. [Google Scholar] [CrossRef]
- Nteve, G.-M.; Kostas, S.; Polidoros, A.N.; Madesis, P.; Nianiou-Obeidat, I. Adaptation Mechanisms of Olive Tree under Drought Stress: The Potential of Modern Omics Approaches. Agriculture 2024, 14, 579. [Google Scholar] [CrossRef]
- Khaleghi, E.; Arzani, K.; Moallemi, N.; Barzegar, M. The efficacy of kaolin particle film on oil quality indices of olive trees (Olea europaea L.) cv ‘Zard’grown under warm and semi-arid region of Iran. Food Chem. 2015, 166, 35–41. [Google Scholar] [CrossRef]
- Servili, M.; Esposto, S.; Lodolini, E.; Selvaggini, R.; Taticchi, A.; Urbani, S.; Montedoro, G.; Serravalle, M.; Gucci, R. Irrigation effects on quality, phenolic composition, and selected volatiles of virgin olive oils cv. Leccino. J. Agric. Food Chem. 2007, 55, 6609–6618. [Google Scholar] [CrossRef]
- Issaoui, M.; Flamini, G.; Brahmi, F.; Dabbou, S.; Hassine, K.B.; Taamali, A.; Chehab, H.; Ellouz, M.; Zarrouk, M.; Hammami, M. Effect of the growing area conditions on differentiation between Chemlali and Chétoui olive oils. Food Chem. 2010, 119, 220–225. [Google Scholar] [CrossRef]
- Varikou, K.; Garantonakis, N.; Denaxa, N.-K.; Tsafouros, A.; Ntanos, E.; Economou, L.; Roussos, P.A. Olive cultivar differences in fruit phenolic compounds and size define host preference of Bactrocera oleae (Diptera: Tephritidae). Int. J. Pest Manag. 2024, 70, 585–596. [Google Scholar]
- Denaxa, N.-K.; Damvakaris, T.; Roussos, P.A. Antioxidant defense system in young olive plants against drought stress and mitigation of adverse effects through external application of alleviating products. Sci. Hortic. 2020, 259, 108812. [Google Scholar] [CrossRef]
- Brito, C.; Dinis, L.-T.; Luzio, A.; Silva, E.; Gonçalves, A.; Meijón, M.; Escandón, M.; Arrobas, M.; Rodrigues, M.Â.; Moutinho-Pereira, J.; et al. Kaolin and salicylic acid alleviate summer stress in rainfed olive orchards by modulation of distinct physiological and biochemical responses. Sci. Hortic. 2019, 246, 201–211. [Google Scholar] [CrossRef]
- Azizifar, S.; Abdossi, V.; Gholami, R.; Ghavami, M.; Mohammadi Torkashvand, A. Evaluation of the effects of kaolin and salicylic acid on yield and some physiological responses of olives under drought stress. J. Hortic. Sci. 2022, 35, 605–619. [Google Scholar]
- Lechhab, T.; Lechhab, W.; Cacciola, F.; Salmoun, F. Sets of internal and external factors influencing olive oil (Olea europaea L.) composition: A review. Eur. Food Res. Technol. 2022, 248, 1069–1088. [Google Scholar]
- Contreras, C.; Pierantozzi, P.; Maestri, D.; Tivani, M.; Searles, P.; Brizuela, M.; Fernández, F.; Toro, A.; Puertas, C.; Trentacoste, E.R.; et al. How Temperatures May Affect the Synthesis of Fatty Acids during Olive Fruit Ripening: Genes at Work in the Field. Plants 2023, 12, 54. [Google Scholar]
