Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = very high renewable penetration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1635 KB  
Article
Modelling the Impact of Solar Power Expansion on Generation Costs in Kenya
by Margaret Ntangenoi Letiyan, Moses Barasa Kabeyi and Oludolapo Olanrewaju
Energies 2026, 19(2), 296; https://doi.org/10.3390/en19020296 - 6 Jan 2026
Viewed by 390
Abstract
Climate change and increasing greenhouse gas emissions are driving the global transition to clean energy, with solar energy experiencing the fastest growth among renewable sources in 2024. Solar PV for energy generation in Kenya is gaining momentum as the country moves towards achieving [...] Read more.
Climate change and increasing greenhouse gas emissions are driving the global transition to clean energy, with solar energy experiencing the fastest growth among renewable sources in 2024. Solar PV for energy generation in Kenya is gaining momentum as the country moves towards achieving 100% clean energy by 2030. As solar PV penetration in the grid grows, it is necessary to evaluate its impact on system costs to inform policy decisions on capacity expansion options in the Least-Cost Power Development Plan (LCPDP). This study investigates the effect of large-scale solar PV expansion on electricity costs using the Open-Source Energy Modelling System (OSeMOSYS), a modular, bottom-up capacity expansion model. Four scenarios were developed to assess different levels of solar PV penetration: business-as-usual (BAU), moderate-solar-PV expansion (MSPV), high-solar-PV expansion (HSPV), and very-high-solar-PV expansion (VHSPV). The results indicate that, while overall solar PV expansion significantly contributes to decarbonising Kenya’s electricity mix by displacing fossil-based generation, it also increases annual investment obligations and, consequently, total system costs. The system-levelised cost of electricity (LCOE) is shown to rise by 0.2%, 5.7%, and 14.0% under MSPV, HSPV, and VHSPV, respectively, compared to BAU. Analysing the various cost components against sustainability indicators reveals that the least-cost scenario is BAU while the most favourable scenario based on sustainability indicators is VHSPV, which performs best across technical, environmental, and institutional dimensions but less favourably on economic and social aspects, thereby highlighting a trade-off between sustainability and cost minimisation, at least in the short term. Full article
Show Figures

Figure 1

15 pages, 2312 KB  
Article
Coordinated Participation Strategy of Distributed PV-Storage Aggregators in Energy and Regulation Markets: Day-Ahead and Intra-Day Optimization
by Xingang Yang, Yang Du, Zhongguang Yang, Lingyu Guo, Simin Wu, Qian Ai and An Li
Electronics 2025, 14(22), 4514; https://doi.org/10.3390/electronics14224514 - 19 Nov 2025
Viewed by 383
Abstract
Against the backdrop of rapidly growing distributed photovoltaics (DPVs) and mounting pressure on conventional frequency-regulation (FR) resources, this study proposes a day-ahead–intraday two-stage optimal scheduling strategy for aggregators of DPV + advanced energy storage participating in a joint energy–FR market. In the day-ahead [...] Read more.
Against the backdrop of rapidly growing distributed photovoltaics (DPVs) and mounting pressure on conventional frequency-regulation (FR) resources, this study proposes a day-ahead–intraday two-stage optimal scheduling strategy for aggregators of DPV + advanced energy storage participating in a joint energy–FR market. In the day-ahead stage (hourly resolution), a multi-aggregator-independent offering model is formulated that explicitly accounts for PV curtailment costs and storage operating/lifecycle costs. Subject to constraints on buy–sell transactions, PV output, storage charging/discharging power and state of charge (SOC), FR capacity, and power balance, the model co-optimizes energy and FR-capacity offers to maximize profit. In the intraday stage (15 min resolution), bidding deviation penalties are introduced, and a rolling optimization is employed to jointly adjust energy and FR dispatch/offers, reconfigure storage SOC in real time, reduce deviations from day-ahead schedules, and enhance economic performance. A three-aggregator case study indicates that, with deviation penalties considered, regulation-command tracking remains at a high level and PV utilization remains very high, while clearing costs decline and system frequency-response capability improves. The results demonstrate the proposed strategy’s implementability, economic efficiency, and scalability, enabling high-quality participation in ancillary services and promoting high-quality renewable integration under high-penetration distributed scenarios. Full article
Show Figures

