High Polyphenol Extra Virgin Olive Oil and Metabolically Unhealthy Obesity: A Scoping Review of Preclinical Data and Clinical Trials
Abstract
:1. Introduction
2. Materials and Methods
- Original RCTs and animal studies,
- Studies investigating the effects of HP-EVOO in which (a) the concentration of total phenolic compounds is above 250 ppm or (b) the concentration of specific phenolic compounds is enhanced,
- Articles written in English,
- Articles published between 2014 and 2024.
- Studies were excluded if they met any of the following criteria:
- Reviews, meta-analyses, in vitro experimental studies, unpublished or ongoing in vivo studies, and clinical trials,
- Full-text articles that were not retrieved or not written in English,
- Studies that examined diseases unrelated to obesity and metabolic abnormalities, such as autoimmune disorders, cancer, chronic respiratory diseases, or neurological diseases or studies conducted on hospitalized patients,
- Studies involving other natural products,
- Studies conducted on children or pregnant women.
3. Results of Preclinical and Clinical Studies
3.1. Preclinical Studies
3.1.1. Effects on Body Weight and Body Composition
3.1.2. Glycemic Regulation and Insulin Sensitivity
3.1.3. Blood Lipid Profile and Cholesterol Regulation
3.1.4. Antioxidant Action and Regulation of Oxidative Stress
3.1.5. Liver Health and Fatty Infiltration
3.1.6. Inflammation and Immune Regulation
- (a)
- In adipose tissue, HP-EVOO compared to lard or EVOO consumption reduced the infiltration of inflammatory macrophages and limited the formation of crown-like structures (CLSs), which are associated with chronic inflammatory processes [40];
- (b)
- (c)
- In the large intestine, HP-EVOO, compared with EVOO, showed a reduction in pro-inflammatory markers and an increase in antioxidant defenses, along with reduced histopathological tissue damage [42].
3.1.7. Protection of the Heart and Reduction in Cardiovascular Risk
3.2. Clinical Studies
3.2.1. Effects on Body Composition Metrics
3.2.2. Effects on Markers of Glycemic Regulation
3.2.3. Effects on Blood Lipid Biomarkers
3.2.4. Effects on Antioxidant Markers and Lipid Peroxidation
3.2.5. Effects on Liver Enzymes, Hepatic Steatosis, and Liver Function Markers
3.2.6. Effects on Inflammatory Biomarkers and Cytokines
3.2.7. Effects on Blood Pressure, Endothelial Function, and Cardiovascular Risk Markers
a/a | Ref. | Year | Population | Dosage | Design | Effect | ||||
---|---|---|---|---|---|---|---|---|---|---|
1 | [53] | 2024 | T2DM patients | 5 isocaloric meals containing 120 g white bread combined with (i) 39 g butter, (ii) 39 g butter and 400 mg ibuprofen, (iii) 40 mL OO (phenolic content < 10 mg/Kg), (iv) 40 mL OO with 250 mg/Kg oleocanthal, and (v) 40 mL OO with 500 mg/Kg oleocanthal | Acute, randomized, single-blinded, postprandial, crossover study, 10 T2DM patients. Blood samples were collected before and at 30, 60, 90, 120, 180, and 240 min after the meals | Biomarker | HP-EVOO 500 vs. Butter | HP-EVOO 500 vs. butter + ibuprofen | HP-EVOO 500 vs. OO | HP-EVOO 500 vs. HP-EVOO 250 |
GLU, insulin, and C-peptide levels postprandially | ↔ | ↔ | ↔ | ↔ | ||||||
