Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = vertical-axis Darrieus wind turbine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 8681 KB  
Article
Performance Enhancement of Darrieus Vawt Using Modified Asymmetric Blades: Experimental and CFD Validation
by Zhanibek Seydulla, Nurdaulet Kalassov, Muhtar Isataev, Zhandos Baizhuma, Kadirbek Baizhumanov, Aizhan Kuykabayeva, Zarina Gabitova and Aigerim Satkynova
Energies 2026, 19(3), 743; https://doi.org/10.3390/en19030743 - 30 Jan 2026
Viewed by 168
Abstract
This paper presents a comprehensive experimental and numerical investigation of the aerodynamics of a vertical-axis Darrieus wind turbine equipped with newly developed modified asymmetric blades intended to enhance performance at low and variable wind speeds. Using URANS modeling (SST k–ω) combined with full-scale [...] Read more.
This paper presents a comprehensive experimental and numerical investigation of the aerodynamics of a vertical-axis Darrieus wind turbine equipped with newly developed modified asymmetric blades intended to enhance performance at low and variable wind speeds. Using URANS modeling (SST k–ω) combined with full-scale testing, a detailed comparison was carried out against the classical NACA 0021 airfoil. The results show that the asymmetric profile increases starting torque by 30–40%, reduces negative torque by 20–25%, and decreases load pulsations by 15–20%, owing to the delayed onset of dynamic stall and the stabilization of the vortex wake structure. Within the optimal operating range of TSR = 2.5–4, an 18–22% increase in pressure differential is observed, resulting in a higher power coefficient; the maximum Cp reaches 0.15, exceeding that of the symmetric configuration by 20–25%. The agreement between CFD predictions and experimental measurements exceeds 95%, confirming the robustness of the numerical model employed. The findings clearly demonstrate the substantial effectiveness of the proposed blade geometry and its strong potential for next-generation VAWTs optimized for regions with low wind resources. Full article
Show Figures

Figure 1

37 pages, 26976 KB  
Article
Range-Wide Aerodynamic Optimization of Darrieus Vertical Axis Wind Turbines Using CFD and Surrogate Models
by Giusep Baca, Gabriel Santos and Leandro Salviano
Wind 2026, 6(1), 2; https://doi.org/10.3390/wind6010002 - 12 Jan 2026
Viewed by 237
Abstract
The depletion of fossil fuel resources and the growing need for sustainable energy solutions have increased interest in vertical axis wind turbines (VAWTs), which offer advantages in urban and variable-wind environments but often exhibit limited performance at low tip speed ratios (TSRs). This [...] Read more.
The depletion of fossil fuel resources and the growing need for sustainable energy solutions have increased interest in vertical axis wind turbines (VAWTs), which offer advantages in urban and variable-wind environments but often exhibit limited performance at low tip speed ratios (TSRs). This study optimizes VAWT aerodynamic behavior across a wide TSR range by varying three geometric parameters: maximum thickness position (a/b), relative thickness (m), and pitch angle (β). A two-dimensional computational fluid dynamics (CFD) framework, combined with the Metamodel of Optimal Prognosis (MOP), was used to build surrogate models, perform sensitivity analyses, and identify optimal profiles through gradient-based optimization of the integrated Cpλ curve. The Joukowsky transformation was employed for efficient geometric parameterization while maintaining aerodynamic adaptability. The optimized airfoils consistently outperformed the baseline NACA 0021, yielding up to a 14.4% improvement at λ=2.64 and an average increase of 10.7% across all evaluated TSRs. Flow-field analysis confirmed reduced separation, smoother pressure gradients, and enhanced torque generation. Overall, the proposed methodology provides a robust and computationally efficient framework for multi-TSR optimization, integrating Joukowsky-based parameterization with surrogate modeling to improve VAWT performance under diverse operating conditions. Full article
Show Figures

