Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = vibrational mode decomposition (VMD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 34763 KiB  
Article
A Rolling-Bearing-Fault Diagnosis Method Based on a Dual Multi-Scale Mechanism Applicable to Noisy-Variable Operating Conditions
by Jing Kang, Taiyong Wang, Ye Wei, Usman Haladu Garba and Ying Tian
Sensors 2025, 25(15), 4649; https://doi.org/10.3390/s25154649 - 27 Jul 2025
Viewed by 337
Abstract
Rolling bearings serve as the most widely utilized general components in drive systems for rotating machinery, and they are susceptible to regular malfunctions. To address the performance degradation encountered by current convolutional neural network-based rolling-bearing-fault diagnosis methods due to significant noise interference and [...] Read more.
Rolling bearings serve as the most widely utilized general components in drive systems for rotating machinery, and they are susceptible to regular malfunctions. To address the performance degradation encountered by current convolutional neural network-based rolling-bearing-fault diagnosis methods due to significant noise interference and variable working conditions in industrial settings, we propose a rolling-bearing-fault diagnosis method based on dual multi-scale mechanism applicable to noisy-variable operating conditions. The suggested approach begins with the implementation of Variational Mode Decomposition (VMD) on the initial vibration signal. This is succeeded by a denoising process that utilizes the goodness-of-fit test based on the Anderson–Darling (AD) distance for enhanced accuracy. This approach targets the intrinsic mode functions (IMFs), which capture information across multiple scales, to obtain the most precise denoised signal possible. Subsequently, we introduce the Dynamic Weighted Multi-Scale Feature Convolutional Neural Network (DWMFCNN) model, which integrates two structures: multi-scale feature extraction and dynamic weighting of these features. Ultimately, the signal that has been denoised is utilized as input for the DWMFCNN model to recognize different kinds of rolling-bearing faults. Results from the experiments show that the suggested approach shows an improved denoising performance and a greater adaptability to changing working conditions. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

24 pages, 4430 KiB  
Article
Early Bearing Fault Diagnosis in PMSMs Based on HO-VMD and Weighted Evidence Fusion of Current–Vibration Signals
by Xianwu He, Xuhui Liu, Cheng Lin, Minjie Fu, Jiajin Wang and Jian Zhang
Sensors 2025, 25(15), 4591; https://doi.org/10.3390/s25154591 - 24 Jul 2025
Viewed by 321
Abstract
To address the challenges posed by weak early fault signal features, strong noise interference, low diagnostic accuracy, poor reliability when using single information sources, and the limited availability of high-quality samples in practical applications for permanent magnet synchronous motor (PMSM) bearings, this paper [...] Read more.
To address the challenges posed by weak early fault signal features, strong noise interference, low diagnostic accuracy, poor reliability when using single information sources, and the limited availability of high-quality samples in practical applications for permanent magnet synchronous motor (PMSM) bearings, this paper proposes an early bearing fault diagnosis method based on Hippopotamus Optimization Variational Mode Decomposition (HO-VMD) and weighted evidence fusion of current–vibration signals. The HO algorithm is employed to optimize the parameters of VMD for adaptive modal decomposition of current and vibration signals, resulting in the generation of intrinsic mode functions (IMFs). These IMFs are then selected and reconstructed based on their kurtosis to suppress noise and harmonic interference. Subsequently, the reconstructed signals are demodulated using the Teager–Kaiser Energy Operator (TKEO), and both time-domain and energy spectrum features are extracted. The reliability of these features is utilized to adaptively weight the basic probability assignment (BPA) functions. Finally, a weighted modified Dempster–Shafer evidence theory (WMDST) is applied to fuse multi-source feature information, enabling an accurate assessment of the PMSM bearing health status. The experimental results demonstrate that the proposed method significantly enhances the signal-to-noise ratio (SNR) and enables precise diagnosis of early bearing faults even in scenarios with limited sample sizes. Full article
Show Figures

