Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = vertical water-cooled wall

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9296 KiB  
Article
The Threat of Moisture in the Partitions of Unheated and Heated Wooden Historic Churches in Poland
by Grzegorz Nawalany, Małgorzata Michalik, Paweł Sokołowski, Elżbieta Michalik and Zbigniew Lofek
Sustainability 2025, 17(7), 2941; https://doi.org/10.3390/su17072941 - 26 Mar 2025
Viewed by 293
Abstract
This paper presents experimental studies of the formation of thermal and humidity conditions in two wooden historic churches in southern Poland. The environmental and cultural changes taking shape are creating the need to modernize existing buildings to sustainable standards. The modernization of historic [...] Read more.
This paper presents experimental studies of the formation of thermal and humidity conditions in two wooden historic churches in southern Poland. The environmental and cultural changes taking shape are creating the need to modernize existing buildings to sustainable standards. The modernization of historic religious buildings is complicated by restrictions on the intrusion of vertical partitions, which are often covered with valuable wall paintings. The paper focuses on the important aspect of preserving historically valuable buildings in good condition and assessing the threat posed by vapor condensation on the surface of the partitions. The studied buildings differ in terms of their uses and heating systems. Building A is unheated, while building B is equipped with a heating system. The scope of the study includes continuous measurements of the temperature and relative humidity of the indoor air inside and outside the studied churches. The work presents a detailed analysis and comparison of the formation of thermal and humidity conditions inside the churches. A computational model of the buildings was created, and then a computational simulation of the risk of water vapor condensation on the surface of the external walls was carried out. The analysis presents the influence of the external climate on the formation of the thermo-humidity conditions inside the buildings, especially in the unheated church. Also shown is the effect of the temporary heating of the church on ensuring the optimal heat and moisture conditions for historic wooden buildings. The analysis shows that turning on the heating only during the use of the church slightly improves the thermal and humidity conditions compared to the unheated church. Additionally, the analysis shows that the occasional use of the unheated church contributes to significant cooling of the church (even to −8.4 °C in the winter half year). Another conclusion that the computational analysis reveals is that water vapor condensation on the surface of the external walls is impossible. However, the difference between the air temperature in the church and the dew point temperature, specifically in the unheated church, is 1.6 °C. Therefore, at lower outside air temperatures, there may be a risk of water vapor condensation. Full article
(This article belongs to the Section Tourism, Culture, and Heritage)
Show Figures

Figure 1

17 pages, 2698 KiB  
Article
Investigation on Hydrodynamic Performance and Wall Temperature of Water-Cooled Wall in 1000 MW Boiler Under Low-Load Conditions
by Peian Chong, Xiaolei Zhu, Jianning Li, Xiao Li and Lei Deng
Energies 2024, 17(22), 5751; https://doi.org/10.3390/en17225751 - 18 Nov 2024
Cited by 3 | Viewed by 978
Abstract
To enhance the peak-shaving capability of a boiler, a mathematical model of hydrodynamic and wall temperature characteristics for the water-cooled wall of a 1000 MW boiler was established. Utilizing the component pressure method, the mass flow distribution, outlet working fluid temperature, pressure loss, [...] Read more.
To enhance the peak-shaving capability of a boiler, a mathematical model of hydrodynamic and wall temperature characteristics for the water-cooled wall of a 1000 MW boiler was established. Utilizing the component pressure method, the mass flow distribution, outlet working fluid temperature, pressure loss, and wall temperature distribution characteristics of the water-cooled walls at 30% of the boiler’s maximum continuous rating (BMCR) were calculated and analyzed. The findings suggest that, under the operation at 30% BMCR load, there is a substantial equilibrium in the flow distribution across the quartet of walls that constitute the water-cooled wall assembly. The maximum mass flow rate deviations in the helical and vertical sections are 1.95% and 3.47%, respectively, showing small flow deviations and reasonable distribution. The temperature deviation in the helical section is 0.3 °C, reflecting the characteristic low thermal deviation in helical tubes. While the temperature deviation at the outlet of the vertical section is higher, it remains within safe limits. The pressure loss across the water-cooled wall system amounts to 0.4 MPa. The peak wall temperature reaches 337.5 °C, remaining within the material’s permissible safety limits. Through an in-depth performance analysis, the hydrodynamic operational safety under 30% BMCR deep peak-shaving load is ensured. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