TG | ↓ | ↓ | ↓ | ↓ | ||||||
LDL-C | ↓ | ↓ | ↓ | ↓ | ||||||
HDL-C | ↓ | ↓ | ↓ | ↓ | ||||||
UA | ↔ | ↔ | ↔ | ↔ | ||||||
Homocysteine | ↔ | ↔ | ↔ | ↔ | ||||||
Antiplatelet effect (platelet activity indices ADP and TRAP) | ↑ | ↔ | ↑ | ↑ | ||||||
2 | [50] | 2023 | Adults 40–65 years old with obesity (BMI 30–40 kg/m2) and prediabetes (HbA1c 5.7–6.4%). | HP-EVOO with 508.4 mg/kg total biophenols vs. OO with 76.83 mg/kg. Secoiridoids constituting 93% of total biophenols in HP-EVOO (472.91 vs. 66.11 mg/kg. Oleocanthal (69%) and Oleacein (21%), 428.31 mg/kg in total). No specific amount of olive oil intake was indicated | randomized, double-blind, crossover trial in 91 people (33 men and 58 women) aged 40–65 years with obesity (BMI 30–40 kg/m2) and prediabetes (HbA1c 5.7–6.4%). The intervention consisted of substituting for 1 month the oil used for food, both raw and cooked, by HP-EVOO or OO | Biomarker | HP-EVOO vs. OO | |||
INF-γ | ↓ | |||||||||
Anti-inflammation markers (CXCL1, IL-12p40 and IL-1RA) | ↑ | |||||||||
Total antioxidant status | ↑ | |||||||||
Lipid and organic peroxides | ↓ | |||||||||
BW | ↓ | |||||||||
BMI | ↓ | |||||||||
Blood GLU | ↓ | |||||||||
3 | [59] | 2020 | Healthy adults | 60 mL/day HP-EVOO (360 mg/kg polyphenols) or OO (86 mg/kg polyphenols) | 3 weeks, double-blind, cross-over trial, randomized controlled trial, 50 participants BMI = 18.5–40 kg/m2 (44% overweight), 2-week washout period while participants crossed-over to the alternate treatment | Biomarker | HP-EVOO vs. OO | |||
Energy intake | ↑ | |||||||||
BMI, WC | ↔ | |||||||||
DBP | ↔ | |||||||||
Arterial stiffness | ↔ | |||||||||
Peripheral and central SBP | ↓ | |||||||||
4 | [56] | 2021 | Patients with at least one major cardiovascular risk factor: hypertension, diabetes mellitus, dyslipidemia, or acute cardiac events | 25 mL of HP-EVOO 500–700 mg/kg or OO (refined) 2–1 mg/kg as raw with meals | 6 weeks, randomized, controlled, parallel-arm, clinical trial, 40 men and post-menopausal women | Biomarker | HP-EVOO vs. OO (refined) | |||
Energy intake | ↔ | |||||||||
TC, LDL-C | ↓ | |||||||||
Small dense-LDL-C, HDL-C, T-CHOL/HDL-C ratio, LDL-C/HDL-C ratio, TG | ↔ | |||||||||
Blood LPS-stimulated, IL-10 production | ↑ | |||||||||
IL-6, CRP levels | ↓ | |||||||||
5 | [51] | 2020 | European descent following a mediterranean diet, age between 18 and 70 years, the diagnosis of MetS as defined by international consensus and the presence of hepatic steatosis | 4 large spoons of HP-EVOO with high oleocanthal concetration, daily (which corresponded to 32 g of HP-EVOO) during main meals | 23 subjects with MetS and hepatic steatosis (15 men and 8 women, age: 60 years) for 2 months | Biomarker | After vs. Before HP-EVOO | |||
BW | ↓ | |||||||||
WC | ↓ | |||||||||
ALT | ↓ | |||||||||
Inflammatory cytokines | ↓ | |||||||||
Hepatic steatosis | ↓ | |||||||||
6 | [55] | 2018 | Healthy adults | 30 mL of (1) OO (124 ppm of phenolic compounds and 86 ppm of triterpenes); (2) HP-EVOO (490 ppm of phenolic compounds and 86 ppm of triterpenes); and (3) a functional EVOO (487 ppm) and enriched with triterpenes (389 ppm) | 3-week randomized, crossover, controlled, double-blind, intervention study, 58 participants | Biomarker | HP-EVOO vs. Baseline | HP-EVOO vs. EVOO | HP-EVOO vs. Functional EVOO | |