Figure 1

15 pages, 3293 KB  
Article
Highly Efficient Vertical-Axis Wind Turbine: Concept, Structural Design, Theoretical Basis, and Practical Tests Results
by Janis Zakis, Oleg Efanov, Alexander Scerbina and Grigorij Fedotov
Appl. Sci. 2026, 16(1), 222; https://doi.org/10.3390/app16010222 - 25 Dec 2025
Viewed by 805
Abstract
Vertical-axis wind turbines (VAWTs) have received increasing research interest due to their structurally simple design and superior adaptability to gusty, multidirectional, and highly turbulent wind conditions. However, their relatively low efficiency of wind utilization remains a significant limitation, necessitating extensive research into design [...] Read more.
Vertical-axis wind turbines (VAWTs) have received increasing research interest due to their structurally simple design and superior adaptability to gusty, multidirectional, and highly turbulent wind conditions. However, their relatively low efficiency of wind utilization remains a significant limitation, necessitating extensive research into design optimization and performance enhancement strategies. As we show, efficiency can be achieved by arranging the blades not evenly around the circumference, as in a traditional VAWT, but in groups called “blocks”, which extracts more energy from the air flow using aerodynamic and thermodynamic phenomena. The experimental results of a 20 kW VAWT in an independent certified laboratory strengthen the theoretical study and prove that the efficiency of the proposed system is 1.7 times higher than that of known VAWTs, as well as horizontal-axis wind turbines (HAWTs). Full article
Show Figures

Figure 1

18 pages, 6280 KB  
Article
Darrieus Vertical Axis Wind Turbine (VAWT) Performance Enhancement by Means of Gurney Flap
by Hanif Ullah, Vincenzo Gulizzi, Antonio Pantano, Zhongsheng Deng and Qing Xiao
Machines 2025, 13(11), 1004; https://doi.org/10.3390/machines13111004 - 31 Oct 2025
Viewed by 1092
Abstract
This study investigates the aerodynamic effect of Gurney flaps (GFs) of different heights on the performance of a Darrieus vertical axis wind turbine (VAWT). Through numerical simulations, the performance of a baseline airfoil is compared against configurations with GFs of 0.5%c, 1%c, and [...] Read more.
This study investigates the aerodynamic effect of Gurney flaps (GFs) of different heights on the performance of a Darrieus vertical axis wind turbine (VAWT). Through numerical simulations, the performance of a baseline airfoil is compared against configurations with GFs of 0.5%c, 1%c, and 1.5%c chord lengths across a range of tip-speed ratios (TSRs). Results identify the 0.5%c GF as the optimal configuration, providing consistent power enhancement across all tested conditions, unlike the taller flaps which showed inconsistent or negative effects. This optimal configuration achieved a peak power coefficient (Cp) of 0.366 at TSR = 2.0, a 3.73% improvement over the baseline, and critically, enhanced the low-speed power by 6.30% at TSR = 0.5, improving the turbine’s self-starting capability. Flow field analysis reveals a dual-benefit mechanism for this superior performance: at low TSRs, the GF delays flow separation during the upwind pass to increase lift, while at higher TSRs, it effectively manages the wake during the downwind pass to reduce drag and mitigate negative torque. The study concludes that the 0.5%c GF strikes an optimal balance between lift augmentation and drag. Full article
Show Figures