Figure 1

12 pages, 5392 KB  
Article
The Use of a Trichoderma reesei Culture for the Hydrolysis of Wheat Straw to Obtain Bioethanol
by Maria Ciobanu, Carmen Otilia Rusănescu and Raluca Lucia Dinculoiu
Processes 2024, 12(12), 2625; https://doi.org/10.3390/pr12122625 - 22 Nov 2024
Viewed by 2069
Abstract
To reduce environmental pollution, a renewable source of energy that we may utilize is bioethanol obtained from wheat straw. Wheat straw was ground to 40–50 mm in size and heat-treated with high-pressure steam to release lignocelluloses, making them accessible to enzymes during saccharification. [...] Read more.
To reduce environmental pollution, a renewable source of energy that we may utilize is bioethanol obtained from wheat straw. Wheat straw was ground to 40–50 mm in size and heat-treated with high-pressure steam to release lignocelluloses, making them accessible to enzymes during saccharification. Through mechanical pretreatment, a substrate was obtained, which contains toxic components in concentrations that do not diminish the performance of the enzymes in the enzymatic hydrolysis phase. Through the thermal pretreatment of wheat straw, its acidity was improved, influencing the amounts of glucose, xylose, and other components emitted. Following enzymatic hydrolysis, very small concentrations of sugars were released. In order to increase the efficiency of the transformation of sugars into ethanol during the fermentation process, a strain of yeast, Trichoderma reesei multiplied in the laboratory, was added, under the conditions of temperature—28 degrees and stirring—800 rpm. Trichoderma reesei penetrated the wheat straw substrate, facilitating the subsequent hydrolysis process. The improved biodegradation of the pretreated straws was highlighted by the electron microscopy analysis. Full article
Show Figures

Figure 1

37 pages, 699 KB  
Review
The State of the Art Electricity Load and Price Forecasting for the Modern Wholesale Electricity Market
by Vasileios Laitsos, Georgios Vontzos, Paschalis Paraschoudis, Eleftherios Tsampasis, Dimitrios Bargiotas and Lefteri H. Tsoukalas
Energies 2024, 17(22), 5797; https://doi.org/10.3390/en17225797 - 20 Nov 2024
Cited by 13 | Viewed by 8373
Abstract
In a modern and dynamic electricity market, ensuring reliable, sustainable and efficient electricity distribution is a pillar of primary importance for grid operation. The high penetration of renewable energy sources and the formation of competitive prices for utilities play a critical role in [...] Read more.
In a modern and dynamic electricity market, ensuring reliable, sustainable and efficient electricity distribution is a pillar of primary importance for grid operation. The high penetration of renewable energy sources and the formation of competitive prices for utilities play a critical role in the wider economic development. Electricity load and price forecasting have been a key focus of researchers in the last decade due to the substantial economic implications for both producers, aggregators and end consumers. Many forecasting techniques and methods have emerged during this period. This paper conducts a extensive and analytical review of the prevailing load and electricity price forecasting methods in the context of the modern wholesale electricity market. The study is separated into seven main sections. The first section provides the key challenges and the main contributions of this study. The second section delves into the workings of the electricity market, providing a detailed analysis of the three markets that have evolved, their functions and the key factors influencing overall market dynamics. In the third section, the main methodologies of electricity load and price forecasting approaches are analyzed in detail. The fourth section offers a comprehensive review of the existing literature focusing on load forecasting, highlighting various methodologies, models and their applications in this field. This section emphasizes the advances that have been made in all categories of forecasting models and their practical application in different market scenarios. The fifth section focuses on electricity price forecasting studies, summarizing important research papers investigating various modeling approaches. The sixth section constitutes a fundamental discussion and comparison between the load- and price-focused studies that are analyzed. Finally, by examining both traditional and cutting-edge forecasting methods, this review identifies key trends, challenges and future directions in the field. Overall, this paper aims to provide an in-depth analysis leading to the understanding of the state-of-the-art models in load and price forecasting and to be an important resource for researchers and professionals in the energy industry. Based on the research conducted, there is an increasing trend in the use of artificial intelligence models in recent years, due to the flexibility and adaptability they offer for big datasets, compared to traditional models. The combination of models, such as ensemble methods, gives us very promising results. Full article
(This article belongs to the Special Issue Application of Machine Learning Tools for Energy System)
Show Figures