HDL-C | ↑ | ↑ | ↑ | |||||||
LDL-C | ↑ | ↓ | ↓ | |||||||
TG | ↑ | ↔ | ↑ | |||||||
Plasma ET-1 | ↓ | ↓ | ↑ | |||||||
7 | [58] | 2017 | Healthy adults | 25 mL/day of olive oils (1) high (366 mg/kg, HP-EVOO) and (2) low (2.7 mg/kg, OO) | 3 weeks, preceded by 2-week washout periods, randomized, double-blind, crossover human trial with 18 healthy subjects (BMI (kg/m2) 24.3 ± 3.2), waist/hip ratio 0.88 ± 0.06) | Biomarker | HP-EVOO vs. OO | |||
SBP | ↓ | |||||||||
T-CHOL, LDL-C | ↓ | |||||||||
Oxidized LDL-C | ↓ | |||||||||
ACE, IL8RA, NR1H2 gene expressions | ↓ | |||||||||
8 | [57] | 2016 | Hypercholesterolemic participants | 25 mL/day of 2 raw virgin OO differing in polyphenol concentration and origin: (1) an OO containing 80 mg polyphenol/kg (OO); (2) a polyphenol-enriched EVOO containing 500 mg polyphenol/kg (HP-EVOO) | 3 weeks, randomized, controlled, double blind cross-over human trial, preceded by two-week washout periods, 10 hypercholesterolemic participants | Biomarker | HP-EVOO vs. OO | |||
BMI, BW | ↔ | |||||||||
Oxidized LDL-C | ↓ | |||||||||
DBP, SBP | ↔ | |||||||||
9 | [52] | 2016 | Overweight T2D patients | Olive oil (OO refined, polyphenols not detectable) vs. HP-EVOO (25 mL/day, 577 mg of phenolic compounds/kg) | 11 overweight T2D patients not in treatment with insulin were invited to follow their habitual diet for a total of 8 weeks. During the first 4 weeks (washout period), they were asked to consume refined olive oil and then to replace OO with HP-EVOO | Biomarker | HP-EVOO vs. OO (refined) | |||
GLU | ↓ | |||||||||
HbA1c | ↓ | |||||||||
BMI, BW | ↓ | |||||||||
HDL-C | ↓ | |||||||||
AST, ALT, Visfatin | ↓ | |||||||||
Fasting IL-6, TNF-α, hsCRP, Adiponectin, Apelin | ↔ | |||||||||
10 | [54] | 2015 | Hypercholesterolemic participants | 25 mL/day of EVOO with a low phenolic content (80 ppm) vs. HP-EVOO (500 ppm) which was enriched with its own polyphenol and complemented with thyme phenolics using a phenol extract obtained from a mixture of freeze-dried olive cake and dried thyme. HP-EVOO contained 50% of olive polyphenol and 50% of thyme phenolics | 3 weeks, randomized, double-blind, crossover, controlled trial, 33 hypercholesterolemic volunteers randomized, 2-week washout periods with a common OO | Biomarker | HP-EVOO vs. EVOO | |||
HDL-C | ↑ | |||||||||
LCAT Activity | ↑ | |||||||||
CETP activity | ↓ |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Milhem, F.; Komarnytsky, S. Progression to Obesity: Variations in Patterns of Metabolic Fluxes, Fat Accumulation, and Gastrointestinal Responses. Metabolites 2023, 13, 1016. [Google Scholar] [CrossRef]
- Overweight and Obesity—BMI Statistics. 2024. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Overweight_and_obesity_-_BMI_statistics (accessed on 30 January 2025).
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Obesity and Overweight—WHO Statistics. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 30 January 2025).