25 pages, 9445 KiB  
Article
Exploratory Analysis of a Novel Modular Green Wall’s Impact on Indoor Temperature and Energy Consumption in Residential Buildings: A Case Study from Belgium
by Milana Radujković, Alexis Versele and Hilde Breesch
Energies 2024, 17(21), 5267; https://doi.org/10.3390/en17215267 - 23 Oct 2024
Cited by 1 | Viewed by 2069
Abstract
One possible solution that mitigates the effects of climate change is the implementation of vertical greenery systems, which have the potential to reduce the need for cooling and provide energy savings for heating. This paper evaluates the effects of an innovative modular green [...] Read more.
One possible solution that mitigates the effects of climate change is the implementation of vertical greenery systems, which have the potential to reduce the need for cooling and provide energy savings for heating. This paper evaluates the effects of an innovative modular green wall on indoor temperature and energy use in a residential case study building. This research was carried out on a residential house in the city of Ghent, Belgium, whose southwest facade is covered with a specific type of modular green wall (a structure with a specific substrate and plants that have the ability to purify water so that it can be reused in the house). The monitoring process included four different temperatures (in front of and behind the green wall, in the substrate, and on the wall without greenery) during winter and summer periods. To analyze the effect on the internal temperature and energy use, a DesignBuilder simulation model was built and validated against these experimental results. This green wall has proven to have the greatest effect during the hottest summer days by reducing the indoor temperature by up to 3.5 °C. It also effectively increases the indoor temperature by up to 1.4 °C on a cold winter day, leading to energy savings of 6% on an annual basis. Full article
(This article belongs to the Special Issue Performance Analysis of Building Energy Efficiency)
Show Figures

Figure 1

22 pages, 9925 KiB  
Article
Study on Temperature Control and Cracking Risk of Mass Concrete Sidewalls with a Cooling-Pipe System
by Chunchao Chen and Shihai Chen
Buildings 2024, 14(4), 872; https://doi.org/10.3390/buildings14040872 - 23 Mar 2024
Cited by 3 | Viewed by 2093
Abstract
Hydration heat of early-age sidewalls can cause cracks owing to thermal stress, reducing the durability of underground space structures. The heat can be removed by the flowing water in the cooling pipe system. However, the cooling pipe may cause thermal stress due to [...] Read more.
Hydration heat of early-age sidewalls can cause cracks owing to thermal stress, reducing the durability of underground space structures. The heat can be removed by the flowing water in the cooling pipe system. However, the cooling pipe may cause thermal stress due to the temperature gradient in the region adjacent to the cooling pipe, resulting in concrete cracking. To minimize the temperature peak of sidewalls and cracking risks in the region adjacent to the cooling pipe, the crack-distribution characteristics, temperature, and strain evolution of an early-age sidewall with a cooling pipe system are analyzed by concrete temperature and strain tests. Furthermore, a model that accounts for the early-age behavior of concrete and cooling-pipe effects is developed and solved. Finally, the effects of cooling-pipe parameters and ambient temperature on the sidewall’s temperature field and cracking risk are analyzed. The results indicate that the cracks emerge in the first two weeks after concrete pouring; most are vertical, and a few oblique cracks emerge in the wall corner. The tensile stress in the region adjacent to the cooling pipe gradually decreases along the flow direction. Reducing the water temperature and increasing the flow rate reduces the sidewall’s temperature peak and cooling rate. However, they increase the cracking risk in the region adjacent to the cooling pipe. When the flow rate exceeds 0.6 m3/h, further increasing the flow rate does not significantly affect the temperature field. Reducing the distance between cooling pipes reduces the temperature peak, cooling rate, and cracking risk in the region adjacent to the cooling pipe. In high-temperature environments, the cracking risk in the region adjacent to the cooling pipe increases significantly. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 2414 KiB  
Review
A Review of Experimental and Numerical Analyses of Solar Thermal Walls
by Krzysztof Sornek, Karolina Papis-Frączek, Francesco Calise, Francesco Liberato Cappiello and Maria Vicidomini
Energies 2023, 16(7), 3102; https://doi.org/10.3390/en16073102 - 29 Mar 2023
Cited by 15 | Viewed by 3155
Abstract
Nowadays, almost 30% of total energy consumption (130 EJ) is consumed for the operation of buildings, mainly by space heating/cooling and ventilation systems, hot water preparation systems, lighting, and other domestic appliances. To improve the energy efficiency of buildings, several countries are promoting [...] Read more.
Nowadays, almost 30% of total energy consumption (130 EJ) is consumed for the operation of buildings, mainly by space heating/cooling and ventilation systems, hot water preparation systems, lighting, and other domestic appliances. To improve the energy efficiency of buildings, several countries are promoting the use of renewable energy. The most promising systems include active and passive solar installations. In passive systems, the solar energy is collected, stored, reflected, or distributed by the roof ponds, natural convective loops, and the most popular direct gain walls and thermal storage walls (known as Trombe walls). This paper reviews the experimental and numerical studies devoted to the different solutions of Trombe walls, including solar chimneys integrated on the vertical walls, classic Trombe walls, Trombe walls with incorporated phase change materials, and photovoltaic Trombe walls. The actual state of the art is presented in the context of reducing energy consumption and enhancing thermal comfort. Most of the analyzed studies showed that the application of thermal storage walls allowed achieving these goals, led to lower emissions of greenhouse gases, and improved living standards. Nevertheless, there is a need for more detailed feasibility studies, including cost and environmental indicators. Full article
Show Figures