Figure 1

16 pages, 5329 KB  
Article
Comparison of Different Power Generation Mixes for High Penetration of Renewables
by Giovanni Brumana, Elisa Ghirardi and Giuseppe Franchini
Sustainability 2024, 16(19), 8435; https://doi.org/10.3390/su16198435 - 27 Sep 2024
Cited by 4 | Viewed by 2430
Abstract
Growing environmental concerns have driven the installation of renewable systems. Meanwhile, the continuous decline in the levelized cost of energy (LCOE), alongside the decreasing cost of photovoltaics (PVs), is compelling the power sector to accurately forecast the performance of energy plants to maximize [...] Read more.
Growing environmental concerns have driven the installation of renewable systems. Meanwhile, the continuous decline in the levelized cost of energy (LCOE), alongside the decreasing cost of photovoltaics (PVs), is compelling the power sector to accurately forecast the performance of energy plants to maximize plant profitability. This paper presents a comprehensive analysis and optimization of a hybrid power generation system for a remote community in the Middle East and North Africa (MENA) region, with a 10 MW peak power demand. The goal is to achieve 90 percent of annual load coverage from renewable energy. This study introduces a novel comparison between three different configurations: (i) concentrated solar power (parabolic troughs + thermal energy storage + steam Rankine cycle); (ii) fully electric (PVs + wind + batteries); and (iii) an energy mix that combines both solutions. The research demonstrates that the hybrid mix achieves the lowest levelized cost of energy (LCOE) at 0.1364 USD/kWh through the use of advanced transient simulation and load-following control strategies. The single-technology solutions were found to be oversized, resulting in higher costs and overproduction. This paper also explores a reduction in the economic scenario and provides insights into cost-effective renewable systems for isolated communities. The new minimum cost of 0.1153 USD/kWh underscores the importance of integrating CSP and PV technologies to meet the very stringent conditions of high renewable penetration and improved grid stability. Full article
Show Figures