Figure 1

22 pages, 12507 KiB  
Article
Research on the Friction Prediction Method of Micro-Textured Cemented Carbide–Titanium Alloy Based on the Noise Signal
by Hao Zhang, Xin Tong and Baiyi Wang
Coatings 2025, 15(7), 843; https://doi.org/10.3390/coatings15070843 - 18 Jul 2025
Viewed by 506
Abstract
The vibration and noise of friction pairs are severe when cutting titanium alloy with cemented carbide tools, and the surface micro-texture can significantly reduce noise and friction. Therefore, it is very important to clarify the correlation mechanism between friction noise and friction force [...] Read more.
The vibration and noise of friction pairs are severe when cutting titanium alloy with cemented carbide tools, and the surface micro-texture can significantly reduce noise and friction. Therefore, it is very important to clarify the correlation mechanism between friction noise and friction force for processing quality control. Consequently, investigating the underlying mechanisms that link friction noise and friction is of considerable importance. This study focuses on the friction and wear acoustic signals generated by micro-textured cemented carbide–titanium alloy. A friction testing platform specifically designed for the micro-textured cemented carbide grinding of titanium alloy has been established. Acoustic sensors are employed to capture the acoustic signals, while ultra-depth-of-field microscopy and scanning electron microscopy are utilized for surface analysis. A novel approach utilizing the dung beetle algorithm (DBO) is proposed to optimize the parameters of variational mode decomposition (VMD), which is subsequently combined with wavelet packet threshold denoising (WPT) to enhance the quality of the original signal. Continuous wavelet transform (CWT) is applied for time–frequency analysis, facilitating a discussion on the underlying mechanisms of micro-texture. Additionally, features are extracted from the time domain, frequency domain, wavelet packet, and entropy. The Relief-F algorithm is employed to identify 19 significant features, leading to the development of a hybrid model that integrates Bayesian optimization (BO) and Transformer-LSTM for predicting friction. Experimental results indicate that the model achieves an R2 value of 0.9835, a root mean square error (RMSE) of 0.2271, a mean absolute error (MAE) of 0.1880, and a mean bias error (MBE) of 0.1410 on the test dataset. The predictive performance and stability of this model are markedly superior to those of the BO-LSTM, LSTM–Attention, and CNN–LSTM–Attention models. This research presents a robust methodology for predicting friction in the context of friction and wear of cemented carbide–titanium alloys. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

19 pages, 4037 KiB  
Article
A Rolling Bearing Fault Diagnosis Method Based on Wild Horse Optimizer-Enhanced VMD and Improved GoogLeNet
by Xiaoliang He, Feng Zhao, Nianyun Song, Zepeng Liu and Libing Cao
Sensors 2025, 25(14), 4421; https://doi.org/10.3390/s25144421 - 16 Jul 2025
Viewed by 302
Abstract
To address the challenges of weak fault features and strong non-stationarity in early-stage vibration signals, this study proposes a novel fault diagnosis method combining enhanced variational mode decomposition (VMD) with a structurally improved GoogLeNet. Specifically, an improved wild horse optimizer (IWHO) with tent [...] Read more.
To address the challenges of weak fault features and strong non-stationarity in early-stage vibration signals, this study proposes a novel fault diagnosis method combining enhanced variational mode decomposition (VMD) with a structurally improved GoogLeNet. Specifically, an improved wild horse optimizer (IWHO) with tent chaotic mapping is employed to automatically optimize critical VMD parameters, including the number of modes K and the penalty factor α, enabling precise decomposition of non-stationary signals to extract weak fault features. The vibration signal is decomposed, and the top five intrinsic mode functions (IMFs) are selected based on the kurtosis criterion. Time–frequency features are then extracted from these IMFs and input into a modified GoogLeNet classifier. The GoogLeNet structure is improved by replacing standard n × n convolution kernels with cascaded 1 × n and n × 1 kernels, and by substituting the ReLU activation function with a parameterized TReLU function to enhance adaptability and convergence. Experimental results on two public rolling bearing datasets demonstrate that the proposed method effectively handles non-stationary signals, achieving 99.17% accuracy across four fault types and maintaining over 95.80% accuracy under noisy conditions. Full article
Show Figures