Figure 1

29 pages, 3175 KB  
Review
A Comparative Review of Vertical Axis Wind Turbine Designs: Savonius Rotor vs. Darrieus Rotor
by Alina Fazylova, Kuanysh Alipbayev, Alisher Aden, Fariza Oraz, Teodor Iliev and Ivaylo Stoyanov
Inventions 2025, 10(6), 95; https://doi.org/10.3390/inventions10060095 - 27 Oct 2025
Cited by 2 | Viewed by 3303
Abstract
This paper reviews and analyzes three types of vertical-axis wind rotors: the classic Savonius, spiral Savonius, and Darrieus designs. Using numerical modeling methods, including computational fluid dynamics (CFD), their aerodynamic characteristics, power output, and efficiency under different operating conditions are examined. Key parameters [...] Read more.
This paper reviews and analyzes three types of vertical-axis wind rotors: the classic Savonius, spiral Savonius, and Darrieus designs. Using numerical modeling methods, including computational fluid dynamics (CFD), their aerodynamic characteristics, power output, and efficiency under different operating conditions are examined. Key parameters such as lift, drag, torque, and power coefficient are compared to identify the strengths and weaknesses of each rotor. Results highlight that the Darrieus rotor demonstrates the highest efficiency at higher wind speeds due to lift-based operation, while the spiral Savonius offers improved stability, smoother torque characteristics, and adaptability in turbulent or low-wind environments. The classic Savonius, though less efficient, remains simple, cost-effective, and suitable for small-scale urban applications where reliability is prioritized over high performance. In addition, the study outlines the importance of blade geometry, tip speed ratio, and advanced materials in enhancing rotor durability and efficiency. The integration of modern optimization approaches, such as CFD-based design improvements and machine learning techniques, is emphasized as a promising pathway for developing more reliable and sustainable vertical-axis wind turbines. Although the primary analysis relies on numerical simulations, the observed performance trends are consistent with findings reported in experimental studies, indicating that the results are practically meaningful for design screening, technology selection, and siting decisions. Unlike prior studies that analyze Savonius and Darrieus rotors in isolation or under heterogeneous setups, this work (i) establishes a harmonized, fully specified CFD configuration (common domain, BCs, turbulence/near-wall treatment, time-stepping) enabling like-for-like comparison; (ii) couples the transient aerodynamic loads p(θ,t) into a dynamic FEA + fatigue pipeline (rainflow + Miner with mean-stress correction), going beyond static loading proxies; (iii) quantifies a prototype-stage materials choice rationale (aluminum) with a validated migration path to orthotropic composites; and (iv) reports reproducible wake/torque metrics that are cross-checked against mature models (DMST/actuator-cylinder), providing design-ready envelopes for small/medium VAWTs. Overall, the work provides recommendations for selecting rotor types under different wind conditions and operational scenarios to maximize energy conversion performance and long-term reliability. Full article
Show Figures

Figure 1

15 pages, 3841 KB  
Article
Performance Optimization of Vertical Axis Wind Turbines Through Passive Flow Control and Material Selection: A Dynamic Mesh Study
by Ioana-Octavia Bucur, Daniel-Eugeniu Crunțeanu and Mădălin-Constantin Dombrovschi
Appl. Sci. 2025, 15(20), 11251; https://doi.org/10.3390/app152011251 - 21 Oct 2025
Viewed by 803
Abstract
Vertical axis wind turbines (VAWTs) have significant potential for renewable energy generation, yet their operational efficiency is often limited by reduced aerodynamic performance and difficulties during start-up. This study investigates the effect of passive flow control and material selection on the performance of [...] Read more.
Vertical axis wind turbines (VAWTs) have significant potential for renewable energy generation, yet their operational efficiency is often limited by reduced aerodynamic performance and difficulties during start-up. This study investigates the effect of passive flow control and material selection on the performance of H-Darrieus VAWT blades, with the aim of identifying design solutions that enhance start-up dynamics and overall efficiency. Two-dimensional numerical simulations were conducted using the Dynamic Mesh method with six degrees of freedom (6DOF) in ANSYS 19.2 Fluent, enabling a time-resolved assessment of rotor behavior under constant wind velocities. Two blade configurations were analyzed: a baseline NACA0012 geometry and a modified profile with inclined cavities on the extrados. In addition, the influence of blade material was examined by comparing 3D-printed resin blades with lighter 3D-printed polycarbonate blades. The results demonstrate that cavity-modified blades provide superior performance compared to the baseline, showing faster acceleration, higher tip speed ratios, and improved power coefficients, particularly at higher wind velocities. Furthermore, polycarbonate blades achieved more efficient energy conversion than resin blades, highlighting the importance of material properties in turbine optimization. These findings confirm that combining passive flow control strategies with advanced lightweight materials can significantly improve the aerodynamic and dynamic performance of VAWTs, offering valuable insights for future experimental validation and prototype development. Full article
Show Figures

