Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (513)

Search Parameters:
Keywords = vertical loading displacements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3225 KiB  
Article
Autonomous Tracking of Steel Lazy Wave Risers Using a Hybrid Vision–Acoustic AUV Framework
by Ali Ghasemi and Hodjat Shiri
J. Mar. Sci. Eng. 2025, 13(7), 1347; https://doi.org/10.3390/jmse13071347 - 15 Jul 2025
Viewed by 49
Abstract
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental [...] Read more.
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental and operational loads results in repeated seabed contact. This repeated interaction modifies the seabed soil over time, gradually forming a trench and altering the riser configuration, which significantly impacts stress patterns and contributes to fatigue degradation. Accurately reconstructing the riser’s evolving profile in the TDZ is essential for reliable fatigue life estimation and structural integrity evaluation. This study proposes a simulation-based framework for the autonomous tracking of SLWRs using a fin-actuated autonomous underwater vehicle (AUV) equipped with a monocular camera and multibeam echosounder. By fusing visual and acoustic data, the system continuously estimates the AUV’s relative position concerning the riser. A dedicated image processing pipeline, comprising bilateral filtering, edge detection, Hough transform, and K-means clustering, facilitates the extraction of the riser’s centerline and measures its displacement from nearby objects and seabed variations. The framework was developed and validated in the underwater unmanned vehicle (UUV) Simulator, a high-fidelity underwater robotics and pipeline inspection environment. Simulated scenarios included the riser’s dynamic lateral and vertical oscillations, in which the system demonstrated robust performance in capturing complex three-dimensional trajectories. The resulting riser profiles can be integrated into numerical models incorporating riser–soil interaction and non-linear hysteretic behavior, ultimately enhancing fatigue prediction accuracy and informing long-term infrastructure maintenance strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 11256 KiB  
Article
Indoor Measurement of Contact Stress Distributions for a Slick Tyre at Low Speed
by Gabriel Anghelache and Raluca Moisescu
Sensors 2025, 25(13), 4193; https://doi.org/10.3390/s25134193 - 5 Jul 2025
Viewed by 220
Abstract
The paper presents results of experimental research on tyre–road contact stress distributions, measured indoors for a motorsport slick tyre. The triaxial contact stress distributions have been measured using the complex transducer containing a transversal array of 30 sensing pins covering the entire contact [...] Read more.
The paper presents results of experimental research on tyre–road contact stress distributions, measured indoors for a motorsport slick tyre. The triaxial contact stress distributions have been measured using the complex transducer containing a transversal array of 30 sensing pins covering the entire contact patch width. Wheel displacement in the longitudinal direction was measured using a rotary encoder. The parameters allocated for the experimental programme have included different values of tyre inflation pressure, vertical load, camber angle and toe angle. All measurements were performed at low longitudinal speed in free-rolling conditions. The influence of tyre functional parameters on the contact patch shape and size has been discussed. The stress distributions on each orthogonal direction are presented in multiple formats, such as 2D graphs in which the curves show the stresses measured by each sensing element versus contact length; surfaces with stress values plotted as vertical coordinates versus contact patch length and width; and colour maps for stress distributions and orientations of shear stress vectors. The effects of different parameter types and values on stress distributions have been emphasised and analysed. Furthermore, the magnitude and position of local extreme values for each stress distribution have been investigated with respect to the above-mentioned tyre functional parameters. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