- Inglese, P.; Famiani, F.; Galvano, F.; Servili, M.; Esposto, S.; Urbani, S. 3 factors affecting extra-virgin olive oil composition. Hortic. Rev. 2011, 38, 83. [Google Scholar]
- Ripa, V.; De Rose, F.; Caravita, M.; Parise, M.; Perri, E.; Rosati, A.; Mennone, C.; Paoletti, A.; Pannelli, G.; Padula, G. Qualitative evaluation of olive oils from new olive selections and effects of genotype and environment on oil quality. Adv. Hortic. Sci. 2008, 22, 1000–1009. [Google Scholar]
- Lombardo, N.; Marone, E.; Fiorino, P.; Godino, G.; Madeo, A.; Alessandrino, M. Influence of Growing Season Temperatures in the Fatty Acids (FAs) of Triacilglycerios (TAGs) Composition in Italian Cultivars of Olea Europaea. Adv. Hortic. Sci. 2008, 22, 1000–1005. [Google Scholar]
- Sadeghi, H.; Talaii, A.R. Impact of environmental conditions on fatty acids combination of olive oil in an Iranian olive, cv. Zard. Acta Hortic. 2002, 586, 579–581. [Google Scholar] [CrossRef]
- Karaat, F.E.; Denizhan, H. The effects of different particle film applications on almond trees. Ciência Rural 2022, 53, e20210757. [Google Scholar]
- Azizifar, S.; Abdossi, V.; Gholami, R.; Ghavami, M.; Torkashvand, A.M. Effect of Salicylic Acid and Kaolin on Yield, Physiological Traits, and Fatty Acid Composition in Olive Cultivars Under Regulated Deficit Irrigation. Acta Sci. Pol. Hortorum Cultus 2022, 21, 131–140. [Google Scholar] [CrossRef]
- Fraga, H.; Moriondo, M.; Leolini, L.; Santos, J.A. Mediterranean olive orchards under climate change: A review of future impacts and adaptation strategies. Agronomy 2020, 11, 56. [Google Scholar] [CrossRef]
- Fraga, H.; Pinto, J.G.; Viola, F.; Santos, J.A. Climate change projections for olive yields in the Mediterranean Basin. Intern J Climatol. 2020, 40, 769–781. [Google Scholar] [CrossRef]
- Orlandi, F.; Rojo, J.; Picornell, A.; Oteros, J.; Pérez-Badia, R.; Fornaciari, M. Impact of climate change on olive crop production in Italy. Atmosphere 2020, 11, 595. [Google Scholar] [CrossRef]
- Kaniewski, D.; Marriner, N.; Morhange, C.; Khater, C.; Terral, J.-F.; Besnard, G.; Otto, T.; Luce, F.; Couillebault, Q.; Tsitsou, L. Climate change threatens olive oil production in the Levant. Nat. Plants 2023, 9, 219–227. [Google Scholar] [CrossRef]
- Arenas-Castro, S.; Gonçalves, J.F.; Moreno, M.; Villar, R. Projected climate changes are expected to decrease the suitability and production of olive varieties in southern Spain. Sci. Total Environ. 2020, 709, 136161. [Google Scholar]
Treatment | Yield (kg Tree−1) | Oil Percentage per Fruit | Oil per Tree (kg) | Maturity Index |
---|---|---|---|---|
cv. ‘Megaron’ in Viotia County | ||||
Control | 23.0 b | 28.35 b | 6.50 c | 3.01 b |
K-JA | 30.0 b | 27.47 b | 8.25 bc | 2.76 b |