Figure 1

24 pages, 4237 KB  
Article
Numerical Investigation of Hybrid Darrieus/Savonius Vertical Axis Wind Turbine Subjected to Turbulent Airflows
by Rhuandrei Gabriel da Silva Inácio, Igor Almeida da Rosa, Vinicius Heidtmann Avila, Luiz Alberto Oliveira Rocha, Liércio André Isoldi, Gustavo da Cunha Dias, Rafael Adriano Alves Camargo Gonçalves and Elizaldo Domingues dos Santos
J. Mar. Sci. Eng. 2025, 13(10), 1979; https://doi.org/10.3390/jmse13101979 - 16 Oct 2025
Viewed by 916
Abstract
The present work investigated numerically turbulent airflows over a hybrid Darrieus/Savonius vertical axis wind turbine. Firstly, the isolated turbines were validated in comparison to previous studies from the literature. Later, new recommendations were obtained for the simulation of a hybrid turbine subject to [...] Read more.
The present work investigated numerically turbulent airflows over a hybrid Darrieus/Savonius vertical axis wind turbine. Firstly, the isolated turbines were validated in comparison to previous studies from the literature. Later, new recommendations were obtained for the simulation of a hybrid turbine subject to turbulent airflow. The numerical simulations consisted of the solution of time-averaged equations of mass and momentum in x and y directions using the finite volume method, available in the commercial code Ansys Fluent (version 2022 R1). For closure of turbulence, the kω SST (Shear Stress Transport) model was employed. For lower magnitudes of tip speed ratio (TSR), the hybrid turbine improved the power coefficient (CP) compared to the Darrieus turbine (e.g., by 70% at TSR = 0.75), thereby demonstrating the self-starting capability of the hybrid configuration. Unexpectedly, at the optimal TSR = 1.5, the hybrid turbine performed about 6.5% better than the Darrieus turbine, indicating that the balance between the additional power generated by the Savonius rotor and losses caused by flow disturbances in the hybrid configuration was positive. As a novelty, results highlighted the role of each rotor (Darrieus and Savonius) for the performance of the hybrid turbine by comparing it with isolated Darrieus and Savonius turbines under the same conditions. Full article
(This article belongs to the Special Issue Selected Feature Papers in Ocean Engineering)
Show Figures