Figure 1

13 pages, 5441 KiB  
Article
Convective Heat Transfer of a Pseudoplastic Nanosuspension within a Chamber with Two Heated Wall Sections of Various Heat Fluxes
by Darya S. Loenko and Mikhail A. Sheremet
Symmetry 2022, 14(12), 2688; https://doi.org/10.3390/sym14122688 - 19 Dec 2022
Viewed by 1618
Abstract
Cooling of heat-generating elements in different engineering fields is a very important and crucial topic. The present research is devoted to numerical analysis of thermogravitational convection of a pseudoplastic nanosuspension in a chamber with two heated bottom wall sections of various heat fluxes [...] Read more.
Cooling of heat-generating elements in different engineering fields is a very important and crucial topic. The present research is devoted to numerical analysis of thermogravitational convection of a pseudoplastic nanosuspension in a chamber with two heated bottom wall sections of various heat fluxes and isothermally cooling vertical walls. A mathematical model formulated employing the time-dependent Oberbeck–Boussinesq equations with non-primitive variables has been worked out by the finite difference technique. It has been revealed that a mixture of 1% carboxymethylcellulose with water can be the most effective medium to cool the heat-generating elements. At the same time, aluminum oxide nano-sized solid particles have a more essential cooling impact on the heated sections. Full article
(This article belongs to the Special Issue Symmetry: Recent Developments in Engineering Science and Applications)
Show Figures