Figure 1

23 pages, 3869 KiB  
Article
Fault Diagnosis Method for Pumped Storage Units Based on VMD-BILSTM
by Hui Li, Qinglin Li, Hua Li and Liang Bai
Symmetry 2025, 17(7), 1067; https://doi.org/10.3390/sym17071067 - 4 Jul 2025
Viewed by 275
Abstract
The construction of pumped storage power stations (PSPSs) is undergoing rapid expansion globally. Detecting operational faults and defects in pumped storage units is critical, as effective diagnostic methods can not only identify fault types quickly and accurately but also significantly reduce maintenance costs. [...] Read more.
The construction of pumped storage power stations (PSPSs) is undergoing rapid expansion globally. Detecting operational faults and defects in pumped storage units is critical, as effective diagnostic methods can not only identify fault types quickly and accurately but also significantly reduce maintenance costs. This study leverages the symmetry characteristics in the vibration signals of pumped storage units to enhance fault diagnosis accuracy. To address the challenges of selecting the key parameters (e.g., decomposition level and penalty factor) of the variational mode decomposition (VMD) algorithm during vibration signal analysis, this paper proposes an algorithm for an improved subtraction-average-based optimizer (ISABO). By incorporating piecewise linear mapping, the ISABO enhances parameter initialization and, combined with a balanced pool method, mitigates the algorithm’s tendency to converge to local optima. This improvement enables more effective vibration signal denoising and feature extraction. Furthermore, to optimize hyperparameter selection in the bidirectional long short-term memory (BILSTM) network—such as the number of hidden layer units, maximum training epochs, and learning rate—we introduce an ISABO-BILSTM classification model. This approach ensures robust fault diagnosis by fine-tuning the neural network’s critical parameters. The proposed method is validated using vibration data from an operational PSPS. Experimental results demonstrate that the ISABO-BILSTM model achieves an overall fault recognition accuracy of 97.96%, with the following breakdown: normal operation: 96.29%, thrust block loosening: 98.60%, rotor-stator rubbing: 97.34%, and rotor misalignment: 99.59%. These results confirm that the proposed framework significantly improves fault identification accuracy, offering a novel and reliable approach for PSPS unit diagnostics. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

28 pages, 4916 KiB  
Article
Research on Bearing Fault Diagnosis Method for Varying Operating Conditions Based on Spatiotemporal Feature Fusion
by Jin Wang, Yan Wang, Junhui Yu, Qingping Li, Hailin Wang and Xinzhi Zhou
Sensors 2025, 25(12), 3789; https://doi.org/10.3390/s25123789 - 17 Jun 2025
Viewed by 428
Abstract
In real-world scenarios, the rotational speed of bearings is variable. Due to changes in operating conditions, the feature distribution of bearing vibration data becomes inconsistent, which leads to the inability to directly apply the training model built under one operating condition (source domain) [...] Read more.
In real-world scenarios, the rotational speed of bearings is variable. Due to changes in operating conditions, the feature distribution of bearing vibration data becomes inconsistent, which leads to the inability to directly apply the training model built under one operating condition (source domain) to another condition (target domain). Furthermore, the lack of sufficient labeled data in the target domain further complicates fault diagnosis under varying operating conditions. To address this issue, this paper proposes a spatiotemporal feature fusion domain-adaptive network (STFDAN) framework for bearing fault diagnosis under varying operating conditions. The framework constructs a feature extraction and domain adaptation network based on a parallel architecture, designed to capture the complex dynamic characteristics of vibration signals. First, the Fast Fourier Transform (FFT) and Variational Mode Decomposition (VMD) are used to extract the spectral and modal features of the signals, generating a joint representation with multi-level information. Then, a parallel processing mechanism of the Convolutional Neural Network (SECNN) based on the Squeeze-and-Excitation module and the Bidirectional Long Short-Term Memory network (BiLSTM) is employed to dynamically adjust weights, capturing high-dimensional spatiotemporal features. The cross-attention mechanism enables the interaction and fusion of spatial and temporal features, significantly enhancing the complementarity and coupling of the feature representations. Finally, a Multi-Kernel Maximum Mean Discrepancy (MKMMD) is introduced to align the feature distributions between the source and target domains, enabling efficient fault diagnosis under varying bearing conditions. The proposed STFDAN framework is evaluated using bearing datasets from Case Western Reserve University (CWRU), Jiangnan University (JNU), and Southeast University (SEU). Experimental results demonstrate that STFDAN achieves high diagnostic accuracy across different load conditions and effectively solves the bearing fault diagnosis problem under varying operating conditions. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