Figure 1

40 pages, 6391 KB  
Systematic Review
A Systematic Review of Technological Strategies to Improve Self-Starting in H-Type Darrieus VAWT
by Jorge-Saúl Gallegos-Molina and Ernesto Chavero-Navarrete
Sustainability 2025, 17(17), 7878; https://doi.org/10.3390/su17177878 - 1 Sep 2025
Cited by 2 | Viewed by 1692
Abstract
The self-starting capability of straight-bladed H-type Darrieus Vertical Axis Wind Turbines (VAWTs) remains a major constraint for deployment, particularly in urban, low speed, and turbulent environments. We conducted a systematic review of technological strategies to improve self-starting, grouped into five categories: (1) aerodynamic [...] Read more.
The self-starting capability of straight-bladed H-type Darrieus Vertical Axis Wind Turbines (VAWTs) remains a major constraint for deployment, particularly in urban, low speed, and turbulent environments. We conducted a systematic review of technological strategies to improve self-starting, grouped into five categories: (1) aerodynamic airfoil design, (2) rotor configuration, (3) passive flow control, (4) active flow control, and (5) incident flow augmentation. Searches in Scopus and IEEE Xplore (last search 20 August 2025) covered the period from 2019 to 2026 and included peer-reviewed journal articles in English reporting experimental or numerical interventions on H-type Darrieus VAWTs with at least one start-up metric. From 1212 records, 53 studies met the eligibility after title/abstract screening and full-text assessment. Data were synthesized qualitatively using a comparative thematic approach, highlighting design parameters, operating conditions, and performance metrics (torque and power coefficients) during start-up. Quantitatively, studies reported typical start-up torque gains of 20–30% for airfoil optimization and passive devices, about 25% for incident-flow augmentation, and larger but less certain improvements (around 30%) for active control. Among the strategies, airfoil optimization and passive devices consistently improved start-up torque at low TSR with minimal added systems; rotor-configuration tuning and incident-flow devices further reduced start-up time where structural or siting constraints allowed; and active control showed the largest laboratory gains but with uncertain regarding energy and durability. However, limitations included heterogeneity in designs and metrics, predominance of 2D-Computational Fluid Dynamics (CFDs), and limited 3D/field validation restricted quantitative pooling. Risk of bias was assessed using an ad hoc matrix; overall certainty was rated as low to moderate due to limited validation and inconsistent uncertainty reporting. In conclusions, no single solution is universally optimal; hybrid strategies, combining optimized airfoils with targeted passive or active control, appear most promising. Future work should standardize start-up metrics, adopt validated 3D Fluid–Structure Interaction (FSI) models, and expand wind-tunnel/field trials. Full article
Show Figures

Graphical abstract

35 pages, 11851 KB  
Article
Numerical Investigation of Concave-to-Convex Blade Profile Transformation in Vertical Axis Wind Turbines for Enhanced Performance Under Low Reynolds Number Conditions
by Venkatesh Subramanian, Venkatesan Sorakka Ponnappa, Madhan Kumar Gurusamy and Kadhavoor R. Karthikeyan
Fluids 2025, 10(9), 221; https://doi.org/10.3390/fluids10090221 - 25 Aug 2025
Cited by 1 | Viewed by 1512
Abstract
Vertical axis wind turbines (VAWTs) are increasingly utilized for decentralized power generation in urban and low-wind settings because of their omnidirectional wind capture and compact form. This study numerically investigates the aerodynamic performance of Darrieus-type VAWT blades as their curvature varies systematically from [...] Read more.
Vertical axis wind turbines (VAWTs) are increasingly utilized for decentralized power generation in urban and low-wind settings because of their omnidirectional wind capture and compact form. This study numerically investigates the aerodynamic performance of Darrieus-type VAWT blades as their curvature varies systematically from deeply convex (−50 mm) to strongly concave (+50 mm) across seven configurations. Using steady-state computational fluid dynamics (CFD) with the frozen rotor method, simulations were conducted over a low Reynolds number range of 25 to 300, representative of small-scale and rooftop wind scenarios. The results indicate that deeply convex blades achieve the highest lift-to-drag ratio (Cl/Cd), peaking at 1.65 at Re = 25 and decreasing to 0.76 at Re = 300, whereas strongly concave blades show lower and more stable values ranging from 0.95 to 0.86. The power coefficient (Cp) and torque coefficient (Ct) similarly favor convex shapes, with Cp starting at 0.040 and remaining above 0.030, and Ct sustaining a robust 0.067 at low Re. Convex blades also maintain higher tip speed ratios (TSR), exceeding 1.30 at Re = 300. Velocity and pressure analyses reveal that convex profiles promote stable laminar flows and compact wakes, whereas concave geometries experience early flow separation and fluctuating torque. These findings demonstrate that optimizing the blade curvature toward convexity enhances the start-up, torque stability, and power output, providing essential design guidance for urban VAWTs operating under low Reynolds number conditions. Full article
Show Figures