Figure 1

20 pages, 7651 KiB  
Article
Heat Transfer in an Inclined Rectangular Cavity Filled with Hybrid Nanofluid Attached to a Vertical Heated Wall Integrated with PCM: An Experimental Study
by Muqdad Al-Maliki, Khaled Al-Farhany and Ioannis E. Sarris
Symmetry 2022, 14(10), 2181; https://doi.org/10.3390/sym14102181 - 17 Oct 2022
Cited by 6 | Viewed by 2401
Abstract
In this paper, natural convective heat transfer in a rectangular cavity filled with (50% CuO-50% Al2O3)/water hybrid nanofluids connected to a wall containing a phase change material (PCM) has been experimentally investigated. The vertical walls were heated at varying [...] Read more.
In this paper, natural convective heat transfer in a rectangular cavity filled with (50% CuO-50% Al2O3)/water hybrid nanofluids connected to a wall containing a phase change material (PCM) has been experimentally investigated. The vertical walls were heated at varying temperatures while the horizontal walls were kept adiabatic. The considered parameters were the concentration of hybrid nanomaterial (Φ = 0.03, 0.05), the cavity inclination angle (θ = 0°, 30°, 45°), and the temperature difference between the hot and cold sides (∆T = 10, 15, 20 °C). The results have been validated and agree well with previously published papers. Furthermore, the main results stated that when the nanomaterial concentration increased, the heat transfer rate by free convection also increased. By increasing the natural convection flows via high temperature, symmetrical vortexes may appear near the heated wall. It also found that the PCM can potentially reduce the temperature of the hot side by up to 22% due to its high absorbability and heat storage. Furthermore, the inclusion of hybrid nanofluids in addition to the PCM enhanced its efficiency in heat storage and, therefore, its capacity to cool the hot side. Moreover, the influence of the inclination cavity enhanced the heat transfer, where θ = 30° was the optimal angle in terms of thermal conductivity. Full article
(This article belongs to the Special Issue Symmetry: Recent Developments in Engineering Science and Applications)
Show Figures

Figure 1

12 pages, 17682 KiB  
Review
Thermal Effects of Vertical Greening in Summer: An Investigation on Evapotranspiration and Shading of Façade Greening in Vienna
by Tarja Salonen, Jutta Hollands, Eldira Sesto and Azra Korjenic
Buildings 2022, 12(10), 1705; https://doi.org/10.3390/buildings12101705 - 17 Oct 2022
Cited by 12 | Viewed by 3238
Abstract
Global urbanization is advancing, and with it, the densification of cities. Due to increased sealing of open spaces and the re-densification of existing urban settings, green spaces in the city are becoming scarcer. At the same time, greening within the urban fabric is [...] Read more.
Global urbanization is advancing, and with it, the densification of cities. Due to increased sealing of open spaces and the re-densification of existing urban settings, green spaces in the city are becoming scarcer. At the same time, greening within the urban fabric is known for its positive effects on the environment and decisively counteracts the urban heat effect. This study deals with the benefits of green façades for the environment as a cooling measure. Two façade greening systems, one trough and one cassette system, consisting of curtain wall elements with a basic metal structure, installed at a south-facing outdoor wall of a school building in Vienna, Austria, were taken under metrological examination. In order to evaluate the cooling effect caused by evapotranspiration, the amount of water evaporated was calculated using the difference of inflow and outflow. Furthermore, the surface temperatures of the greened and non-greened walls were measured to display the influence of the interaction of shading and evapotranspiration on the surrounding microclimate. The investigated vertical greening system with an area of 58 m2 has an average evaporation capacity of 101.38 L per day in the summer. The maximum surface temperature difference was measured to be 11.6 °C. Full article
Show Figures

Figure 1

15 pages, 5515 KiB  
Article
Experimental Study on the Modular Vertical Greening Shading in Summer
by Shenglin Bao, Simin Zou, Mingqiao Zhao, Qiuyu Chen and Baofeng Li
Int. J. Environ. Res. Public Health 2022, 19(18), 11648; https://doi.org/10.3390/ijerph191811648 - 15 Sep 2022
Cited by 7 | Viewed by 2600
Abstract
Previous studies have shown that vertical greening has a significant cooling and energy-saving effect, most of which are applied to opaque walls. However, windows are the critical factor contributing to the indoor thermal environment. This study developed a modular vertical greening shading device [...] Read more.
Previous studies have shown that vertical greening has a significant cooling and energy-saving effect, most of which are applied to opaque walls. However, windows are the critical factor contributing to the indoor thermal environment. This study developed a modular vertical greening shading device (MVGSD), and introduces its detailed structure: water supply mode, plant selection, and substrate preparation. To investigate the thermal performance of MVGSD, a structural model test was carried out. The results show that MVGSD has a noticeable effect on indoor temperature. Specifically, the greatest indoor temperature can be reduced by 4 °C and effectively low the concentration of CO2 (The CO2 absorption rate is 53.1%). In addition, the characteristics of the louver shading and MVGSD were compared, and it was found that the indoor temperature by using MVGSD is 2.6 °C lower than the louver. It is also worth mentioning that indoor humidity is improved by MVGSD, which has a beneficial effect on the thermal comfort of human beings. Full article
(This article belongs to the Topic Built Environment and Human Comfort)
Show Figures