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Okunogbe, A.; Nugent, R.; Spencer, G.; Ralston, J.; Wilding, J. Economic impacts of overweight and obesity: Current and future estimates for eight countries. BMJ Glob. Health 2021, 6, e006351. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, X.; Ibrahim, M.; Peltzer, N. Cell death and inflammation during obesity: "Know my methods, WAT(son)". Cell Death Differ. 2023, 30, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Lim, S.; Tchernof, A.; Gastaldelli, A.; Rangaswami, J.; Ndumele, C.E.; Powell-Wiley, T.M.; Després, J.P. Metabolic syndrome. Nat. Rev. Dis. Primers 2024, 10, 77. [Google Scholar] [CrossRef]
- Rizzo, M.; Rizvi, A.A. New Advances in Metabolic Syndrome. Int. J. Mol. Sci. 2024, 25. [Google Scholar] [CrossRef]
- Gioxari, A.; Grammatikopoulou, M.G.; Katsarou, C.; Panagiotakos, D.B.; Toutouza, M.; Kavouras, S.A.; Sidossis, L.S.; Maraki, M.I. A Modified Mediterranean Diet Improves Fasting and Postprandial Glucoregulation in Adults with Overweight and Obesity: A Pilot Study. Int. J. Environ. Res. Public Health 2022, 19, 15347. [Google Scholar] [CrossRef]
- Liberale, L.; Carbone, F.; Bonaventura, A.; Kraler, S.; Bertolotto, M.; Artom, N.; Pontremoli, R.; Viazzi, F.C.; Pende, A.; Pisciotta, L.; et al. Adiponectin/leptin ratio predicts the remission of metabolic syndrome: A pilot study. Int. J. Cardiol. 2024, 400, 131791. [Google Scholar] [CrossRef] [PubMed]
- Chew, N.W.S.; Ng, C.H.; Tan, D.J.H.; Kong, G.; Lin, C.; Chin, Y.H.; Lim, W.H.; Huang, D.Q.; Quek, J.; Fu, C.E.; et al. The global burden of metabolic disease: Data from 2000 to 2019. Cell Metab. 2023, 35, 414–428.e3. [Google Scholar] [CrossRef]
- Swarup, S.; Ahmed, I.; Grigorova, Y.; Zeltser, R. Metabolic Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Papadaki, A.; Nolen-Doerr, E.; Mantzoros, C.S. The Effect of the Mediterranean Diet on Metabolic Health: A Systematic Review and Meta-Analysis of Controlled Trials in Adults. Nutrients 2020, 12, 3342. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Veronese, N.; Di Bella, G.; Cusumano, C.; Parisi, A.; Tagliaferri, F.; Ciriminna, S.; Barbagallo, M. Mediterranean diet in the management and prevention of obesity. Exp. Gerontol. 2023, 174, 112121. [Google Scholar] [CrossRef]
- Dayi, T.; Ozgoren, M. Effects of the Mediterranean diet on the components of metabolic syndrome. J. Prev. Med. Hyg. 2022, 63, E56–E64. [Google Scholar] [CrossRef] [PubMed]
- Amerikanou, C.; Kleftaki, S.A.; Valsamidou, E.; Tzavara, C.; Gioxari, A.; Kaliora, A.C. Dietary Patterns, Cardiometabolic and Lifestyle Variables in Greeks with Obesity and Metabolic Disorders. Nutrients 2022, 14, 5064. [Google Scholar] [CrossRef] [PubMed]
- Quetglas-Llabrés, M.M.; Monserrat-Mesquida, M.; Bouzas, C.; Llompart, I.; Mateos, D.; Casares, M.; Ugarriza, L.; Martínez, J.A.; Tur, J.A.; Sureda, A. Mediterranean Diet Improves Plasma Biomarkers Related to Oxidative Stress and Inflammatory Process in Patients with Non-Alcoholic Fatty Liver Disease. Antioxidants 2023, 12, 833. [Google Scholar] [CrossRef] [PubMed]
- Kaliora, A.C.; Gioxari, A.; Kalafati, I.P.; Diolintzi, A.; Kokkinos, A.; Dedoussis, G.V. The Effectiveness of Mediterranean Diet in Nonalcoholic Fatty Liver Disease Clinical Course: An Intervention Study. J. Med. Food 2019, 22, 729–740. [Google Scholar] [CrossRef]
- Piccolella, S.; Crescente, G.; Candela, L.; Pacifico, S. Nutraceutical polyphenols: New analytical challenges and opportunities. J. Pharm. Biomed. Anal. 2019, 175, 112774. [Google Scholar] [CrossRef]