Figure 1

25 pages, 2065 KB  
Review
Challenges and Prospects of Applying Nanocellulose for the Conservation of Wooden Cultural Heritage—A Review
by Paulina Kryg, Bartłomiej Mazela, Waldemar Perdoch and Magdalena Broda
Forests 2024, 15(7), 1174; https://doi.org/10.3390/f15071174 - 5 Jul 2024
Cited by 7 | Viewed by 3361
Abstract
Nanocellulose is a nanostructured form of cellulose, which retains valuable properties of cellulose such as renewability, biodegradability, biocompatibility, nontoxicity, and sustainability and, due to its nano-sizes, acquires several useful features, such as low density, high aspect ratio and stiffness, a high specific surface [...] Read more.
Nanocellulose is a nanostructured form of cellulose, which retains valuable properties of cellulose such as renewability, biodegradability, biocompatibility, nontoxicity, and sustainability and, due to its nano-sizes, acquires several useful features, such as low density, high aspect ratio and stiffness, a high specific surface area, easy processing and functionalisation, and good thermal stability. All these make it a highly versatile green nanomaterial for multiple applications, including the conservation of cultural heritage. This review provides the basic characteristics of all nanocellulose forms and their properties and presents the results of recent research on nanocellulose formulations applied for conserving historical artefacts made of wood and paper, discussing their effectiveness, advantages, and disadvantages. Pure nanocellulose proves particularly useful for conserving historical paper since it can form a durable, stable coating that consolidates the surface of a degraded object. However, it is not as effective for wood consolidation treatment due to its poor penetration into the wood structure. The research shows that this disadvantage can be overcome by various chemical modifications of the nanocellulose surface; owing to its specific chemistry, nanocellulose can be easily functionalised and, thus, enriched with the properties required for an effective wood consolidant. Moreover, combining nanocellulose with other agents can also improve its properties, adding new functionalities to the developed supramolecular systems that would address multiple needs of degraded artefacts. Since the broad use of nanocellulose in conservation practice depends on its properties, price, and availability, the development of new, effective, green, and industrial-scale production methods ensuring the manufacture of nanocellulose particles with standardised properties is necessary. Nanocellulose is an interesting and very promising solution for the conservation of cultural heritage artefacts made of paper and wood; however, further thorough interdisciplinary research is still necessary to devise new green methods of its production as well as develop new effective and sustainable nanocellulose-based conservation agents, which would replace synthetic, non-sustainable consolidants and enable proper conservation of historical objects of our cultural heritage. Full article
(This article belongs to the Special Issue Wood as Cultural Heritage Material: 2nd Edition)
Show Figures

Graphical abstract

14 pages, 3094 KB  
Article
Assessing the Flexibility Potential of Industrial Heat–Electricity Sector Coupling through High-Temperature Heat Pumps: The Case Study of Belgium
by Chiara Magni, Robbe Peeters, Sylvain Quoilin and Alessia Arteconi
Energies 2024, 17(2), 541; https://doi.org/10.3390/en17020541 - 22 Jan 2024
Cited by 7 | Viewed by 3392
Abstract
Thermal processes represent a significant fraction of industrial energy consumptions, and they rely mainly on fossil fuels. Thanks to technological innovation, highly efficient devices such as high-temperature heat pumps are becoming a promising solution for the electrification of industrial heat. These technologies allow [...] Read more.
Thermal processes represent a significant fraction of industrial energy consumptions, and they rely mainly on fossil fuels. Thanks to technological innovation, highly efficient devices such as high-temperature heat pumps are becoming a promising solution for the electrification of industrial heat. These technologies allow for recovering waste heat sources and upgrading them at temperatures up to 200 °C. Moreover, the coupling of these devices with thermal storage units can unlock the flexibility potential deriving from the industrial sector electrification by means of Demand-Side Management strategies. The aim of this paper is to quantify the impact on the energy system due to the integration of industrial high-temperature heat pumps and thermal storage units by means of a detailed demand–supply model. To do that, the industrial heat demand is investigated through a set of thermal process archetypes. High-temperature heat pumps and thermal storage units for industrial use are included in the open-source unit commitment and optimal dispatch model Dispa-SET used for the representation of the energy system. The case study analyzed is Belgium, and the analysis is performed for different renewable penetration scenarios in 2040 and 2050. The results demonstrate the importance of a proper sizing of the heat pump and thermal storage capacity. Furthermore, it is obtained that the electrification of the thermal demand of industrial processes improves the environmental impact (84% reduction in CO2 emissions), but the positive effect of the energy flexibility provided by the heat pumps is appreciated only in the presence of a very high penetration of renewable energy sources. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