Figure 1

17 pages, 6697 KiB  
Article
The Baffle Length Effects on the Natural Convection in Nanofluid-Filled Square Enclosure with Sinusoidal Temperature
by Khaled Al-Farhany, Barik Al-Muhja, Farhan Ali, Umair Khan, Aurang Zaib, Zehba Raizah and Ahmed M. Galal
Molecules 2022, 27(14), 4445; https://doi.org/10.3390/molecules27144445 - 12 Jul 2022
Cited by 24 | Viewed by 2852
Abstract
The proper process of applying heat to many technological devices is a significant challenge. There are many nanofluids of different sizes used inside the system. The current study combines this potential to improve convection effects, considering numerical simulations of natural convection using Cu/water [...] Read more.
The proper process of applying heat to many technological devices is a significant challenge. There are many nanofluids of different sizes used inside the system. The current study combines this potential to improve convection effects, considering numerical simulations of natural convection using Cu/water nanofluids in a square enclosure with bottom blocks embedded in baffles. The enclosure consists of two vertical walls with isothermal boundary conditions; the left wall is the sinusoidal heat source, whereas the right wall is cooled. The investigations dealt with the influences of nanoparticle concentration, Rayleigh number, baffle length, and thermal conductivity ratioon isotherms, stream functions, and average Nusselt number. The results present that, when the Rayleigh number rises, the fluid flow velocity increases, and the heat transfer improves. Furthermore, the baffle length case (Lb = 0.3) provides higher heat transfer characteristics than other baffle height cases. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

20 pages, 9450 KiB  
Article
Analysis of the Thermo-Mechanical Behaviour of the EU DEMO Water-Cooled Lithium Lead Central Outboard Blanket Segment under an Optimized Thermal Field
by Ilenia Catanzaro, Gaetano Bongiovì and Pietro Alessandro Di Maio
Appl. Sci. 2022, 12(3), 1356; https://doi.org/10.3390/app12031356 - 27 Jan 2022
Cited by 14 | Viewed by 1917
Abstract
Within the framework of the EUROfusion research activities on the DEMO Water-Cooled Lithium Lead (WCLL) Breeding Blanket (BB) design, a research study was performed to preliminarily optimize, from the thermal point of view, the WCLL Central Outboard Blanket (COB) segment in order to [...] Read more.
Within the framework of the EUROfusion research activities on the DEMO Water-Cooled Lithium Lead (WCLL) Breeding Blanket (BB) design, a research study was performed to preliminarily optimize, from the thermal point of view, the WCLL Central Outboard Blanket (COB) segment in order to investigate its structural behaviour under a realistic thermal field. In particular, a study of thermal analyses was performed to optimize the Double Walled Tubes and Segment Box cooling channels’ geometric configurations along the poloidal extension of the WCLL COB segment, in order to obtain a spatial temperature distribution fulfilling the thermal design requirement. Then, the thermo-mechanical analysis of the WCLL COB segment under Normal Operation (NO, representing nominal conditions), Upper Vertical Displacements Event (UVDE, representing a plasma disruption event) and Over-Pressurization (OP, representing an in-box loss of coolant accident) scenarios were carried out, assuming the previously obtained thermal field, to realistically predict displacement and stress fields. Finally, a stress linearization procedure allowed comparing the stress values obtained in some critical regions of the structure with the criteria prescribed by the reference design standard RCC-MRx. A theoretical–numerical approach based on the Finite Element Method (FEM) was followed using the commercial code Abaqus v. 6.14. Full article
(This article belongs to the Special Issue Structural and Thermo-Mechanical Analyses in Nuclear Fusion Reactors)
Show Figures