K-A | 48.0 a | 25.20 b | 11.95 a | 2.52 b |
T-JA | 26.9 b | 33.22 a | 8.91 b | 2.52 b |
T-A | 24.3 b | 29.20 ab | 7.01 cd | 4.13 a |
cv. ‘Koroneiki’ in Heraklio County | ||||
Control | 36.1 ab | 25.5 a | 9.12 ab | 2.66 a |
At-JA | 57.9 a | 24.1 a | 13.90 a | 2.51 a |
At-A | 43.4 ab | 24.3 a | 10.67 ab | 2.91 a |
K-JA | 30.1 b | 22.3 a | 6.52 b | 3.06 a |
K-A | 46.2 ab | 21.5 a | 9.92 ab | 2.83 a |
T-JA | 41.4 ab | 20.9 a | 8.72 ab | 2.91 a |
T-A | 43.8 ab | 25.5 a | 10.77 ab | 2.63 a |
Treatment | Free Acidity (g Oleic Acid 100 g−1) | Peroxides (meq O2 kg−1) | K232 | K270 | ΔK |
---|---|---|---|---|---|
cv. ‘Megaron’ in Viotia County | |||||
Control | 0.59 a | 15.62 a | 1.82 a | 0.15 a | 0.006 a |
K-JA | 0.38 bc | 13.12 ab | 1.76 a | 0.12 a | 0.009 a |
K-A | 0.35 c | 10.0 b | 1.64 a | 0.12 a | 0.005 a |
T-JA | 0.55 ab | 10.62 ab | 1.81 a | 0.14 a | 0.011 a |
T-A | 0.59 a | 12.50 ab | 1.88 a | 0.14 a | 0.005 a |
cv. ‘Koroneiki’ in Heraklio County | |||||
Control | 0.40 a | 8.75 a | 1.61 ab | 0.16 a | −0.06 bc |
At-JA | 0.40 a | 12.5 a | 1.90 a | 0.20 a | 0.005 ab |
At-A | 0.39 a | 12.5 a | 1.84 a | 0.19 a | −0.025 abc |
K-JA | 0.42 a | 8.75 a | 1.97 a | 0.20 a | 0.025 ab |
K-A | 0.40 a | 10.0 a | 1.11 b | 0.11 a | −0.127 c |
T-JA | 0.40 a | 11.25 a | 2.04 a | 0.22 a | 0.052 a |
T-A | 0.44 a | 11.25 a | 1.68 a | 0.20 a | −0.015 ab |
Treatment | Total Phenols (mg GAE kg−1) | o-Diphenols (mg CAE kg−1) | Total Flavonoids (mg CtE kg−1) | FRAP (μmol Trolox Equiv. kg−1) | DPPH (μmol Trolox Equiv. kg) −1 |
---|---|---|---|---|---|
cv. ‘Megaron’ in Viotia County | |||||
Control | 245.5 b | 139.5 a | 127.0 b | 1300.5 b | 195.6 b |
K-JA | 500.9 a | 159.8 a | 254.3 ab | 2153.9 a | 636.6 ab |
K-A | 446.4 ab | 150.9 a | 271.7 a | 1871.4 ab | 739.2 a |
T-JA | 469.1 ab | 109.1 a | 250.1 ab | 1883.2 ab | 607.1 ab |
T-A | 415.5 ab | 102.0 a | 222.7 ab | 1492.4 ab | 665.9 ab |
cv. ‘Koroneiki’ in Heraklio County | |||||
Control | 595.2 a | 61.4 ab | 590.1 a | 2345.1 a | 2618.2 a |
At-JA | 525.6 ab | 124.7 a | 473.4 ab | 1768.7 ab | 2134.8 a |
At-A | 497.2 ab | 64.7 ab | 404.5 ab | 1747.9 ab | 2069.7 a |
K-JA | 521.8 ab | 55.0 b | 369.2 ab | 1642.2 b | 1788.8 a |
K-A | 480.0 b | 36.5 b | 390.9 ab | 1505.6 b | 1898.1 a |
T-JA | 468.0 b | 69.1 ab | 355.7 ab | 1598.0 b | 1997.9 a |
T-A | 468.1 b | 38.5 b | 349.8 b | 1525.4 b | 1764.7 a |
Treatment | Hydroxytyrosol | Tyrosol | Vanillic Acid | Caffeic Acid | Vanillin | p-Coumaric Acid | Ferulic Acid | Oleacein | Oleocanthal | Luteolin | Apigenin |
---|---|---|---|---|---|---|---|---|---|---|---|
cv. ‘Megaron’ in Viotia County | |||||||||||
Control | 23.38 a | 28.00 a | 0.27 b | 0.02 a | 0.09 a | 0.98 a | 0.15 bc | 42.7 a | 152.7 ab | 9.5 ab | 1.23 ab |