22 pages, 4496 KiB  
Article
Research on Remaining Useful Life Prediction of Control Rod Drive Mechanism Rotor Components in Floating Nuclear Reactor
by Liming Zhang, Chen Wang, Ling Chen, Tian Tan and Luqi Liao
Sensors 2025, 25(12), 3702; https://doi.org/10.3390/s25123702 - 13 Jun 2025
Viewed by 374
Abstract
Aiming at the difficult problem of predicting the running state of the rotor of a Control Rod Drive Mechanism (CRDM) in a floating nuclear reactor, this paper proposes a Remaining Useful Life (RUL) prediction method based on Variational Mode Decomposition and Bidirectional Long [...] Read more.
Aiming at the difficult problem of predicting the running state of the rotor of a Control Rod Drive Mechanism (CRDM) in a floating nuclear reactor, this paper proposes a Remaining Useful Life (RUL) prediction method based on Variational Mode Decomposition and Bidirectional Long Short-Term Memory (VMD-BiLSTM). Firstly, a bench experiment of the CRDM is carried out to collect the full operational cycle (full-stroke) vibration signals of the CRDM. Secondly, the collected data are decomposed based on the VMD, and the typical vibration signals at different stages of the experiment are used to verify this method and comprehensively mine the degradation characteristics. At the same time, the time-frequency domain feature analysis is carried out on the original vibration data, and the changing trends of the extracted features are carefully analyzed. Five feature quantities closely related to the degradation trend of the rotor of the CRDM are screened out, and the corresponding health indicators are constructed in combination with the stroke. Finally, the life prediction of the rotor of the CRDM is realized through the BiLSTM method. Then, the comparison experiments with other methods are carried out, and the experimental results show that the method proposed in this paper has high accuracy and reliability and can effectively solve the RUL prediction problem of CRDM, which provides a strong support to ensure the safe and stable operation of floating nuclear reactors. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

21 pages, 8892 KiB  
Article
Study on the Influence of Delay Time on the Propagation Law of Adjacent Blast Hole Cracks
by Yu Wang, Yang Yang, Xiang Zhang, Ziyi Fan, Fangqiang Hu, Jianqiang He and Jianbin Zhao
Buildings 2025, 15(12), 2030; https://doi.org/10.3390/buildings15122030 - 12 Jun 2025
Viewed by 1044
Abstract
In open-pit bench pre-splitting blasting, the interaction of explosion-induced stress waves between blast holes is essential for safeguarding the rear rock mass. This study utilizes the caustic method to examine the propagation velocity of explosion-induced cracks, the stress intensity factor at the crack [...] Read more.
In open-pit bench pre-splitting blasting, the interaction of explosion-induced stress waves between blast holes is essential for safeguarding the rear rock mass. This study utilizes the caustic method to examine the propagation velocity of explosion-induced cracks, the stress intensity factor at the crack tip, and the final morphology of cracks between adjacent blast holes with varying delay times. Field pre-splitting blasting experiments were carried out to validate these effects. The experimental results reveal that, for short inter-hole delay times (0–12 μs), a “hook-like” crack intersection zone emerges between blast holes. Changes in delay time influence the patterns of crack propagation, leading to deviations in the propagation direction of cracks in subsequent blast holes due to the combined effects of stress waves and cracks from preceding holes. The fracture mechanism evolves from pure Mode I (tensile) to a mixed Mode I-II (tensile-shear). Vibration signals from the field blasting tests were analyzed using the variational mode decomposition (VMD) method. The findings indicate that optimized inter-hole delay times can reduce peak particle velocity (PPV) by 18.7–23.4% compared to simultaneous initiation, thereby significantly minimizing damage to the rear rock mass, a crucial factor for maintaining slope stability. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 4855 KiB  
Article
Improved Variational Mode Decomposition Based on Scale Space Representation for Fault Diagnosis of Rolling Bearings
by Baoxiang Wang, Guoqing Liu, Jihai Dai and Chuancang Ding
Sensors 2025, 25(11), 3542; https://doi.org/10.3390/s25113542 - 4 Jun 2025
Viewed by 572
Abstract
Accurate extraction of weak fault information from non-stationary vibration signals collected by vibration sensors is challenging due to severe noise and interference. While variational mode decomposition (VMD) has been effective in fault diagnosis, its reliance on predefined parameters, such as center frequencies and [...] Read more.
Accurate extraction of weak fault information from non-stationary vibration signals collected by vibration sensors is challenging due to severe noise and interference. While variational mode decomposition (VMD) has been effective in fault diagnosis, its reliance on predefined parameters, such as center frequencies and mode number, limits its adaptability and performance across different signal characteristics. To address these limitations, this paper proposes an improved variational mode decomposition (IVMD) method that enhances diagnostic performance by adaptively determining key parameters based on scale space representation. In concrete, the approach constructs a scale space by computing the inner product between the signal’s Fourier spectrum and a Gaussian function, and then identifies both the mode number and initial center frequencies through peak detection, ensuring more accurate and stable decomposition. Moreover, a multipoint kurtosis (MKurt) criterion is further employed to identify fault-relevant components, which are then merged to suppress redundancy and enhance diagnostic clarity. Experimental validation on locomotive bearings with inner race faults and compound faults demonstrates that IVMD outperforms conventional VMD by effectively extracting fault features obscured by noise. The results confirm the robustness and adaptability of IVMD, making it a promising tool for fault diagnosis in complex industrial environments. Full article
Show Figures

Figure 1

15 pages, 1672 KiB  
Article
GIS Disconnector Mechanism Jamming Fault Diagnosis Method Based on Sideband Information Enhancement in Power System
by Shun He, Guochao Qian, Hongming Ma, Xiaohui He, Fangrong Zhou, Jiangjun Ruan and Song He
Processes 2025, 13(5), 1577; https://doi.org/10.3390/pr13051577 - 19 May 2025
Viewed by 358
Abstract
This study addresses the need for improved fault diagnosis methods for GIS disconnector mechanisms, specifically targeting jamming faults, which are difficult to detect using conventional approaches. Existing methods often fail to accurately diagnose these faults due to limitations in handling signal noise and [...] Read more.
This study addresses the need for improved fault diagnosis methods for GIS disconnector mechanisms, specifically targeting jamming faults, which are difficult to detect using conventional approaches. Existing methods often fail to accurately diagnose these faults due to limitations in handling signal noise and nonlinearity. To overcome these challenges, we propose a novel method that combines variational mode decomposition (VMD) and bispectral analysis to extract fault-related features from vibration signals. The effectiveness of this approach is validated using both real-world data from GIS disconnector units in substations and simulated fault data in laboratory conditions. The results show that our method significantly improves fault classification accuracy, particularly for jamming faults, providing a robust solution for real-time monitoring and diagnosis. This work contributes to both the theoretical understanding of GIS disconnector fault mechanisms and practical applications in intelligent power system maintenance. Full article
(This article belongs to the Special Issue Progress in Design and Optimization of Fault Diagnosis Modelling)
Show Figures

Figure 1

27 pages, 6806 KiB  
Article
Rolling Bearing Fault Diagnosis Based on VMD-DWT and HADS-CNN-BiLSTM Hybrid Model
by Luchuan Shao, Bing Zhao and Xutao Kang
Machines 2025, 13(5), 423; https://doi.org/10.3390/machines13050423 - 17 May 2025
Cited by 1 | Viewed by 620
Abstract
This study proposes a hybrid framework for rolling bearing fault diagnosis by integrating a Variational Mode Decomposition–Discrete Wavelet Transform (VMD-DWT) with a Hybrid Attention-Based Depthwise Separable CNN-BiLSTM (HADS-CNN-BiLSTM) to address noise interference and low diagnostic accuracy under complex conditions. The vibration signals are [...] Read more.
This study proposes a hybrid framework for rolling bearing fault diagnosis by integrating a Variational Mode Decomposition–Discrete Wavelet Transform (VMD-DWT) with a Hybrid Attention-Based Depthwise Separable CNN-BiLSTM (HADS-CNN-BiLSTM) to address noise interference and low diagnostic accuracy under complex conditions. The vibration signals are first reconstructed using a genetic algorithm (GA)-optimized VMD and particle swarm optimization (PSO)-optimized DWT for noise suppression. Subsequently, the denoised signals undergo multimodal feature fusion through depthwise separable convolution, triple attention mechanisms, and BiLSTM temporal modeling. The hybrid model incorporates dynamic learning rate scheduling and a two-stage progressive training strategy to accelerate convergence. The experimental results on the Case Western Reserve University (CWRU) dataset demonstrate 99.58% fault diagnosis accuracy in precision, recall, and the F1 Score, while achieving 100% accuracy on the Xi’an Jiaotong University (XJTU-SY) dataset, confirming superior generalization and robustness under varying signal-to-noise ratios. The framework provides an effective solution for enhancing rolling bearing fault diagnosis technologies. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