18 pages, 2431 KiB  
Article
A Dynamic Interaction Analysis of a Straddle Monorail Train and Steel–Concrete Composite Bridge
by Zhiyong Yao, Zongchao Liu and Zilin Zhong
Buildings 2025, 15(13), 2333; https://doi.org/10.3390/buildings15132333 - 3 Jul 2025
Viewed by 220
Abstract
Train–bridge dynamic interaction analysis is critical for the dynamic design of bridges and the safety and comfort assessment of trains. This study introduces a train–bridge dynamic model of a straddle monorail train and a steel–concrete composite track beam to investigate the dynamic performance [...] Read more.
Train–bridge dynamic interaction analysis is critical for the dynamic design of bridges and the safety and comfort assessment of trains. This study introduces a train–bridge dynamic model of a straddle monorail train and a steel–concrete composite track beam to investigate the dynamic performance of the bridge and train. It explores the influence of track irregularities and passenger loads on the dynamic response of train–bridge systems at various traveling speeds. The numerical results indicate that there is no significant resonance between the straddle monorail train and the steel–concrete composite bridge. However, track irregularities and train speed significantly amplify the responses of the train and bridge, including displacement, acceleration, and impact coefficient. Additionally, increased passenger load leads to a substantial rise in the vertical displacement of the bridge while reducing the vibration of the train, thereby improving riding comfort. The findings of this study provide valuable scientific insights and have significant practical applications for the use of steel–concrete composite bridges in straddle monorail systems. Full article
(This article belongs to the Special Issue Advances in Building Structure Analysis and Health Monitoring)
Show Figures

Figure 1

28 pages, 5059 KiB  
Article
Behavior and Early-Age Performance of Continuously Reinforced Concrete Bus Pad
by Sang Cheol Park, Kang In Lee, Soon Ho Baek, Sang Jin Kim and Seong-Min Kim
Materials 2025, 18(13), 3143; https://doi.org/10.3390/ma18133143 - 2 Jul 2025
Viewed by 197
Abstract
The behavior of the cast-in-place continuously reinforced concrete (CRC) bus pad applied to bus stop pavement in a central bus-only lane was experimentally analyzed under environmental and moving vehicle loads, and the early-age performance of the CRC bus pad was evaluated using experimental [...] Read more.
The behavior of the cast-in-place continuously reinforced concrete (CRC) bus pad applied to bus stop pavement in a central bus-only lane was experimentally analyzed under environmental and moving vehicle loads, and the early-age performance of the CRC bus pad was evaluated using experimental data and finite element analysis results. Using various measurement sensors, the concrete slab strain, longitudinal steel bar strains, horizontal and vertical displacements, and crack behavior of the CRC bus pad due to environmental loads were measured, and the dynamic responses of the concrete slab and steel bars due to moving vehicle loads were also measured. Additionally, a method for converting strain gauge measurements of a cracked concrete slab to the strain of an uncracked concrete slab was also proposed. Under environmental loads, the range of stresses acting on the steel bars and the bond between concrete and steel bars were analyzed to be appropriate for ensuring excellent performance of the CRC bus pad. The crack widths and vertical and longitudinal displacements of the CRC bus pad were found to have no effect on the pavement performance. Within the vehicle velocity range used in this experiment, the strains of the slab and steel bars as the vehicle passed through the CRC bus pad were virtually independent of the vehicle velocity and were within a range that did not cause any reduction in pavement performance. This study confirmed that the CRC bus pad has excellent performance and can replace asphalt concrete bus stop pavement or jointed concrete bus pad. Full article
Show Figures