K-JA | 13.61 b | 23.78 ab | 0.76 a | 0.03 a | 0.07 a | 0.87 a | 0.25 a | 23.5 bc | 185.6 a | 11.2 ab | 1.54 a |
K-A | 13.72 b | 16.84 c | 0.89 a | 0.02 a | 0.06 a | 0.59 ab | 0.20 ab | 19.1 bc | 178.1 a | 11.7 a | 1.52 a |
T-JA | 16.14 ab | 18.77 bc | 0.29 b | 0.03 a | 0.06 a | 0.71 ab | 0.13 c | 36.1 ab | 92.3 bc | 6.5 bc | 0.84 bc |
T-A | 7.54 b | 8.11 d | 0.15 b | 0.02 a | 0.08 a | 0.30 b | 0.06 d | 13.2 c | 49.8 c | 1.9 c | 0.19 c |
cv. ‘Koroneiki’ in Heraklio County | |||||||||||
Control | 13.49 a | 24.75 a | 0.43 a | 0.02 ab | 0.03 ab | 0.39 a | 0.05 a | 18.0 a | 169.0 a | 15.7 a | 2.95 a |
At-JA | 11.91 a | 23.71 a | 0.70 a | 0.01 b | 0.04 a | 0.26 bc | 0.05 a | 28.4 a | 158.3 a | 9.1 ab | 2.54 ab |
At-A | 13.17 a | 20.63 ab | 0.34 a | 0.01 b | 0.03 ab | 0.20 c | 0.04 a | 26.1 a | 142.7 a | 9.4 ab | 1.99 ab |
K-JA | 8.16 a | 21.27 ab | 0.52 a | 0.04 a | 0.02 b | 0.33 ab | 0.03 a | 14.0 a | 185.6 a | 10.3 ab | 1.76 ab |
K-A | 10.13 a | 18.47 b | 0.72 a | 0.01 b | 0.03 ab | 0.37 a | 0.06 a | 22.0 a | 137.9 a | 8.5 b | 2.08 ab |
T-JA | 9.47 a | 17.29 b | 0.76 a | 0.01 b | 0.03 ab | 0.32 ab | 0.04 a | 18.6 a | 160.7 a | 10.0 ab | 1.66 b |
T-A | 7.34 a | 21.21 ab | 0.69 a | 0.01 b | 0.03 ab | 0.34 ab | 0.04 a | 20.1 a | 141.6 a | 9.0 ab | 1.82 ab |
Treatment | C16 | C16:1 | C18 | C18:1 | C18:2 | C20 | C18:3 | C20:1 |
---|---|---|---|---|---|---|---|---|
Control | 16.99 b | 1.62 a | 2.05 b | 63.65 a | 14.71 b | 0.23 b | 0.59 a | 0.14 a |
K-JA | 17.33 ab | 1.70 a | 2.16 b | 62.22 a | 15.59 ab | 0.27 ab | 0.59 a | 0.15 a |
K-A | 16.74 b | 1.72 a | 2.46 a | 64.33 a | 13.85 b | 0.29 a | 0.53 a | 0.13 a |
T-JA | 17.14 b | 1.59 a | 2.20 b | 63.13 a | 14.85 b | 0.25 ab | 0.58 a | 0.16 a |
T-A | 17.87 a | 1.68 a | 2.52 a | 59.59 b | 17.27 a | 0.28 a | 0.59 a | 0.15 a |
Various groups of free fatty acids and squalene | ||||||||
SFA | MUFA | PUFA | UFAs | MUFA/PUFA | SFA/UFA | C18:1/C18:2 | Squalene (mg 100 g−1) | |
Control | 19.3 b | 65.4 a | 15.3 b | 80.7 a | 4.27 a | 0.24 b | 4.32 ab | 414.4 a |
K-JA | 19.8 b | 64.0 a | 16.2 ab | 80.2 a | 3.99 ab | 0.25 b | 4.03 b | 398.6 a |
K-A | 19.5 b | 66.0 a | 14.4 b | 80.5 a | 4.59 a | 0.24 b | 4.66 a | 386.3 a |
T-JA | 19.6 b | 65.0 a | 15.4 b | 80.4 a | 4.23 a | 0.24 b | 4.26 ab | 402.8 a |
T-A | 20.7 a | 61.4 b | 17.9 a | 79.3 b | 3.44 b | 0.26 a | 3.145 c | 344.9 a |
Treatment | C16 | C16:1 | C17 | C17:1 | C18 | C18:1 | C18:2 | C20 | C18:3 | C20:1 | C22 | C24 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | 12.74 a | 0.86 a | 0.026 a | 0.036 a | 2.69 b | 76.32 a | 5.96 ab | 0.41 c | 0.54 a | 0.25 a | 0.12 a | 0.03 a | |||||||
At-JA | 12.44 a | 0.77 bc | 0.028 a | 0.036 a | 2.74 ab | 77.05 a | 5.51 b | 0.43 abc | 0.56 a | 0.27 a | 0.12 a | 0.03 a | |||||||
At-A | 12.71 a | 0.81 ab | 0.022 a | 0.036 a | 2.76 ab | 76.17 a | 6.11 ab | 0.42 bc | 0.54 a | 0.26 a | 0.12 a | 0.03 a | |||||||
K-JA | 12.34 a | 0.74 bc | 0.029 a | 0.036 a | 2.93 ab | 75.90 a | 6.56 ab | 0.44 ab | 0.58 a | 0.26 a | 0.13 a | 0.02 a | |||||||
K-A | 12.38 a | 0.71 c | 0.023 a | 0.035 a | 2.93 ab | 76.34 a | 6.08 ab | 0.45 ab | 0.59 a | 0.27 a | 0.13 a | 0.03 a | |||||||
T-JA | 12.52 a | 0.75 bc | 0.025 a | 0.040 a | 3.05 a | 75.52 a | 6.64 a | 0.46 a | 0.58 a | 0.26 a | 0.12 a | 0.02 a | |||||||
T-A | 12.61 a | 0.78 abc | 0.028 a | 0.042 a | 2.83 ab | 75.83 a | 6.41 ab | 0.44 abc | 0.58 a | 0.27 a | 0.12 a | 0.03 a | |||||||
Various groups of free fatty acids and squalene | |||||||||||||||||||
SFA | MUFA | PUFA | UFAs | MUFA/PUFA | SFA/UFA | C18:1/C18:2 | Squalene (mg 100 g−1) | ||||||||||||
Control | 16.03 a | 77.46 a | 6.50 ab | 83.96 a | 11.92 ab | 0.16 a | 12.82 ab | 170.6 a | |||||||||||
At-JA | 15.79 a | 78.12 a | 6.07 b | 84.20 a | 12.89 a | 0.19 a | 14.02 a | 209.2 a | |||||||||||
At-A | 16.07 a | 77.27 a | 6.65 ab | 83.92 a | 11.66 ab | 0.19 a | 12.52 ab | 185.5 a | |||||||||||
K-JA | 15.90 a | 76.94 a | 7.15 ab | 84.09 a | 10.79 b | 0.19 a | 11.59 ab | 174.0 a | |||||||||||
K-A | 15.95 a | 77.36 a | 6.68 ab | 84.04 a | 11.58 ab | 0.19 a | 12.55 ab | 188.0 a | |||||||||||
T-JA | 16.20 a | 76.57 a | 7.22 a | 83.79 a | 10.64 b | 0.19 a | 11.42 b | 151.1 a | |||||||||||
T-A | 16.07 a | 76.93 a | 6.98 ab | 83.92 a | 11.16 ab | 0.19 a | 12.03 ab | 185.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roussos, P.A.; Karyda, A.-G.; Mavromanolakis, G.-I.; Gkliatis, D.; Zoti, M. The Effects of Different Mineral Clay Particles on Olive Yield and Olive Oil Quality of Two Cultivars Under Rainfed or Irrigated Conditions. Horticulturae 2025, 11, 341. https://doi.org/10.3390/horticulturae11040341
Roussos PA, Karyda A-G, Mavromanolakis G-I, Gkliatis D, Zoti M. The Effects of Different Mineral Clay Particles on Olive Yield and Olive Oil Quality of Two Cultivars Under Rainfed or Irrigated Conditions. Horticulturae. 2025; 11(4):341. https://doi.org/10.3390/horticulturae11040341
Chicago/Turabian StyleRoussos, Petros Anargyrou, Asimina-Georgia Karyda, Georgios-Ioannis Mavromanolakis, Dimitrios Gkliatis, and Maria Zoti. 2025. "The Effects of Different Mineral Clay Particles on Olive Yield and Olive Oil Quality of Two Cultivars Under Rainfed or Irrigated Conditions" Horticulturae 11, no. 4: 341. https://doi.org/10.3390/horticulturae11040341
APA StyleRoussos, P. A., Karyda, A.-G., Mavromanolakis, G.-I., Gkliatis, D., & Zoti, M. (2025). The Effects of Different Mineral Clay Particles on Olive Yield and Olive Oil Quality of Two Cultivars Under Rainfed or Irrigated Conditions. Horticulturae, 11(4), 341. https://doi.org/10.3390/horticulturae11040341