13 pages, 2956 KB  
Article
Actions to Handle Increasing Distributed Generation and Rising Voltage during Low-Demand Periods: Tap Staggering Practices and Field Tests in the Italian Transmission Network
by Stefano Quaia, Alessandro Mauri, Alessio Marchesin and Paolo Manià
Energies 2023, 16(17), 6258; https://doi.org/10.3390/en16176258 - 28 Aug 2023
Cited by 1 | Viewed by 1872
Abstract
This paper deals with the voltage regulation strategies implemented in the Italian transmission network to face the increasing problem of high voltages during time periods characterized by low demand. After an introduction in which this very actual problem is discussed, the focus is [...] Read more.
This paper deals with the voltage regulation strategies implemented in the Italian transmission network to face the increasing problem of high voltages during time periods characterized by low demand. After an introduction in which this very actual problem is discussed, the focus is on tap staggering practices. Although tap staggering is not a new idea, it is gaining practical importance only in the very last few years as a means of enhancing the inductive power drawn from the grid and, therefore, limiting the voltage rise. Accordingly, tap staggering contributes to the mitigation of the problems caused by the increasing penetration of renewable energy sources and thus can allow an increase in the share of renewable energy sources. The paper presents the different tap staggering practices that are being defined by the Italian transmission system operator and reports some tap staggering tests recently performed on large autotransformers as well as phase-shifter transformers. Full article
(This article belongs to the Special Issue Advanced Electric Power System 2023)
Show Figures

Figure 1

14 pages, 1673 KB  
Article
Control-Oriented Electrochemical Model and Parameter Estimation for an All-Copper Redox Flow Battery
by Wouter Badenhorst, Christian M. Jensen, Uffe Jakobsen, Zahra Esfahani and Lasse Murtomäki
Batteries 2023, 9(5), 272; https://doi.org/10.3390/batteries9050272 - 15 May 2023
Cited by 2 | Viewed by 2924
Abstract
Redox flow batteries are an emergent technology in the field of energy storage for power grids with high renewable generator penetration. The copper redox flow battery (CuRFB) could play a significant role in the future of electrochemical energy storage systems due to the [...] Read more.
Redox flow batteries are an emergent technology in the field of energy storage for power grids with high renewable generator penetration. The copper redox flow battery (CuRFB) could play a significant role in the future of electrochemical energy storage systems due to the numerous advantages of its all-copper chemistry. Furthermore, like the more mature vanadium RFB technology, CuRFBs have the ability to independently scale power and capacity while displaying very fast response times that make the technology attractive for a variety of grid-supporting applications. As with most batteries, the efficient operation of a CuRFB is dependent on high-quality control of both the charging and discharging process. In RFBs, this is typically complicated by highly nonlinear behaviour, particularly at either extreme of the state of charge. Therefore, the focus of this paper is the development and validation of a first-principle, control-appropriate model of the CuRFBs electrochemistry that includes the impact of the flow, charging current, and capacity fading due to diffusion and subsequent comproportionation. Parameters for the proposed model are identified using a genetic algorithm, and the proposed model is validated along with its identified parameters using data obtained from a single-cell CuRFB flow battery as well as a simpler diffusion cell design. The proposed model yields good qualitative fits to experimental data and physically plausible concentration estimates and appears able to quantify the long-term state of health due to changes in the diffusion coefficient. Full article
(This article belongs to the Special Issue Future Smart Battery Management Systems)
Show Figures

Graphical abstract

19 pages, 2733 KB  
Article
A Comprehensive Study on Non-Proprietary Ultra-High-Performance Concrete Containing Supplementary Cementitious Materials
by Seyedsaleh Mousavinezhad, Gregory J. Gonzales, William K. Toledo, Judit M. Garcia, Craig M. Newtson and Srinivas Allena
Materials 2023, 16(7), 2622; https://doi.org/10.3390/ma16072622 - 25 Mar 2023
Cited by 26 | Viewed by 4284
Abstract
Ultra-high performance concrete (UHPC) is a novel cement-based material with exceptional mechanical and durability properties. Silica fume, the primary supplementary cementitious material (SCM) in UHPC, is expensive in North America, so it is often substituted with inexpensive class F fly ash. However, future [...] Read more.
Ultra-high performance concrete (UHPC) is a novel cement-based material with exceptional mechanical and durability properties. Silica fume, the primary supplementary cementitious material (SCM) in UHPC, is expensive in North America, so it is often substituted with inexpensive class F fly ash. However, future availability of fly ash is uncertain as the energy industry moves toward renewable energy, which creates an urgent need to find cost-effective and environmentally friendly alternatives to fly ash. This study investigated replacing cement, fly ash, and silica fume in UHPC mixtures with ground granulated blast-furnace slag (GGBFS), metakaolin, and a natural pozzolan (pumicite). To identify acceptable UHPC mixtures (28-day compressive strength greater than 120 MPa), workability, compression, and flexural tests were conducted on all mixtures. Then, durability properties including shrinkage, frost resistance, and chloride ion permeability (rapid chloride permeability and surface resistivity tests) were evaluated for the acceptable UHPC mixtures. Results showed that 75, 100, and 40% of fly ash in the control mixture could be replaced with pumicite, metakaolin, and GGBFS, respectively, while still producing acceptable strengths. Flexural strengths were greater than 14.20 MPa for all mixtures. For durability, UHPC mixtures had shrinkage strains no greater than 406 μstrain, durability factors of at least 105, and “very low” susceptibility to chloride ion penetration, indicating that these SCMs are suitable candidates to completely replace fly ash and partially replace silica fume in non-proprietary UHPC. Full article
(This article belongs to the Special Issue Ultra High Performance Concrete (UHPC): Current and Future Research)
Show Figures

Figure 1

24 pages, 2475 KB  
Article
Hybrid Combination of Network Restructuring and Optimal Placement of Distributed Generators to Reduce Transmission Loss and Improve Flexibility
by Ekata Kaushik, Vivek Prakash, Raymond Ghandour, Zaher Al Barakeh, Ahmed Ali, Om Prakash Mahela, Roberto Marcelo Álvarez and Baseem Khan
Sustainability 2023, 15(6), 5285; https://doi.org/10.3390/su15065285 - 16 Mar 2023
Cited by 7 | Viewed by 2354
Abstract
A high penetration of renewable energy (RE) in utility grids creates the problems of power system flexibility, high transmission losses, and voltage variations. These problems can be solved using a hybrid combination of transmission network restructuring and optimal placement of distributed energy generator [...] Read more.
A high penetration of renewable energy (RE) in utility grids creates the problems of power system flexibility, high transmission losses, and voltage variations. These problems can be solved using a hybrid combination of transmission network restructuring and optimal placement of distributed energy generator (DEG) units. Hence, this work investigated a technologically and economically feasible solution for improving the flexibility of power networks and reducing losses in a practical transmission utility network by implementing a restructuring of the network and optimal deployment of the distributed energy generators (DEGs). Two solutions for this network restructuring were proposed. Furthermore, a grid-oriented genetic algorithm (GOGA) was designed by combining the conventional genetic algorithm (GA) and mathematical solutions to identify optimal DEG placement. A power system restructuring and GOGA flexibility index (PSRGFI) was formulated for the assessment of network flexibility. A cost–benefit assessment was also performed to estimate the payback period for the investment required for restructuring of the network and DEG placement. The least-square approximation technique was applied for load projection for the year 2031 considering the base year 2021. It was established that minimization of transmission losses, reduction in voltage deviations, and improvement of network flexibility were achieved through hybrid application of network restructuring and DEG placement using GOGA. A network loss saving of 61.19 MW was achieved via optimal restructuring and GOGA. For the projected year 2031, the PSRGFI increased from 30.94 to 132.78 after the placement of DEGs using GOGA and optimal restructuring, indicating that network flexibility increased significantly. The payback period for the investment was very small, equal to 0.985 years. The performance of the designed method was superior to the GA-based method, simulated annealing technique, and bee colony algorithm (BCA) used for placement of DEG units in the test network. The study was completed using MATLAB software, considering data from a practical transmission network owned by Rajasthan Rajya Vidyut Prasaran Nigam Ltd. (RVPN), India. Full article
Show Figures

Figure 1

15 pages, 2688 KB  
Perspective
Microgrids Imitate Nature for Improved Performance—Use of Nature-Inspired Optimization Techniques in Future Power Systems
by Taha Selim Ustun
Energies 2023, 16(3), 1522; https://doi.org/10.3390/en16031522 - 3 Feb 2023
Cited by 4 | Viewed by 2293
Abstract
There is a constant push towards increasing use of renewable energy-based distributed generators around the globe. While they provide a clean and sustainable source of energy, they employ technologies that are unknown to traditional power systems. These generators are interfaced via inverters that [...] Read more.
There is a constant push towards increasing use of renewable energy-based distributed generators around the globe. While they provide a clean and sustainable source of energy, they employ technologies that are unknown to traditional power systems. These generators are interfaced via inverters that lack the inertia of large synchronous machines. This manifests itself as a more volatile frequency profile that is susceptible to disturbances. This phenomenon is more amplified in stand-alone microgrids which are utilized as a popular electrification alternative in isolated or underserved communities. One solution approach takes its inspiration from nature, e.g., behavior of bees, butterflies, or ants. When employed in a suitable way, animals’ natural behavior helps optimize interaction between different renewable-energy based generators and create a more stable microgrid. There are different approaches to stabilizing such systems with novel optimization approaches. Some of them optimize the ratio between generators that utilize rotating machines and inverters. Penetration of renewable energy generation is about increasing the share of inverter-interfaced generators in the system without causing stability issues. Since renewable energy resources are intermittent and not dispatchable, it is important to create a diverse portfolio where the overall system achieves some stability. For instance, if a local grid is fed by PV panels, wind generation and a small-scale hydroelectric power plant, the varying nature of these resources may complement each other. On a sunny day, PV output might be very high, and wind may not be so significant. On the other hand, on a rainy day, clouds may reduce PV output while precipitation may feed the local hydro power plant. Similarly, wind generation might complement others on a windy day. While the idea is easy to comprehend qualitatively, finding the correct ratio is not trivial. Furthermore, there are many factors at play that are independently changing and impacting the outcome. For different sites, the available renewable energy resources, their profiles as well as the local load conditions would be different. Therefore, a systematic approach is required to optimize these systems at planning, operation and control levels. Nature-inspired optimization algorithms seem to have an edge in doing just that. Full article
Show Figures

Figure 1

15 pages, 9387 KB  
Article
Assignment Approach for Electric Vehicle Charging Using Traffic Data Collected by SUMO
by Riham Farhani, Yassin El Hillali, Atika Rivenq, Yahia Boughaleb and Abdelowahed Hajjaji
World Electr. Veh. J. 2023, 14(2), 40; https://doi.org/10.3390/wevj14020040 - 3 Feb 2023
Cited by 3 | Viewed by 4422
Abstract
Consumption habits are changing due to the development of new technologies around renewable energy, environmental awareness, and new incentive policies. Smart grids are seen as an effective way to accommodate more renewable energy, achieve better control of demand, and improve the operating conditions [...] Read more.
Consumption habits are changing due to the development of new technologies around renewable energy, environmental awareness, and new incentive policies. Smart grids are seen as an effective way to accommodate more renewable energy, achieve better control of demand, and improve the operating conditions of the electrical system. However, electric vehicles, which are an environmentally friendly alternative, have very high market penetration and require efficient electrical management at charging stations. Among the factors that have a significant impact on electrical energy consumption are traffic conditions, which can seriously impact the efficiency of electric vehicles. Therefore, the focus is on developing charging infrastructure and reducing vehicle waiting time by optimally allocating electric vehicles to charging stations. To this end, an optimization approach is presented, based on the traffic conditions collected by the SUMO simulator. This approach enables each vehicle to be assigned to the appropriate station while maintaining its battery state of charge at a higher level. Full article
Show Figures

Figure 1

17 pages, 5754 KB  
Article
How Can EVs Support High RES Penetration in Islands
by Ioannis Karakitsios, Dimitrios Lagos, Aris Dimeas and Nikos Hatziargyriou
Energies 2023, 16(1), 558; https://doi.org/10.3390/en16010558 - 3 Jan 2023
Cited by 4 | Viewed by 2795
Abstract
The electrification of the transportation sector contributes to a cleaner environment in non-interconnected island (NII) systems or standalone islands. Moreover, e-mobility can significantly contribute to achieving very high renewable energy source (RES) penetration levels in islands, allowing a reduction both in the emissions [...] Read more.
The electrification of the transportation sector contributes to a cleaner environment in non-interconnected island (NII) systems or standalone islands. Moreover, e-mobility can significantly contribute to achieving very high renewable energy source (RES) penetration levels in islands, allowing a reduction both in the emissions due to the conventional generation and the system’s cost. Ιncreased RES penetration, however, can pose technical challenges for an island’s system. In order to overcome these challenges, new technologies like grid-forming converters are important. Moreover, the provision of new ancillary services in relation to battery storage systems might be considered, while novel control and protection schemes are needed to ensure secure operation. E-mobility can also contribute to solving technical problems that arise from very high RES penetration by providing frequency containment reserves or reactive power compensation. Since EV charging demand introduces modifications in the system’s load curve, e-mobility may affect the power grid for long-term planning and short-term operation, i.e., line loading and voltages. The application of specifically developed smart charging methodologies can mitigate the relevant grid impact, while effective exploitation of EV–RES synergies can achieve higher RES penetration levels. This paper examines how e-mobility can contribute to increasing RES penetration in islands while considering the technical issues caused. In particular, this paper takes into account the distinct characteristics of NIIs towards the identification of solutions that will achieve very high RES penetration while also addressing the relevant technical challenges (voltage control, frequency control, short circuit protection, etc.). The effect of e-mobility in the power grid of NII systems is evaluated, while smart charging methodologies to mitigate the relevant impact and further increase RES penetration are identified. Full article
Show Figures

Figure 1

15 pages, 2898 KB  
Article
Relationship between Fault Level and System Strength in Future Renewable-Rich Power Grids
by Rafat Aljarrah, Mazaher Karimi, Hesamoddin Marzooghi, Sahban Alnaser, Murad Al-Omary, Qusay Salem and Salman Harasis
Appl. Sci. 2023, 13(1), 142; https://doi.org/10.3390/app13010142 - 22 Dec 2022
Cited by 6 | Viewed by 5891
Abstract
The fault level is used as a simple indicator for scanning the system strength in power systems. To an extent, this has proven its efficacy in classical power systems based on synchronous generation (SG). However, power electronics-based renewable energy sources (RESs), due to [...] Read more.
The fault level is used as a simple indicator for scanning the system strength in power systems. To an extent, this has proven its efficacy in classical power systems based on synchronous generation (SG). However, power electronics-based renewable energy sources (RESs), due to their controlled and limited fault current contribution, may affect the impedance, fault level, and system strength in a non-linear manner. Hence, this raises a question about the validity of using the fault level as a measure reflecting the system strength in future grids. This paper intends to shed light on the above question by examining the correlation between the fault level and the system strength in future grid scenarios. This is achieved in two steps: first, by employing the measure-based Thevenin impedance for fault level estimation in renewable-rich grids, and second, by comparing these estimated fault levels with those obtained from steady-state and dynamic simulations. While the results have demonstrated the suitability of using the fault level for system strength scanning in scenarios of low penetration of RESs, they revealed that such a tool might be misleading with very high RES penetrations. The findings have been verified using the adjusted IEEE nine-bus test system in DIgSILENT PowerFactory. Full article
(This article belongs to the Special Issue Planning and Operation of Low Voltage Distribution System)
Show Figures

Figure 1

Back to TopTop