Figure 1

18 pages, 4526 KB  
Article
To Enhance the Aerodynamic Power Efficiency of Vertical Axis Wind Turbines: Proposing Morphing Strategies for Variable Wind Speed
by Hanif Ullah, Yang Huang, Vincenzo Gulizzi and Antonio Pantano
Machines 2025, 13(8), 739; https://doi.org/10.3390/machines13080739 - 19 Aug 2025
Cited by 4 | Viewed by 2573
Abstract
This study investigates the aerodynamic performance of vertical axis wind turbines (VAWTs), focusing on a novel dual-airfoil morphing mechanism for H-type Darrieus turbines. By leveraging the aerodynamic benefits of two distinct airfoil profiles, the proposed design adapts dynamically to varying wind speeds, enhancing [...] Read more.
This study investigates the aerodynamic performance of vertical axis wind turbines (VAWTs), focusing on a novel dual-airfoil morphing mechanism for H-type Darrieus turbines. By leveraging the aerodynamic benefits of two distinct airfoil profiles, the proposed design adapts dynamically to varying wind speeds, enhancing overall efficiency. The methodology includes airfoil selection and aerodynamic analysis using the Double Multiple Stream Tube (DMST) model, simulated in QBlade software. The numerical model was validated against established benchmark data, confirming its accuracy. Key findings reveal that among all tested airfoils, the NACA 64(2)-415 airfoil achieves the highest power coefficient at low wind speeds, while the FX 84-W-127 airfoil performs optimally at higher wind speeds. Inspired by biomimetic principles, a morphing strategy and mechanism is proposed to transition seamlessly between these two profiles and enable broader operational adaptability. This innovative approach demonstrates significant potential for improving the energy capture efficiency and viability of VAWTs, contributing to the advancement of renewable wind energy technologies. Full article
Show Figures

Figure 1

26 pages, 4555 KB  
Article
Influence of Geometric Effects on Dynamic Stall in Darrieus-Type Vertical-Axis Wind Turbines for Offshore Renewable Applications
by Qiang Zhang, Weipao Miao, Kaicheng Zhao, Chun Li, Linsen Chang, Minnan Yue and Zifei Xu
J. Mar. Sci. Eng. 2025, 13(7), 1327; https://doi.org/10.3390/jmse13071327 - 11 Jul 2025
Viewed by 1025
Abstract
The offshore implementation of vertical-axis wind turbines (VAWTs) presents a promising new paradigm for advancing marine wind energy utilization, owing to their omnidirectional wind acceptance, compact structural design, and potential for lower maintenance costs. However, VAWTs still face major aerodynamic challenges, particularly due [...] Read more.
The offshore implementation of vertical-axis wind turbines (VAWTs) presents a promising new paradigm for advancing marine wind energy utilization, owing to their omnidirectional wind acceptance, compact structural design, and potential for lower maintenance costs. However, VAWTs still face major aerodynamic challenges, particularly due to the pitching motion, where the angle of attack varies cyclically with the blade azimuth. This leads to strong unsteady effects and susceptibility to dynamic stalls, which significantly degrade aerodynamic performance. To address these unresolved issues, this study conducts a comprehensive investigation into the dynamic stall behavior and wake vortex evolution induced by Darrieus-type pitching motion (DPM). Quasi-three-dimensional CFD simulations are performed to explore how variations in blade geometry influence aerodynamic responses under unsteady DPM conditions. To efficiently analyze geometric sensitivity, a surrogate model based on a radial basis function neural network is constructed, enabling fast aerodynamic predictions. Sensitivity analysis identifies the curvature near the maximum thickness and the deflection angle of the trailing edge as the most influential geometric parameters affecting lift and stall behavior, while the blade thickness is shown to strongly impact the moment coefficient. These insights emphasize the pivotal role of blade shape optimization in enhancing aerodynamic performance under inherently unsteady VAWT operating conditions. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Data Analysis)
Show Figures