Figure 1

17 pages, 8713 KiB  
Article
Experimental Study to Analyze Feasibility of a Novel Panelized Ground-Source Thermoelectric System for Building Space Heating and Cooling
by Rui Miao, Xiaoou Hu, Yao Yu, Qifeng Zhang, Zhibin Lin, Abdulaziz Banawi and Ahmed Cherif Megri
Energies 2022, 15(1), 209; https://doi.org/10.3390/en15010209 - 29 Dec 2021
Cited by 5 | Viewed by 2234
Abstract
A thermoelectric module is a device that converts electrical energy into thermal energy through a mechanism known as the Peltier effect. A Peltier device has hot and cold sides/substrates, and heat can be pumped from the cold side to the hot side under [...] Read more.
A thermoelectric module is a device that converts electrical energy into thermal energy through a mechanism known as the Peltier effect. A Peltier device has hot and cold sides/substrates, and heat can be pumped from the cold side to the hot side under a given voltage. By applying it in buildings and attaching it to building envelope components, such as walls, as a heating and cooling device, the heating and cooling requirements can be met by reversing the voltage applied on these two sides/substrates. In this paper, we describe a novel, panelized, ground source, radiant system design for space heating and cooling in buildings by utilizing the Peltier effect. The system is equipped with water pipes that are attached to one side of the panel and connected with a ground loop to exchange heat between the cold/hot sides of the thermoelectric module and the underground region. The ground loop is inserted in boreholes, similar to those used for a vertical closed-loop Ground Source Heat Pump (GSHP) system, which could be more than a hundred meters deep. Experiments were conducted to evaluate the feasibility of the developed panel system applied in buildings. The results show that: (1) the average cooling Coefficients Of Performance (COP) of the system are low (0.6 or less) even though the ground is used as a heat sink, and thus additional studies are needed to improve it in the future, such as to arrange the thermoelectric modules in cascade and/or develop a new thermoelectric material that has a large Seebeck coefficient; and (2) the developed system using the underground region as the heat source has the potential of meeting heating loads of a building while maintaining at a higher system coefficient of performance (up to ~3.0) for space heating, compared to conventional heating devices, such as furnaces or boilers, especially in a region with mild winters and relatively warm ground. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

11 pages, 19326 KiB  
Article
Water-Stressed Plants Do Not Cool: Leaf Surface Temperature of Living Wall Plants under Drought Stress
by Michael Gräf, Markus Immitzer, Peter Hietz and Rosemarie Stangl
Sustainability 2021, 13(7), 3910; https://doi.org/10.3390/su13073910 - 1 Apr 2021
Cited by 35 | Viewed by 7322
Abstract
Urban green infrastructures offer thermal regulation to mitigate urban heat island effects. To gain a better understanding of the cooling ability of transpiring plants at the leaf level, we developed a method to measure the time series of thermal data with a miniaturized, [...] Read more.
Urban green infrastructures offer thermal regulation to mitigate urban heat island effects. To gain a better understanding of the cooling ability of transpiring plants at the leaf level, we developed a method to measure the time series of thermal data with a miniaturized, uncalibrated thermal infrared camera. We examined the canopy temperature of four characteristic living wall plants (Heuchera x cultorum, Bergenia cordifolia, Geranium sanguineum, and Brunnera macrophylla) under increasing drought stress and compared them with a well-watered control group. The method proved suitable to evaluate differences in canopy temperature between the different treatments. Leaf temperatures of water-stressed plants were 6 to 8 °C higher than those well-watered, with differences among species. In order to cool through transpiration, vegetation in green infrastructures must be sufficiently supplied with water. Thermal cameras were found to be useful to monitor vertical greening because leaf surface temperature is closely related to drought stress. The usage of thermal cameras mounted on unmanned aerial vehicles could be a rapid and easy monitoring system to cover large façades. Full article
(This article belongs to the Collection Urban Green Infrastructure for Climate-Proof and Healthy Cities)
Show Figures