- Serreli, G.; Boronat, A.; De la Torre, R.; Rodriguez-Moratò, J.; Deiana, M. Cardiovascular and Metabolic Benefits of Extra Virgin Olive Oil Phenolic Compounds: Mechanistic Insights from In Vivo Studies. Cells 2024, 13, 1555. [Google Scholar] [CrossRef]
- Foscolou, A.; Critselis, E.; Panagiotakos, D. Olive oil consumption and human health: A narrative review. Maturitas 2018, 118, 60–66. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, J.; Xin, Q.; Yuan, R.; Miao, Y.; Chen, K.; Cong, W. Protective effects of oleic acid and polyphenols in extra virgin olive oil on cardiovascular diseases. Food Sci. Hum. Wellness 2023, 13, 529–540. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Finicelli, M.; Squillaro, T.; Galderisi, U.; Peluso, G. Polyphenols, the Healthy Brand of Olive Oil: Insights and Perspectives. Nutrients 2021, 13, 3831. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, A.; Usman, M.; Patil, P.; Zhao, L.; Wang, C. A review on management of cardiovascular diseases by olive polyphenols. Food Sci. Nutr. 2020, 8, 4639–4655. [Google Scholar] [CrossRef]
- Pojero, F.; Aiello, A.; Gervasi, F.; Caruso, C.; Ligotti, M.E.; Calabrò, A.; Procopio, A.; Candore, G.; Accardi, G.; Allegra, M. Effects of Oleuropein and Hydroxytyrosol on Inflammatory Mediators: Consequences on Inflammaging. Int. J. Mol. Sci. 2022, 24, 380. [Google Scholar] [CrossRef] [PubMed]
- Farràs, M.; Canyelles, M.; Fitó, M.; Escolà-Gil, J.C. Effects of Virgin Olive Oil and Phenol-Enriched Virgin Olive Oils on Lipoprotein Atherogenicity. Nutrients 2020, 12, 601. [Google Scholar] [CrossRef]
- Rodriguez-Pérez, M.D.; Santiago-Corral, L.; Ortega-Hombrados, L.; Verdugo, C.; Arrebola, M.M.; Martín-Aurioles, E.; Fernández-Prior, M.; Bermúdez-Oria, A.; De La Cruz, J.P.; González-Correa, J.A. The Effect of the Extra Virgin Olive Oil Minor Phenolic Compound 3′,4′-Dihydroxyphenylglycol in Experimental Diabetic Kidney Disease. Nutrients 2023, 15, 377. [Google Scholar] [CrossRef]
- Romani, A.; Ieri, F.; Urciuoli, S.; Noce, A.; Marrone, G.; Nediani, C.; Bernini, R. Health Effects of Phenolic Compounds Found in Extra-Virgin Olive Oil, By-Products, and Leaf of Olea europaea L. Nutrients 2019, 11, 1776. [Google Scholar] [CrossRef]
- Coppens, P. Regulation (EU) No 432/2012 Establishing a List of Permitted Health Claims. Eur. Food Feed Law Rev. 2012. Available online: https://eur-lex.europa.eu/eli/reg/2012/432/oj/eng (accessed on 30 January 2025).
- Francisco, V.; Ruiz-Fernández, C.; Lahera, V.; Lago, F.; Pino, J.; Skaltsounis, L.; González-Gay, M.A.; Mobasheri, A.; Gómez, R.; Scotece, M.; et al. Natural Molecules for Healthy Lifestyles: Oleocanthal from Extra Virgin Olive Oil. J. Agric. Food Chem. 2019, 67, 3845–3853. [Google Scholar] [CrossRef]
- Seidita, A.; Soresi, M.; Giannitrapani, L.; Di Stefano, V.; Citarrella, R.; Mirarchi, L.; Cusimano, A.; Augello, G.; Carroccio, A.; Iovanna, J.L.; et al. The clinical impact of an extra virgin olive oil enriched mediterranean diet on metabolic syndrome: Lights and shadows of a nutraceutical approach. Front. Nutr. 2022, 9, 980429. [Google Scholar] [CrossRef] [PubMed]
- Pastor, R.; Bouzas, C.; Tur, J.A. Beneficial effects of dietary supplementation with olive oil, oleic acid, or hydroxytyrosol in metabolic syndrome: Systematic review and meta-analysis. Free Radic. Biol. Med. 2021, 172, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions Version 6.5 (Updated August 2024); Cochrane: London, UK, 2024; Available online: www.training.cochrane.org/handbook (accessed on 30 January 2025).
- Ruocco, C.; Ragni, M.; Tedesco, L.; Segala, A.; Servili, M.; Riccardi, G.; Carruba, M.O.; Valerio, A.; Nisoli, E.; Visioli, F. Molecular and metabolic effects of extra-virgin olive oil on the cardiovascular gene signature in rodents. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1571–1582. [Google Scholar] [CrossRef]
- Álvarez-Amor, L.; Sierra, A.L.; Cárdenas, A.; López-Bermudo, L.; López-Beas, J.; Andújar, E.; Pérez-Alegre, M.; Gallego-Durán, R.; Varela, L.M.; Martin-Montalvo, A.; et al. Extra virgin olive oil improved body weight and insulin sensitivity in high fat diet-induced obese LDLr-/-.Leiden mice without attenuation of steatohepatitis. Sci. Rep. 2021, 11, 8250. [Google Scholar] [CrossRef]
- Jurado-Ruiz, E.; Álvarez-Amor, L.; Varela, L.M.; Berná, G.; Parra-Camacho, M.S.; Oliveras-Lopez, M.J.; Martínez-Force, E.; Rojas, A.; Hmadcha, A.; Soria, B.; et al. Extra virgin olive oil diet intervention improves insulin resistance and islet performance in diet-induced diabetes in mice. Sci. Rep. 2019, 9, 11311. [Google Scholar] [CrossRef]
- Luque-Sierra, A.; Alvarez-Amor, L.; Kleemann, R.; Martín, F.; Varela, L.M. Extra-Virgin Olive Oil with Natural Phenolic Content Exerts an Anti-Inflammatory Effect in Adipose Tissue and Attenuates the Severity of Atherosclerotic Lesions in Ldlr-/-.Leiden Mice. Mol. Nutr. Food Res. 2018, 62, e1800295. [Google Scholar] [CrossRef] [PubMed]
- Jurado-Ruiz, E.; Varela, L.M.; Luque, A.; Berná, G.; Cahuana, G.; Martinez-Force, E.; Gallego-Durán, R.; Soria, B.; de Roos, B.; Romero Gómez, M.; et al. An extra virgin olive oil rich diet intervention ameliorates the nonalcoholic steatohepatitis induced by a high-fat “Western-type” diet in mice. Mol. Nutr. Food Res. 2017, 61, 1600549. [Google Scholar] [CrossRef]
- Lafraxo, H.; Bakour, M.; Laaroussi, H.; El Ghouizi, A.; Ousaaid, D.; Aboulghazi, A.; Lyoussi, B. The Synergistic Beneficial Effect of Thyme Honey and Olive Oil against Diabetes and Its Complications Induced by Alloxan in Wistar Rats. Evid.-Based Complement. Altern. Med. 2021, 2021, 9949056. [Google Scholar] [CrossRef] [PubMed]
- Bigagli, E.; Toti, S.; Lodovici, M.; Giovannelli, L.; Cinci, L.; D’Ambrosio, M.; Luceri, C. Dietary Extra-Virgin Olive Oil Polyphenols Do Not Attenuate Colon Inflammation in Transgenic HLAB-27 Rats but Exert Hypocholesterolemic Effects through the Modulation of HMGCR and PPAR-α Gene Expression in the Liver. Lifestyle Genom. 2018, 11, 99–108. [Google Scholar] [CrossRef]
- Rincón-Cervera, M.A.; Valenzuela, R.; Hernandez-Rodas, M.C.; Marambio, M.; Espinosa, A.; Mayer, S.; Romero, N.; Barrera, M.S.C.; Valenzuela, A.; Videla, L.A. Supplementation with antioxidant-rich extra virgin olive oil prevents hepatic oxidative stress and reduction of desaturation capacity in mice fed a high-fat diet: Effects on fatty acid composition in liver and extrahepatic tissues. Nutrition 2016, 32, 1254–1267. [Google Scholar] [CrossRef]
- Halder, S.; Begum, D.; Paul, B.; Fatema, K.; Hossain, F.; Iqram, T.; Salma, U.; Mahjabeen, T.; Ferdous, S.; Ahmed, S. Impacts of Extra virgin olive oil consumption on glycemic control in patients with metabolic syndrome. Eur. J. Med. Health Sci. 2023, 5, 101–107. [Google Scholar] [CrossRef]
- Lama, A.; Pirozzi, C.; Mollica, M.P.; Trinchese, G.; Di Guida, F.; Cavaliere, G.; Calignano, A.; Mattace Raso, G.; Berni Canani, R.; Meli, R. Polyphenol-rich virgin olive oil reduces insulin resistance and liver inflammation and improves mitochondrial dysfunction in high-fat diet fed rats. Mol. Nutr. Food Res. 2017, 61, 1600418. [Google Scholar] [CrossRef] [PubMed]
- Katsarou, A.I.; Kaliora, A.C.; Chiou, A.; Kalogeropoulos, N.; Papalois, A.; Agrogiannis, G.; Andrikopoulos, N.K. Amelioration of oxidative and inflammatory status in hearts of cholesterol-fed rats supplemented with oils or oil-products with extra virgin olive oil components. Eur. J. Nutr. 2016, 55, 1283–1296. [Google Scholar] [CrossRef]
- Pedret, A.; Fernández-Castillejo, S.; Valls, R.M.; Catalán, Ú.; Rubió, L.; Romeu, M.; Macià, A.; López de Las Hazas, M.C.; Farràs, M.; Giralt, M.; et al. Cardiovascular Benefits of Phenol-Enriched Virgin Olive Oils: New Insights from the Virgin Olive Oil and HDL Functionality (VOHF) Study. Mol. Nutr. Food Res. 2018, 62, e1800456. [Google Scholar] [CrossRef]
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef]
- Katsarou, A.I.; Kaliora, A.C.; Papalois, A.; Chiou, A.; Kalogeropoulos, N.; Agrogiannis, G.; Andrikopoulos, N.K. Serum lipid profile and inflammatory markers in the aorta of cholesterol-fed rats supplemented with extra virgin olive oil, sunflower oils and oil-products. Int. J. Food Sci. Nutr. 2015, 66, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-García, I.; Ortíz-Flores, R.; Badía, R.; García-Borrego, A.; García-Fernández, M.; Lara, E.; Martín-Montañez, E.; García-Serrano, S.; Valdés, S.; Gonzalo, M.; et al. Rich oleocanthal and oleacein extra virgin olive oil and inflammatory and antioxidant status in people with obesity and prediabetes. The APRIL study: A randomised, controlled crossover study. Clin. Nutr. 2023, 42, 1389–1398. [Google Scholar] [CrossRef]
- Patti, A.M.; Carruba, G.; Cicero, A.F.G.; Banach, M.; Nikolic, D.; Giglio, R.V.; Terranova, A.; Soresi, M.; Giannitrapani, L.; Montalto, G.; et al. Daily Use of Extra Virgin Olive Oil with High Oleocanthal Concentration Reduced Body Weight, Waist Circumference, Alanine Transaminase, Inflammatory Cytokines and Hepatic Steatosis in Subjects with the Metabolic Syndrome: A 2-Month Intervention Study. Metabolites 2020, 10, 392. [Google Scholar] [CrossRef]
- Santangelo, C.; Filesi, C.; Varì, R.; Scazzocchio, B.; Filardi, T.; Fogliano, V.; D’Archivio, M.; Giovannini, C.; Lenzi, A.; Morano, S.; et al. Consumption of extra-virgin olive oil rich in phenolic compounds improves metabolic control in patients with type 2 diabetes mellitus: A possible involvement of reduced levels of circulating visfatin. J. Endocrinol. Investig. 2016, 39, 1295–1301. [Google Scholar] [CrossRef]
- Katsa, M.E.; Ketselidi, K.; Kalliostra, M.; Ioannidis, A.; Rojas Gil, A.P.; Diamantakos, P.; Melliou, E.; Magiatis, P.; Nomikos, T. Acute Antiplatelet Effects of an Oleocanthal-Rich Olive Oil in Type II Diabetic Patients: A Postprandial Study. Int. J. Mol. Sci. 2024, 25, 908. [Google Scholar] [CrossRef]
- Farràs, M.; Castañer, O.; Martín-Peláez, S.; Hernáez, Á.; Schröder, H.; Subirana, I.; Muñoz-Aguayo, D.; Gaixas, S.; Torre Rde, L.; Farré, M.; et al. Complementary phenol-enriched olive oil improves HDL characteristics in hypercholesterolemic subjects. A randomized, double-blind, crossover, controlled trial. The VOHF study. Mol. Nutr. Food Res. 2015, 59, 1758–1770. [Google Scholar] [CrossRef]