Figure 1

27 pages, 5476 KB  
Article
The Harmonic Pitching NACA 0018 Airfoil in Low Reynolds Number Flow
by Jan Michna, Maciej Śledziewski and Krzysztof Rogowski
Energies 2025, 18(11), 2884; https://doi.org/10.3390/en18112884 - 30 May 2025
Cited by 1 | Viewed by 2116
Abstract
This study investigates the aerodynamic performance of a symmetric NACA 0018 airfoil under harmonic pitching motions at low Reynolds numbers, a regime characterized by the presence of laminar separation bubbles and their impact on aerodynamic forces. The analysis encompasses oscillation frequencies of 1 [...] Read more.
This study investigates the aerodynamic performance of a symmetric NACA 0018 airfoil under harmonic pitching motions at low Reynolds numbers, a regime characterized by the presence of laminar separation bubbles and their impact on aerodynamic forces. The analysis encompasses oscillation frequencies of 1 Hz, 2 Hz, and 13.3 Hz, with amplitudes of 4° and 8°, along with steady-state simulations conducted for angles of attack up to 20° to validate the numerical model. The results reveal that the γ-Reθ turbulence model provides improved predictions of aerodynamic forces at higher Reynolds numbers but struggles at lower Reynolds numbers, where laminar flow effects dominate. The inclusion of the 13.3 Hz frequency, relevant to Darrieus vertical-axis wind turbines, demonstrates the effectiveness of the model in capturing dynamic hysteresis loops and reduced oscillations, in contrast to the k-ω SST model. Comparisons with XFOIL further highlight the challenges in accurately modeling laminar-to-turbulent transitions and dynamic flow phenomena. These findings offer valuable insights into the aerodynamic behavior of thick airfoils under low Reynolds number conditions and contribute to the advancement of turbulence modeling, particularly in applications involving vertical-axis wind turbines. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

26 pages, 17108 KB  
Article
Impact of Passive Modifications on the Efficiency of Darrieus Vertical Axis Wind Turbines Utilizing the Kline-Fogleman Blade Design at the Trailing Edge
by Farzad Ghafoorian and Hui Wan
Energies 2025, 18(11), 2718; https://doi.org/10.3390/en18112718 - 23 May 2025
Cited by 4 | Viewed by 1374
Abstract
As the utilization of wind energy continues to expand as a prominent renewable energy source, the application of Darrieus Vertical Axis Wind Turbine (VAWT) technology has expanded significantly. Various passive modification methods have been developed to enhance efficiency and optimize the aerodynamic performance [...] Read more.
As the utilization of wind energy continues to expand as a prominent renewable energy source, the application of Darrieus Vertical Axis Wind Turbine (VAWT) technology has expanded significantly. Various passive modification methods have been developed to enhance efficiency and optimize the aerodynamic performance of the rotor through blade modifications. This study presents passive modification method utilizing Kline–Fogleman (KF) blades which incorporate step-like horizontal slats along the trailing edge. Through Computational Fluid Dynamics (CFD) simulations, this study evaluates ten distinct KF blade configurations, varying in step length and depth, with steps positioned on the inner side, outer side, and both sides of the airfoil. The results indicate that the KF blade with a shorter step on inner side, 20%c in length and 2%c in depth, enhances the average power coefficient (Cp) by 19% compared to the rotor with a clean blade. However, when horizontal slats are incorporated on both sides of the blade, with dimensions of 50%c in length and 5%c in depth, Cp decreases by 33% compared to the clean blade. This reduction occurs across both low and high tip speed ratio (TSR) ranges. It has been observed that the presence of a high-pressure zone of 200 Pa at the trailing edge disrupts the aerodynamic performance when the KF blade is in the upwind region between the azimuth angles of 45° and 135°. Full article
Show Figures

Figure 1

27 pages, 6695 KB  
Article
Integrated Approach to Aerodynamic Optimization of Darrieus Wind Turbine Based on the Taguchi Method and Computational Fluid Dynamics (CFD)
by Nurdaulet Kalassov, Zhandos Baizhuma, Rustem Manatbayev, Ainakul Yershina, Muhtar Isataev, Aiida Kalassova, Zhanibek Seidulla, Birzhan Bektibay and Bakyt Amir
Appl. Sci. 2025, 15(10), 5739; https://doi.org/10.3390/app15105739 - 20 May 2025
Cited by 6 | Viewed by 2139
Abstract
This paper presents a numerical study of the optimization of the geometric parameters of a four-bladed Darrieus vertical-axis wind turbine (VAWT) with a NACA 0021 aerodynamic profile. The aim of the study was to increase the aerodynamic efficiency of the turbine by selecting [...] Read more.
This paper presents a numerical study of the optimization of the geometric parameters of a four-bladed Darrieus vertical-axis wind turbine (VAWT) with a NACA 0021 aerodynamic profile. The aim of the study was to increase the aerodynamic efficiency of the turbine by selecting optimal values of the rotor diameter and blade chord length. The Taguchi method using an orthogonal array was used as an optimization method, which reduced the number of necessary calculations from 77 to 20 while maintaining the reliability of the analysis. CFD modelling was performed in the ANSYS 2022 R2 Fluent software environment based on a two-dimensional non-stationary model, including a full rotor revolution and an analysis of the steady-state mode for the twentieth cycle. As a result of the analysis, the optimal parameters were determined: rotor diameter D = 3 m and chord length c = 0.4 m. Additionally, for the selected configuration, the numerical model was validated by constructing the dependence of the power coefficient Cp on the tip speed ratio λ in the range from 0.2 to 2.8. The maximum value of Cp was 0.35 at λ = 2.2, which is an increase of ~64% compared to the least efficient rotation mode in the considered range of λ. The obtained results allow us to conclude that the Taguchi method can be used in combination with CFD modelling for fast and accurate optimization of the aerodynamic parameters of low-power wind turbines. Full article
Show Figures

Figure 1

25 pages, 12421 KB  
Article
Fluid–Structure Interaction of a Darrieus-Type Hydrokinetic Turbine Modified with Winglets
by Emerson Escobar Nunez, Diego García González, Omar Darío López, Juan Pablo Casas Rodríguez and Santiago Laín
J. Mar. Sci. Eng. 2025, 13(3), 548; https://doi.org/10.3390/jmse13030548 - 12 Mar 2025
Cited by 6 | Viewed by 1563
Abstract
The growing demand for electricity in developing countries has called attention and interest to renewable energy sources to mitigate the adverse environmental effects caused by energy generation through fossil fuels. Among different renewable energy sources, such as photovoltaic, wind, and biomass, hydraulic energy [...] Read more.
The growing demand for electricity in developing countries has called attention and interest to renewable energy sources to mitigate the adverse environmental effects caused by energy generation through fossil fuels. Among different renewable energy sources, such as photovoltaic, wind, and biomass, hydraulic energy represents an attractive solution to address the demand for electricity in rural areas of Colombia that are not connected to the electrical grid. In the current paper, the fluid–structure interaction (FSI) of a recently designed Vertical-Axis Hydrokinetic Turbine (VAHT) Straight-Bladed (SB) Darrieus-type, modified with symmetric winglets, was studied by implementing the sliding mesh method (SMM). By coupling with Computational Fluid Dynamics (CFD) numerical simulations, the FSI study demonstrated that the hydrodynamic loads obtained can cause potential fatigue damage in the blades of the Straight-Bladed (SB) Darrieus VAHT. Fatigue life was assessed using the stress–life (S-N) approach, and materials such as structural steel, short glass fiber reinforced composites (SGFRC), and high-performance polymers (HPP), such as PEEK, were studied as potential materials for the construction of the blades. FSI results showed that the biaxiality index (BI) provides a good understanding of the dominant stresses in the blades as the azimuth angle changes. It was also shown that structural steel and PEEK are good materials for the manufacturing of the blades, both from a fatigue resistance and modal perspective. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

Back to TopTop