Figure 1

22 pages, 3150 KiB  
Review
Urban Overheating and Cooling Potential in Australia: An Evidence-Based Review
by Komali Yenneti, Lan Ding, Deo Prasad, Giulia Ulpiani, Riccardo Paolini, Shamila Haddad and Mattheos Santamouris
Climate 2020, 8(11), 126; https://doi.org/10.3390/cli8110126 - 4 Nov 2020
Cited by 49 | Viewed by 16070
Abstract
Cities in Australia are experiencing unprecedented levels of urban overheating, which has caused a significant impact on the country’s socioeconomic environment. This article provides a comprehensive review on urban overheating, its impact on health, energy, economy, and the heat mitigation potential of a [...] Read more.
Cities in Australia are experiencing unprecedented levels of urban overheating, which has caused a significant impact on the country’s socioeconomic environment. This article provides a comprehensive review on urban overheating, its impact on health, energy, economy, and the heat mitigation potential of a series of strategies in Australia. Existing studies show that the average urban heat island (UHI) intensity ranges from 1.0 °C to 13.0 °C. The magnitude of urban overheating phenomenon in Australia is determined by a combination of UHI effects and dualistic atmospheric circulation systems (cool sea breeze and hot desert winds). The strong relation between multiple characteristics contribute to dramatic fluctuations and high spatiotemporal variabilities in urban overheating. In addition, urban overheating contributes to serious impacts on human health, energy costs, thermal comfort, labour productivity, and social behaviour. Evidence suggest that cool materials, green roofs, vertical gardens, urban greenery, and water-based technologies can significantly alleviate the UHI effect, cool the ambient air, and create thermally balanced cities. Urban greenery, especially trees, has a high potential for mitigation. Trees and hedges can reduce the average maximum UHI by 1.0 °C. The average maximum mitigation performance values of green roofs and green walls are 0.2 °C and 0.1 °C, respectively. Reflective roofs and pavements can reduce the average maximum UHI by 0.3 °C. In dry areas, water has a high cooling potential. The average maximum cooling potential using only one technology is 0.4 °C. When two or more technologies are used at the same time, the average maximum UHI drop is 1.5 °C. The mitigation strategies identified in this article can help the governments and other stakeholders manage urban heating in the natural and built environment, and save health, energy, and economic costs. Full article
Show Figures

Figure 1

18 pages, 9485 KiB  
Article
Thermal Stress and Cyclic Stress Analysis of a Vertical Water-Cooled Wall at a Utility Boiler under Flexible Operation
by Liping Pang, Size Yi, Liqiang Duan, Wenxue Li and Yongping Yang
Energies 2019, 12(6), 1170; https://doi.org/10.3390/en12061170 - 26 Mar 2019
Cited by 13 | Viewed by 4688
Abstract
Supercritical once-through utility boilers are increasingly common in flexible operations in China. In this study, the tube temperature changes at a vertical water-cooled wall are analyzed during a fluctuating flexible operation. There are considerable differences in the temperatures of the parallel tubes at [...] Read more.
Supercritical once-through utility boilers are increasingly common in flexible operations in China. In this study, the tube temperature changes at a vertical water-cooled wall are analyzed during a fluctuating flexible operation. There are considerable differences in the temperatures of the parallel tubes at the minimum load, and the resulting thermal stress distributions at a front water-cooled wall are established using structural calculation software ANSYS 17.1, USA. A wide thermal stress distribution occurs among the parallel tubes, and the local cyclic stress amplitudes under flexible operation are higher than those under cold, warm, hot, or load-following operations. Because of the water wall expansion structure at the furnace, the higher tube temperature areas suffer from compressive stress, while the lower tube temperature areas suffer from tensile stress. During flexible operation, combustion uniformity and a two-phase flow distribution can improve the safety of vertical water-cooled wall operation. The minimum load of the utility boiler should be set as a limitation, and the tube temperature is an important parameter affecting the thermal and cyclic stresses. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop