
Citation: Badenhorst, W.; Jensen,

C.M.; Jakobsen, U.; Esfahani, Z.;

Murtomäki, L. Control-Oriented

Electrochemical Model and

Parameter Estimation for an

All-Copper Redox Flow Battery.

Batteries 2023, 9, 272. https://

doi.org/10.3390/batteries9050272

Academic Editor: Sylvain Franger

Received: 7 April 2023

Revised: 8 May 2023

Accepted: 11 May 2023

Published: 15 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

batteries

Article

Control-Oriented Electrochemical Model and Parameter
Estimation for an All-Copper Redox Flow Battery
Wouter Badenhorst 1,† , Christian M. Jensen 2,† , Uffe Jakobsen 2, Zahra Esfahani 2 and Lasse Murtomäki 1,*

1 Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University,
02150 Espoo, Finland; wouter.badenhorst@aalto.fi

2 Department of Electrical and Computer Engineering, Aarhus University, 8000 Aarhus, Denmark;
cmje@ece.au.dk (C.M.J.); uja@ece.au.dk (U.J.); z.esf@ece.au.dk (Z.E.)

* Correspondence: lasse.murtomaki@aalto.fi
† These authors contributed equally to this work.

Abstract: Redox flow batteries are an emergent technology in the field of energy storage for power
grids with high renewable generator penetration. The copper redox flow battery (CuRFB) could
play a significant role in the future of electrochemical energy storage systems due to the numerous
advantages of its all-copper chemistry. Furthermore, like the more mature vanadium RFB technology,
CuRFBs have the ability to independently scale power and capacity while displaying very fast
response times that make the technology attractive for a variety of grid-supporting applications. As
with most batteries, the efficient operation of a CuRFB is dependent on high-quality control of both
the charging and discharging process. In RFBs, this is typically complicated by highly nonlinear
behaviour, particularly at either extreme of the state of charge. Therefore, the focus of this paper
is the development and validation of a first-principle, control-appropriate model of the CuRFBs
electrochemistry that includes the impact of the flow, charging current, and capacity fading due to
diffusion and subsequent comproportionation. Parameters for the proposed model are identified
using a genetic algorithm, and the proposed model is validated along with its identified parameters
using data obtained from a single-cell CuRFB flow battery as well as a simpler diffusion cell design.
The proposed model yields good qualitative fits to experimental data and physically plausible
concentration estimates and appears able to quantify the long-term state of health due to changes in
the diffusion coefficient.

Keywords: all-copper redox flow battery; electrochemical model; genetic algorithm; energy storage;
state of charge; control-appropriate model

1. Introduction

Energy storage system (ESS) technology has been rapidly advancing in the last twenty
years [1–3] due to its potential key role in the decarbonisation of the energy mix through
providing relevant grid services which assist in the integration of renewable energy gen-
erators. Recently, there has been a shift towards accelerating the adoption of renewable
energy sources in all major markets, to move away from fossil fuel-based energy sources
and diversify the energy mix. However, this large-scale adoption of renewable energy
has led to a subsequent need for large-scale energy storage systems (ESSs) for renewable
firming, frequency control regulation, and other grid services to assist in the integration
of these new capacities. These energy storage systems should be durable, efficient, and
ideally be a long-term sustainable solution.

A significant driver of large-scale ESS adoption is the integration of wind and solar
power into the existing grid by addressing their intermittent nature and output variability
because these systems fluctuate with environmental and time-of-day factors. In this appli-
cation, an ESS stores excess energy during overproduction periods, and then discharges
the stored energy during either high-demand or low-production periods. The choice of
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ESS for a given application will depend on the power and energy ratings, response time
requirements, weight, volume, and operating temperature of the application [4]. In addition
to renewable firming, an ESS can also provide a variety of ancillary services that increase
grid stability and reliability.