24 pages, 6561 KiB  
Article
Simultaneous Vibration and Nonlinearity Compensation for One-Period Triangular FMCW Ladar Signal Based on MSST
by Wei Li, Ruihua Shi, Qinghai Dong, Juanying Zhao, Bingnan Wang and Maosheng Xiang
Remote Sens. 2025, 17(10), 1689; https://doi.org/10.3390/rs17101689 - 11 May 2025
Viewed by 419
Abstract
When frequency-modulated continuous-wave (FMCW) laser radar (Ladar) is employed for three-dimensional imaging, the echo signal is susceptible to modulation nonlinearity and platform vibration due to modulation and the short wavelength. These effects cause main-lobe widening, side-lobe elevation, and positional shift, which degrades distance [...] Read more.
When frequency-modulated continuous-wave (FMCW) laser radar (Ladar) is employed for three-dimensional imaging, the echo signal is susceptible to modulation nonlinearity and platform vibration due to modulation and the short wavelength. These effects cause main-lobe widening, side-lobe elevation, and positional shift, which degrades distance detection accuracy. To solve these problems, this paper proposes a compensation method combining multiple synchrosqueezing transform (MSST), equal-phase interval resampling, and high-order ambiguity function (HAF). Firstly, variational mode decomposition (VMD) is applied to the optical prism signal to eliminate low-frequency noise and harmonic peaks. MSST is used to extract the time–frequency curve of the optical prism. The nonlinearity in the transmitted signal is estimated by two-step integration. An internal calibration signal containing nonlinearity is constructed at a higher sampling rate to resample the actual signal at an equal-phase interval. Then, HAF compensates for high-order vibration and residual phase error after resampling. Finally, symmetrical triangle wave modulation is used to remove constant-speed vibration. Verifying by actual data, the proposed method can enhance the main lobe and suppress the side lobe about 1.5 dB for a strong reflection target signal. Natural-target peaks can also be enhanced and the remaining peaks are suppressed, which is helpful to extract an accurate target distance. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

19 pages, 14463 KiB  
Article
Fault Diagnosis of Rolling Element Bearing Based on BiTCN-Attention and OCSSA Mechanism
by Yuchen Yang, Chunsong Han, Guangtao Ran, Tengyu Ma and Juntao Pan
Actuators 2025, 14(5), 218; https://doi.org/10.3390/act14050218 - 28 Apr 2025
Viewed by 521
Abstract
This paper proposes a novel fault diagnosis framework that integrates the Osprey–Cauchy–Sparrow Search Algorithm (OCSSA) optimized Variational Mode Decomposition (VMD) with a Bidirectional Temporal Convolutional Network-Attention mechanism (BiTCN-Attention). To address the limitations of empirical parameter selection in VMD, OCSSA adaptively optimizes the decomposition [...] Read more.
This paper proposes a novel fault diagnosis framework that integrates the Osprey–Cauchy–Sparrow Search Algorithm (OCSSA) optimized Variational Mode Decomposition (VMD) with a Bidirectional Temporal Convolutional Network-Attention mechanism (BiTCN-Attention). To address the limitations of empirical parameter selection in VMD, OCSSA adaptively optimizes the decomposition parameters (penalty factor α and mode number K) through a hybrid strategy that combines chaotic initialization, Osprey-inspired global search, and Cauchy mutation. Subsequently, the BiTCN captures bidirectional temporal dependencies from vibration signals, while the attention mechanism dynamically filters critical fault features, constructing an end-to-end diagnostic model. Experiments on the CWRU dataset demonstrate that the proposed method achieves an average accuracy of 99.44% across 10 fault categories, outperforming state-of-the-art models (e.g., VMD-TCN: 97.5%, CNN-BiLSTM: 84.72%). Full article
(This article belongs to the Special Issue Intelligent Sensing, Control and Actuation in Networked Systems)
Show Figures