- Sanchez-Rodriguez, E.; Lima-Cabello, E.; Biel-Glesson, S.; Fernandez-Navarro, J.R.; Calleja, M.A.; Roca, M.; Espejo-Calvo, J.A.; Gil-Extremera, B.; Soria-Florido, M.; de la Torre, R.; et al. Effects of Virgin Olive Oils Differing in Their Bioactive Compound Contents on Metabolic Syndrome and Endothelial Functional Risk Biomarkers in Healthy Adults: A Randomized Double-Blind Controlled Trial. Nutrients 2018, 10, 626. [Google Scholar] [CrossRef] [PubMed]
- Khandouzi, N.; Zahedmehr, A.; Nasrollahzadeh, J. Effect of polyphenol-rich extra-virgin olive oil on lipid profile and inflammatory biomarkers in patients undergoing coronary angiography: A randomised, controlled, clinical trial. Int. J. Food Sci. Nutr. 2021, 72, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Martín-Peláez, S.; Castañer, O.; Solà, R.; Motilva, M.J.; Castell, M.; Pérez-Cano, F.J.; Fitó, M. Influence of Phenol-Enriched Olive Oils on Human Intestinal Immune Function. Nutrients 2016, 8, 213. [Google Scholar] [CrossRef] [PubMed]
- Martín-Peláez, S.; Castañer, O.; Konstantinidou, V.; Subirana, I.; Muñoz-Aguayo, D.; Blanchart, G.; Gaixas, S.; de la Torre, R.; Farré, M.; Sáez, G.T.; et al. Effect of olive oil phenolic compounds on the expression of blood pressure-related genes in healthy individuals. Eur. J. Nutr. 2017, 56, 663–670. [Google Scholar] [CrossRef]
- Sarapis, K.; Thomas, C.J.; Hoskin, J.; George, E.S.; Marx, W.; Mayr, H.L.; Kennedy, G.; Pipingas, A.; Willcox, J.C.; Prendergast, L.A.; et al. The Effect of High Polyphenol Extra Virgin Olive Oil on Blood Pressure and Arterial Stiffness in Healthy Australian Adults: A Randomized, Controlled, Cross-Over Study. Nutrients 2020, 12, 2272. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liva, K.; Panagiotopoulos, A.A.; Foscolou, A.; Amerikanou, C.; Vitali, A.; Zioulis, S.; Argyri, K.; Panoutsopoulos, G.I.; Kaliora, A.C.; Gioxari, A. High Polyphenol Extra Virgin Olive Oil and Metabolically Unhealthy Obesity: A Scoping Review of Preclinical Data and Clinical Trials. Clin. Pract. 2025, 15, 54. https://doi.org/10.3390/clinpract15030054
Liva K, Panagiotopoulos AA, Foscolou A, Amerikanou C, Vitali A, Zioulis S, Argyri K, Panoutsopoulos GI, Kaliora AC, Gioxari A. High Polyphenol Extra Virgin Olive Oil and Metabolically Unhealthy Obesity: A Scoping Review of Preclinical Data and Clinical Trials. Clinics and Practice. 2025; 15(3):54. https://doi.org/10.3390/clinpract15030054
Chicago/Turabian StyleLiva, Konstantina, Athanasios A. Panagiotopoulos, Alexandra Foscolou, Charalampia Amerikanou, Alkistis Vitali, Stavros Zioulis, Konstantina Argyri, Georgios I. Panoutsopoulos, Andriana C. Kaliora, and Aristea Gioxari. 2025. "High Polyphenol Extra Virgin Olive Oil and Metabolically Unhealthy Obesity: A Scoping Review of Preclinical Data and Clinical Trials" Clinics and Practice 15, no. 3: 54. https://doi.org/10.3390/clinpract15030054
APA StyleLiva, K., Panagiotopoulos, A. A., Foscolou, A., Amerikanou, C., Vitali, A., Zioulis, S., Argyri, K., Panoutsopoulos, G. I., Kaliora, A. C., & Gioxari, A. (2025). High Polyphenol Extra Virgin Olive Oil and Metabolically Unhealthy Obesity: A Scoping Review of Preclinical Data and Clinical Trials. Clinics and Practice, 15(3), 54. https://doi.org/10.3390/clinpract15030054