One of the emerging technologies in the field of ESSs is redox flow batteries (RFBs), as
they have shown to be a promising solution for large-scale energy storage due to their cost-
effectiveness, system flexibility, and fast response time. RFBs complement the intermittent
nature of renewable energy sources, such as wind and solar, particularly well [5]. RFBs
also have advantages over existing Na-ion and Li-ion ESS technology. The power and
capacity rating can be decoupled, allowing the optimal power and capacity rating to be
selected independently for the intended use case. RFBs also have a longer cycle life than
conventional batteries. These benefits make RFBs a promising solution to the intermittent
nature of renewable energy sources, helping to store excess energy during low demand
and release it during peak demand, thereby improving the stability and reliability of the
power grid [6–8].

According to the Department of Energy’s (DOE) global energy storage database, RFBs
account for approximately 18% of the installed electrochemical battery storage, 19% for
Na-ion batteries and the remaining 63% for Li-ion batteries, when looking at installed
capacity and only at the top three technologies in this category. Of the installed RFB
capacity, vanadium RFBs account for nearly 74% of the rated power. However, despite this
large current market share, the technology has concerns regarding the scarcity of vanadium
that is preventing further adoption. This raw material scarcity of vanadium has led to the
development of new emerging RFB technologies in an effort to move away from critical,
hard-to-source raw materials. One such emerging technology is the aqueous all-copper
redox flow battery, which has garnered increased attention in the last four years [9]. The
primary advantages are the low-cost active material, which has high solubility, high energy
efficiency, and low overall costs. Furthermore, the electrolyte is easy to manufacture and
rebalance. These benefits have driven the aqueous all-copper RFB to become an attractive
choice for playing a role in the integration of renewable sources, grid stabilisation, and
energy storage in off-grid environments [10–12], and as such, copper redox flow batteries
(CuRFBs) have the potential to become a significant player in the future of electrochemical
energy storage systems.

In a recent study, the performance of the CuRFB system has been improved through op-
timisation of the separator choice, electrode modifications, and operation optimisations [13].
The largest improvement originates from the reduction in the self-discharge rate of the
system, extending the operational time without maintenance from the previous 9 h to
over 210 h [13,14]. This is achieved by slowing the transport of Cu(II) (Equation (1)),
formed during the charging process in the anolyte to the catholyte where metallic cop-
per is deposited (Equation (2)). This transport results in a comproportionation reaction
(Equation (3)) between the Cu(II) and metallic copper resulting in the formation of 2Cu(I),
thereby lowering the current efficiency and reducing—albeit reversibly—the maximum
achievable capacity as the system becomes unbalanced. While we have a basic under-
standing of the underlying electrochemical behaviour of the CuRFB, the authors are not
aware of any preexisting attempts to explicitly model the battery dynamics. This lack of
dynamical models—and the derived lack of ability to estimate battery parameters and un-
derlying system states—makes it difficult to achieve consistently high energy and voltage
efficiency [15].

To try and address this knowledge gap, this paper focuses on the electrochemical
modelling of the CuRFB to assist in further optimisation of the CuRFB. First and foremost,
the purpose of this article is to propose a concentration-based model of copper concentration
dynamics and cell voltage. The battery model parameters are identified from experimental
data using a genetic algorithm (GA).

The remainder of this work is organised as follows. In Section 2, a dynamical model of
the CuRFB is proposed based on the electrochemistry of its three aqueous species. Further-
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more, this section gives an expression for the cell voltage, state of charge (SOC), and state
of health (SOH) based on the modelled concentrations. In Section 3, the framework for
data generation is introduced, along with the materials and methods. Then, the operating
parameters and testing procedure are presented. The model parameter identification ap-
proach is presented in Section 4. The experimental results and identified model parameters
are presented in Section 5. Sections 6 and 7 discuss the agreement of the identified models
with experimental data and summarise the key findings of the paper, respectively.