Figure 1

16 pages, 2788 KiB  
Article
VFQB: A Novel Deep Learning Model for Rolling Bearing Fault Diagnosis
by Zhiru Xiao, Yanfang Xu and Junjie Cui
Sensors 2025, 25(9), 2678; https://doi.org/10.3390/s25092678 - 24 Apr 2025
Viewed by 631
Abstract
In rolling bearing fault diagnosis, weak features are often masked by complex environmental conditions, blurring the original fault signals and reducing diagnostic accuracy. To address this issue, we propose the VMD/FFT-Quadratic-BiGRU diagnostic model. First, the original vibration signals are processed with variational mode [...] Read more.
In rolling bearing fault diagnosis, weak features are often masked by complex environmental conditions, blurring the original fault signals and reducing diagnostic accuracy. To address this issue, we propose the VMD/FFT-Quadratic-BiGRU diagnostic model. First, the original vibration signals are processed with variational mode decomposition (VMD) and fast Fourier transform (FFT) and then stacked as quadratic neural network inputs. Next, a Bidirectional Gated Recurrent Unit (BiGRU) module is introduced to capture the temporal characteristics of the feature signals. An attention mechanism is then applied to assign weights to the hidden layers of the BiGRU network. Finally, fault diagnosis is performed using a fully connected layer and softmax classifier. Experimental results demonstrate that this model significantly enhances the ability to capture weak fault features in complex environments. The fault diagnosis accuracy reaches 100% on both datasets, showing improvements of 2.68% and 1.58% over models without the quadratic network. Additionally, comparisons with other models in noisy environments show that the proposed model exhibits superior noise suppression capabilities, further highlighting its robustness and diagnostic accuracy. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

16 pages, 7860 KiB  
Article
Optimized Variational Mode Decomposition and Convolutional Block Attention Module-Enhanced Hybrid Network for Bearing Fault Diagnosis
by Bin Yuan, Lei Lei and Suifan Chen
Machines 2025, 13(4), 320; https://doi.org/10.3390/machines13040320 - 14 Apr 2025
Cited by 2 | Viewed by 550
Abstract
Accurate fault diagnosis remains a critical but unresolved issue in predictive maintenance, as industrial environments typically involve large amounts of electromagnetic interference and mechanical noise that can severely degrade the signal quality. In this study, we propose an innovative diagnostic framework to address [...] Read more.
Accurate fault diagnosis remains a critical but unresolved issue in predictive maintenance, as industrial environments typically involve large amounts of electromagnetic interference and mechanical noise that can severely degrade the signal quality. In this study, we propose an innovative diagnostic framework to address the challenging problem of bearing fault diagnosis in vibration signals under complex noise conditions. We develop the VMD-CNN-BiLSTM-CBAM model by systematically integrating the variational mode decomposition (VMD), convolutional neural network (CNN), bi-directional long and short-term memory network (BiLSTM), and convolutional block attention module (CBAM). The framework starts with VMD-based signal decomposition, which effectively separates the noise component from the bearing vibration features. Based on this denoising, a CNN architecture is employed to extract multi-scale spatio-temporal features through its hierarchical learning mechanism. The subsequent BiLSTM layer captures bidirectional temporal dependencies to model fault-evolution patterns, while the CBAM module strategically highlights key diagnostic features through adaptive channel spatial attention. Experimental validation using the Case Western Reserve University and Jiangnan University bearing datasets demonstrates the excellent performance of the model, with average accuracies of 99.76% and 99.40%, respectively. Finally, additional validation through our customized testbed confirms the usefulness of the model with an average accuracy of 99.70%. These results demonstrate that the proposed approach greatly improves fault diagnosis in noisy industrial environments through its synergistic architectural design and enhanced noise immunity. Full article
Show Figures

Figure 1

Back to TopTop