2. CuRFB Dynamical Model

In the following section, we describe our suggested dynamical model of the CuRFB. We
propose a model of copper concentration dynamics and cell voltage, as well as concentration-
based state of charge (SOC) and both short-term and long-term state-of-health (SOH) metrics.

2.1. Copper Concentration Dynamics

Much like the well-understood vanadium redox flow battery (VRFB), the CuRFB relies
on a reversible redox reaction. At the anode, Cu+ oxidises during charging to form Cu2+:

Cu+ 
 Cu2+ + e− (1)

while at the cathode, Cu+ is reduced during charging to form Cu0:

Cu+ + e− 
 Cu0 (2)

Furthermore, during operation, Cu2+ may migrate across the membrane and undergo
comproportionation with Cu0 to form cathode-side Cu+:

Cu2+ + Cu0 → 2Cu+ (3)

This reaction structure resembles the reaction structure of a VRFB to a great extent.
However, while all four redox species in a VRFB are soluble and present in both the cells and
tanks, Cu0 is present as an electrodeposited solid and should not occur in the tanks under
normal operating conditions. On account of this, we take a slightly different approach than
common electrochemical VRFB models [16,17] and only model the soluble CuRFB species.
This results in a six-state model where—with c1a, c1c, and c2a denoting, respectively, anolyte-
side Cu+, catholyte-side Cu+, and anolyte-side Cu2+—the cell concentration dynamics are
given by

d
dt

ccell
1a

ccell
1c

ccell
2a

 =
1

Vcell

ctank
1a − ccell

1a
ctank

1c − ccell
1c

ctank
2a − ccell

2a

Q +
1

zF

−1
−1
1

I +
S
d

0 0 0
0 0 2D
0 0 −D

ccell
1a

ccell
1c

ccell
2a

 (4)

and the tank concentration dynamics are given by

d
dt

ctank
1a

ctank
1c

ctank
2a

 =
1

Vtank
N

ccell
1a − ctank

1a
ccell

1c − ctank
1c

ccell
2a − ctank

2a

Q (5)

where Vcell is the cell volume, Vtank is the tank volume, N denotes the number of cells in
the CuRFB stack, ccell

∗ denotes the cell concentration of a species, ctank
∗ denotes the tank

concentration of a species, Q is the applied electrolyte flow rate, I is the applied current, D
is the cross-membrane diffusion rate of Cu2+, z is the number of electrons exchanged by
the redox process, F is the Faraday constant, S is the membrane surface area, and d is the
membrane thickness.
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2.2. Cell Voltage

Generally, in a redox flow battery of a variety of chemistries, the cell voltage consists
of a reduction potential (given by the formal potential V0 and the Nernst equation), the acti-
vation overpotential (given by the Butler–Volmer equation), and the ohmic overpotential:

Vcell = V0 + VNernst + Vact + VΩ (6)

The Nernst term is a logarithmic function of the ratios between oxidised and reduced
species in each half-cell:

VNernst =
RT
zF

ln

(
ccell

2a

ccell
1a

1M
ccell

1c

)
(7)

Note that the numerator is taken as 1 M (1000 mol/m3) in the cathode-side term as
Cu0 is solid.

The activation overpotentials are given by the Butler–Volmer equations. Under the
assumption that the charge transfer coefficient α is 0.5 for both the anode and cathode, the
activation overpotentials can be calculated directly [18]:

Vact = V+ −V− (8)

V+ =
2RT

F
ln

 1
2j+S

I +

√(
1

2j+S
I
)2

+ 1

 (9)

V− =
2RT

F
ln

 1
2j−S

I +

√(
1

2j−S
I
)2

+ 1

 (10)

where j+, j− are the concentration-dependent exchange current densities which can be
calculated as

j+ =
1
S

(
F · k+ ·

(
ccell

2a

)1−α
·
(

ccell
1a

)α
)

(11)

j− =
1
S

(
F · k− · (1M)1−α ·

(
ccell

1c

)α)
(12)

where k+, k− are the rate constants of, respectively, the anolyte and catholyte; R is the ideal
gas constant; and as in the Nernst equation, the Cu0 concentration is taken as 1 M.

Under the assumption that system parameters do not change meaningfully due to
degradation, the ohmic overpotential can be represented as a function of a constant resis-
tance Rstack and applied current I:

VΩ = Rstack I (13)

Finally, we propose a voltage offset term Vo f f that may differ between charging and
discharging but is otherwise constant. This offset is intended to capture phenomena
relating to, e.g., copper deposition, which cannot be represented by the lumped nature of
the proposed model. The full voltage expression then is

Vcell = V0 + VNernst + Vact + VΩ + Vo f f (14)

2.3. State of Charge

As in other redox flow batteries, the SOC of the CuRFB can be expressed via the species
ratio in the tanks. In four-species models like the ones commonly used for VRFBs [16,17],
this results in two separate SOC expressions for, respectively, the anolyte and catholyte
species. In the proposed model, however, Cu+ in the anolyte circuit is always the limiting
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factor due to the structure of the comproportionation reaction Equation (3), and a single
unambiguous SOC metric is therefore given by the anolyte-side species ratio:

SOC =
ctank

2a

ctank
2a + ctank

1a
(15)

where SOC ∈ [0 . . . 1].

2.4. Short-Term State of Health

The limiting factor for battery SOH during normal day-to-day operation is the species
imbalance induced by the comproportionation reaction Equation (3), which results in an
accumulation of excess Cu+ in the catholyte circuit. This results in a short-term SOH model
given by

SOH =
ctank

1a

ctank
1c

(16)

where SOH ∈ [0 . . . 1] and the concentrations should be measured at the start of each
charging cycle.

2.5. Long-Term State of Health

The experimental results indicate that component degradation is not a significant con-
cern on short-to-medium-term timescales but does meaningfully affect battery performance
on longer timescales. In particular, as we describe in Section 5, long-term (12+ months)
exposure to the electrolyte appears to alter the membrane transport properties and increase
the rate at which diffusion occurs. We propose that this mode of degradation can be
quantified by the following expression:

SOHL =
Dnom

D
(17)

where SOHL ∈ [0 . . . 1], Dnom is the nominal membrane diffusion coefficient, D is the
current membrane diffusion coefficient, and we assume D is strictly decreasing as a function
of time.

3. Materials and Methods

The data for the model parameter estimation and fitting were obtained from both
a small-scale diffusion cell and a larger single-cell flow battery. Both of these systems
were operated with 1 M CuCl and 6 M HCl as the electrolytes, and for both, the cut-off
voltages were set to 0.9 and 0.3 V for charge and discharge, respectively. In the case of the
diffusion cell, 20 mA was applied and 0.5 A for the single-cell flow battery, resulting in a
current density of 20 mA/cm2 for both test cases. The equipment, experimental procedure,
and electrolyte preparation methods were performed as previously reported [13], and the
FAP-330 anion exchange membrane obtained from FUMATECH BWT GmbH was used. In
addition to this, extra experiments were performed on the FAP-330 sample originally used
in 2021 and published in 2022 [13], during which it was operated for 1200 h (300 cycles)
and then left in a solution of 1 M CuCl and 6 M HCl for over one and a half years before
being retested in this paper. The experimental setups used are shown in Figure 1.
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(a) (b)
Figure 1. Experimental setups used in this study for validation of the proposed electrochemical
model and parameter estimation. (a) Diffusion cell (1 cm2). (b) Single cell (25 cm2).

4. Genetic Algorithm

To estimate parameters, a simple genetic algorithm (GA) is used. A GA is here defined
as a biologically inspired evolutionary method, where a randomly initialised population of
parameter estimates evolves based on a set of operations applied to several generations of
the population.

For some problems, a GA compares favourably with gradient-based methods [19]. The
presented GA uses a direct floating point representation of the parameter estimates, and
operators such as mutation and crossover operate directly on the floating point values. This
simplifies and speeds up implementation [20,21]. The basic algorithm is shown in Figure 2.

Figure 2. UML activity chart of the used genetic algorithm.
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The population consists of a fixed number of individuals in an array. Each individual
has a fixed number of parameters. The GA implementation has an elite subpopulation
of individuals that are exempt from crossover and mutation. Another subpopulation is
only exposed to crossover, and the last part of the population experiences both crossover
and mutation.

Fitness is evaluated by having the recorded current and flow as input to the battery
model. The battery model calculates the voltage estimate (Vmodel(t)) corresponding to
each time-step of the recorded data and this is evaluated against the recorded voltage
(Vmeasured(t)) to calculate fitness (item f it), as seen in Equation (18).

item f it =
∫ T2

T1

(Vmeasured(t)−Vmodel(t))2dt (18)

where T1 is the start of the recorded current/voltage and T2 is the end. As seen from
Equation (18), a small value indicates good fitness. The integral is implemented as a
forward Euler integration in the program.

Crossover method: Given two individuals (item1 (from the elite population) and item2
(from the entire population)) selected for crossover, for each parameter called item1par and
item2par with fitness item1 f it and item2 f it , respectively, the crossover is performed and is
stored in a new parameter itemnewpar as described in Equation (19).

itemnewpar =
item1par · item1 f it + item2par · item2 f it

item1 f it + item2 f it

(19)

Mutation method: Given an individual (item1) selected for mutation, each parameter
for the individual is called item1par . A pseudo-random generator (random()) is used to gen-
erate numbers in the range of [0; 1]. The mutation is controlled by the following parameters:

mutrate: Rate of mutations.
mutint: Mutation intensity.
currentgen: Current generation number. Inspired by simulated annealing as described
in [22], the mutation intensity is decreased each generation (see Equations (20) and (21)).
maxgen: Maximum allowed number of generations.
parametermax: Maximum allowed value for a given parameter.
parametermin: Minimum allowed value for a given parameter.
∆par: ∆par = parametermaximum − parameterminimum

A helper function randomlimited(minimum, maximum) calculates a random value be-
tween minimum and maximum.

noise =


(

1−
currentgen

maxgen

)
·mutint · ∆par, if random() < mutrate

0, otherwise
(20)

itemnewpar = randomlimited(item1par − noise, item1par + noise) (21)

As a final step, the best individual from the last generation is evaluated and run
and the simulation result is stored, so an offline comparison of the result can be made.
The full GA algorithm developed as part of this paper is written in Rust and is publicly
available [23].
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5. Experimental Verification

The proposed model was validated using the single-cell and diffusion-cell experimen-
tal setups described in Section 3. The genetic algorithm described in Section 4 was used to
identify the model parameters in both cases. We first present the validation results from the
single-cell setup, and then present the results from the two experimental datasets obtained
with the diffusion cell, with the latter dataset being used to quantify membrane degradation
through tracking the diffusion number after 300+ cycles of operation and 18 months of
continuous electrolyte exposure.

5.1. Single Cell

Only a single charge–discharge cycle was used to fit the single-cell parameters due to
the clear presence of non-standard behaviour in the first two cycles seen in Figure 3. We
presume the first cycle behaviour is due to limited chloride availability as reported in [13],
while the drastic capacity loss from cycles 2 to 3 may be due to copper delamination.

0 2000 4000 6000 8000 10000 12000 14000

Time [s]

0.2

0.4

0.6

0.8

1

V
ol

ta
ge

[V
]

0 2000 4000 6000 8000 10000 12000 14000

Time [s]

-0.5

0

0.5

C
u
rr

en
t
[A

]

Figure 3. Charge and discharge voltages for 3 cycles with the single cell.

We fit the parameters in Table 1 using the genetic algorithm described in Section 4. The
data were downsampled to a sampling rate of Ts = 10 s, and the proposed dynamical model
of the CuRFB was discretised using the forward Euler method. The obtained membrane
diffusion numbers, Ref. [24], and reaction rate constants align with previously reported
values [25].

Table 1. Identified model parameters, single cell.

Parameter Value (Single Cell)

c1a 131 mol/m3

c1c 125 mol/m3

Rstack 1.63 Ω
k+ 8.3 · 10−1 ms−1

k− 7.6 · 10−5 ms−1

D 6.3 · 10−12 m2s−1

Vo f f (charge) −0.788 V
Vo f f (discharge) 0.620 V

The parameter bounds can be seen in Table 2. Figure 4 shows the estimated voltages
from the single-cycle model compared to a single cycle of measurements, while Figure 5
shows the corresponding estimated tank concentrations.
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Table 2. Model Parameter Bounds.

Parameter Bounds

c1a [0, 1200] mol/m3

c1c [0, 1200] mol/m3

Rstack [0, 5.0] Ω
k+ [1 · 10−4, 1.0] ms−1

k− [1 · 10−4, 1 · 10−7] ms−1

D [1 · 10−11, 1 · 10−13] m2s−1

Vo f f (charge) [0, 1.0] V
Vo f f (discharge) [0, 1.0] V

1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.42 1.44

Time [s] #104

0.4

0.6

0.8

1

V
ol

ta
ge

[V
]

Measured Voltage
Estimated Voltage

1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.42 1.44

Time [s] #104

-0.5

0

0.5

C
u
rr

en
t
[A

]

Figure 4. Comparison of measured and estimated voltage from the single cell, 1 cycle.
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Figure 5. Estimated concentrations from the single cell, 1 cycle.

5.2. Diffusion Cell

Two sets of model parameters were identified using the respective data originally
reported in [13] and the data obtained from the same membrane aged for 18 months in
the CuRFB electrolyte. The data were downsampled to a sampling rate of 2 min to accom-
modate the much longer cycling time of the diffusion cell. Furthermore, to accommodate
the lack of tanks in the diffusion cell, we assumed ccell = ctank at all times, effectively
eliminating the impact of cell/tank concentration gradients on the model.

We used the same model parameter bounds as in Table 2 and obtained the parameters
seen in Tables 3 and 4. The obtained voltage and concentration trajectories can be seen in
Figures 6–9.
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Table 3. Identified model parameters, diffusion cell.

Parameter Value (Diffusion Cell)

c1a 870 mol/m3

c1c 883 mol/m3

Rstack 1.4 Ω
k+ 6.7 · 10−1 ms−1

k− 7.3 · 10−5 ms−1

D 3.1 · 10−12 m2s−1

Vo f f (charge) 0.032 V
Vo f f (discharge) −0.191 V

1 2 3 4 5 6 7

Time [s] #104
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0.4
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V
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C
u
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]

Figure 6. Comparison of measured and estimated voltage with diffusion cell, 3 cycles.
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Figure 7. Estimated concentrations from the diffusion cell, 3 cycles.

Table 4. Identified model parameters, aged diffusion cell.

Parameter Value (Aged Diffusion Cell)

c1a 919 mol/m3

c1c 807 mol/m3

Rstack 1.47 Ω
k+ 3.9 · 10−1 ms−1

k− 4.7 · 10−5 ms−1

D 7.4 · 10−12 m2s−1

Vo f f (charge) 0.028 V
Vo f f (discharge) −0.162 V
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Figure 8. Comparison of measured and estimated voltage, diffusion cell.
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Figure 9. Estimated concentrations, diffusion cell.

5.3. Diffusion Cell, Long Trajectory

As a final point of interest, we show the results from a model fit to four full days worth
of diffusion cell cycling data. We report this primarily to demonstrate the shortcomings of the
proposed model over long time horizons and therefore do not report the parameter estimates,
although we note that these are generally in line with the parameters found in Tables 3 and 4.
The fitted voltage can be seen in Figure 10, with the corresponding concentration trajectories
in Figure 11.
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Figure 10. Comparison of measured and estimated voltage, diffusion cell, long trajectory.
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Figure 11. Estimated concentration trajectories, diffusion cell, long trajectory

6. Discussion

As can be seen from the figures presented in Section 5, the proposed model reproduces
real voltage trajectories from both the regular and aged diffusion cell with excellent accuracy
over short timescales while struggling to a greater extent to replicate the single-cell data
and the diffusion cell behaviour on longer timescales.

With respect to the single-cell data, the obtained model is clearly not a good qualitative
fit. In particular, the slope of the estimated voltage curve does not follow the true voltage
curve during charge or discharge, suggesting that the underlying concentrations do not
reach the appropriate extremes at the ends of these cycles. This is confirmed when the
concentration trajectories are examined, where the estimated concentrations are both
inappropriately low relative to the known molarity of the prepared electrolyte, and the
concentrations never approach values that could reasonably be considered full charge or
discharge. This is further exacerbated by the current model not being able to account for
possible copper delamination, the effect of chloride availability [13], and temperature on
the completeness of the discharge process. These effects would most likely be able to be
captured by the diffusion term when using data from a multi-cell stack where the effects
could reasonably be expected to average out over a larger cell count.

With respect to the short-term diffusion cell data, the estimated voltage curves are
a much better qualitative fit, following the slope of the true curves to a greater extent.
When examining the corresponding underlying concentration trajectories, the estimated
concentrations from the short-term diffusion cell data are physically plausible, and Cu+

clearly accumulates in the catholyte circuit over time as expected due to diffusion and
subsequent comproportionation. Furthermore, the estimated membrane diffusion coef-
ficient clearly increases—by roughly a factor of two—due to the ageing process, while
all other parameters did not change significantly, which is expected due to membrane
degradation. This suggests that the proposed model is capable of meaningfully quantifying
the long-term SOH of CuRFBs via the metric proposed in Equation (17).

However, when examining the concentration trajectories from the longer-term cycling
data in Figure 11, this is inconsistent with the expected dynamics despite the reasonable-
looking voltage fits in Figure 9. In particular, Cu+ does not appear to accumulate in
the catholyte circuit as expected, and the much larger initial concentration of Cu+ in the
anolyte–catholyte circuit is likewise inconsistent with expectations. This discrepancy is
most likely attributable to the fact that the current model does not account for the possibility
of Cu+ diffusing from the catholyte to the anolyte through the membrane, in addition to
the caveats mentioned concerning the single-cell data.
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7. Conclusions

This work has proposed an electrochemical model of the all-copper redox flow battery
based exclusively on its three aqueous copper species, as well as a variation in the genetic
algorithm to estimate model parameters from experimental data.

The results indicate that the proposed model structure is capable of reproducing
experimentally observed voltages to a significant extent while also producing plausible
underlying concentration trajectories. However, the results may be significantly degraded
if multiple cycles are considered, which the authors consider is likely due to the effects of
the unmodelled electrodeposition and electro-stripping dynamics of the solid Cu0. The
authors do note, however, that the model does produce good estimates on short timescales,
appears to accurately predict SOH degradation due to the buildup of excess Cu+ in the
catholyte circuit, and appears to be capable of quantifying longer-term battery degradation
via an increase in the estimated membrane diffusion coefficient.

While the proposed model is likely accurate enough to enable SOC estimation based
on a scheme such as that proposed in [17], it is also clear that the proposed model represents
a first step in the dynamical modelling of all copper-based redox flow batteries, and further
refinement is required. We suggest that this refinement should, in particular, be targeted
towards clarifying the influence of Cu0-related processes on the battery dynamics, as well
as clarifying whether said processes can be modelled in a way that is both sufficiently
accurate and suitable for control and estimation purposes without compromising on the
lumped nature of the proposed model.
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