Figure 1

13 pages, 2864 KiB  
Article
Feasibility and Accuracy of an RTMPose-Based Markerless Motion Capture System for Single-Player Tasks in 3x3 Basketball
by Wen Zheng, Mingxin Zhang, Rui Dong, Mingjia Qiu and Wei Wang
Sensors 2025, 25(13), 4003; https://doi.org/10.3390/s25134003 - 27 Jun 2025
Viewed by 423
Abstract
Markerless motion capture (MMC) offers a non-invasive method for monitoring external load in sports where wearable devices are restricted; however, its validity in 3x3 basketball contexts remains unverified. The viability and measurement precision of a multi-camera RTMPose-based MMC system for single-player tasks in [...] Read more.
Markerless motion capture (MMC) offers a non-invasive method for monitoring external load in sports where wearable devices are restricted; however, its validity in 3x3 basketball contexts remains unverified. The viability and measurement precision of a multi-camera RTMPose-based MMC system for single-player tasks in 3x3 basketball performance monitoring were evaluated in this study. Recorded on a standard half-court, eight cameras (60 fps) captured ten collegiate athletes executing basketball-specific activities including linear sprints, curved runs, T-tests, and vertical jumps. The 3D coordinates of hip and ankle keypoints were reconstructed from multiple synchronized camera views using Direct Linear Transformation (DLT), from which horizontal displacement and average speed were derived. These values were validated using tape-measure distance and time–motion analysis. The MMC system demonstrated high accuracy, with coefficients of variation (CVs) below 5%, mean bias under 3.5%, and standard error of estimate (SEE) below 3% across most tasks. Speed estimates revealed great consistency with time–motion analysis (ICC = 0.97–1.00; standardized change in mean [SCM] varied from trivial to small). The Bland–Altman graphs verified no proportional error and little bias. These results confirm the MMC system as a consistent, non-invasive method for gathering movement data in outdoor basketball environments. Future studies should assess the system’s performance during live competitive play with several athletes and occlusions and compare it to a laboratory-grade motion capture system. Full article
Show Figures

Figure 1

19 pages, 5847 KiB  
Article
Numerical Analysis of the Stress–Deformation Behavior of Soil–Geosynthetic Composite (SGC) Masses Under Confining Pressure Conditions
by Truc T. T. Phan, Meen-Wah Gui, Thang Pham and Bich T. Luong
Buildings 2025, 15(13), 2229; https://doi.org/10.3390/buildings15132229 - 25 Jun 2025
Viewed by 353
Abstract
The growing application of soil–geosynthetic composites (SGCs) in geotechnical engineering has highlighted the critical role of reinforcement spacing in enhancing structural performance. This study presents a numerical investigation of the stress–deformation behavior of SGC masses under working stress and failure load conditions, considering [...] Read more.
The growing application of soil–geosynthetic composites (SGCs) in geotechnical engineering has highlighted the critical role of reinforcement spacing in enhancing structural performance. This study presents a numerical investigation of the stress–deformation behavior of SGC masses under working stress and failure load conditions, considering both confining and unconfined pressure scenarios. A finite element (FE) model was developed to analyze stress distribution, reinforcement strain profiles at varying depths, and lateral displacement at open facings. Results revealed that vertical stresses in reinforced and unreinforced soil masses were nearly identical, while lateral stresses increased notably in reinforced masses, particularly near reinforcement layers and open facings. Closer reinforcement spacing (0.2 m) effectively reduced lateral displacement and enhanced structural stability compared with wider spacing (0.4 m). In some cases, strengthening reinforcement in the upper portion of the SGC mass proved more effective under failure loads in both confining and unconfined pressure conditions. These findings provide critical insights for optimizing reinforcement spacing in SGC systems, with implications for the design of retaining walls and bridge abutments. Full article
(This article belongs to the Special Issue Advances in Soil–Geosynthetic Composite Materials)
Show Figures

Figure 1

24 pages, 17868 KiB  
Article
Shallow Structural Deformation Reveals Intraplate Seismicity Triggered by Graben Motion in the South China Littoral Fault Zone
by Hu Yi, Wenhuan Zhan, Xiaodong Yang, Jian Li, Xiaochuan Wu, Jie Sun, Yantao Yao, Jiaxian Huang and Zelong Ju
Remote Sens. 2025, 17(13), 2153; https://doi.org/10.3390/rs17132153 - 23 Jun 2025
Viewed by 358
Abstract
High-resolution seismic reflection profiles from the offshore segment of the Littoral Fault Zone (LFZ) near Nan’ao Island were analyzed to investigate fault activity and its potential link to the 1918 M7.3 earthquake. The data reveal a ~19 km-wide graben bounded by seaward- and [...] Read more.
High-resolution seismic reflection profiles from the offshore segment of the Littoral Fault Zone (LFZ) near Nan’ao Island were analyzed to investigate fault activity and its potential link to the 1918 M7.3 earthquake. The data reveal a ~19 km-wide graben bounded by seaward- and landward-dipping normal faults, with fault-propagation folds and growth faults reaching the seafloor. Forward modeling of the fault-propagation fold indicates three discrete episodes of normal dip-slip displacement (~20 m per phase), separated by prolonged quiescent periods, suggesting episodic fault activity and seismic-scale strain accumulation. Despite the regional NW–SE compressional stress regime, active normal faulting is observed, implying vertical stress as the dominant driving force. A gravitational seismic model driven by upper crustal loading is proposed to explain both the fault motion and the down-draw tsunami observed during the 1918 event. These findings offer new insights into intraplate seismogenic mechanisms and associated hazards along the South China coast. Full article
Show Figures

Figure 1

31 pages, 8101 KiB  
Article
Sequential Nonlinear Time History Analysis of Asymmetric Reinforced Concrete Buildings Under the 2011 Great Japan Earthquake and Tsunami
by Pramod Kumar, Seeram Madhuri and Mizan Ahmed
Buildings 2025, 15(13), 2170; https://doi.org/10.3390/buildings15132170 - 21 Jun 2025
Viewed by 341
Abstract
A nonlinear incremental time history analysis is performed on plan and vertical asymmetric reinforced concrete (RC) buildings under sequential events of the 2011 Great Japan earthquake and tsunami. The symmetric and plan asymmetric buildings with a unidirectional eccentricity of 6 m to 18 [...] Read more.
A nonlinear incremental time history analysis is performed on plan and vertical asymmetric reinforced concrete (RC) buildings under sequential events of the 2011 Great Japan earthquake and tsunami. The symmetric and plan asymmetric buildings with a unidirectional eccentricity of 6 m to 18 m with an interval of 6 m are considered. The vertical mass and stiffness asymmetric structures are also analyzed considering material nonlinearity. Maximum inundation depths of 6.0 m and 3.0 m are simulated to account for the near-shore and far-shore conditions. A total time duration of 58.69 min. is taken for the earthquake and tsunami, including a time gap of 30 min. between the earthquake and tsunami. The symmetric structure showed structural adequacy against earthquakes and tsunamis, with a maximum inundation depth of 3.0 m. The plan asymmetric structure with 6.0 m eccentricity has shown displacements below the yield displacement (i.e., the maximum lateral displacement before inelastic behavior) under the earthquake, but yielded under the tsunami a time of structural adequacy (the time duration during which the building remains within elastic limits under sequential loading) of up to 42.56 min. In comparison to the symmetric building, the buildings with higher eccentricities (12.0 m and 18.0 m) failed under seismic loading alone, exhibiting 94.12% and 45.94% greater displacements, respectively, both exceeding the yield threshold. Vertical stiffness asymmetric structures displaced more than yield displacement under the earthquake, whereas mass asymmetric structures with asymmetry at the first or second floors have been found resilient under the sequential earthquake and tsunami up to the inundation depth of 3.0 m. From this, it is concluded that vertical evacuation is limited to the first or second floors of the studied building. It is recommended to construct the RC buildings away from the seashore to ensure the safety of the occupants. The construction of the plan and stiffness of asymmetric structures shall be avoided in the seashore locations. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 3069 KiB  
Article
Experimental Study on Bending Performance of Prefabricated Retaining Wall
by Yidan Ma, Hengchen Du, Shicheng Nie, Kai Zhu, Han Liu and Dehong Wang
Buildings 2025, 15(13), 2169; https://doi.org/10.3390/buildings15132169 - 21 Jun 2025
Viewed by 270
Abstract
To address the engineering issues of difficult quality control, complex construction processes, and long construction periods in cast-in-place protective walls for manually excavated piles, a prefabricated protective wall structure is proposed. This study aims to investigate its mechanical properties and key influencing parameters [...] Read more.
To address the engineering issues of difficult quality control, complex construction processes, and long construction periods in cast-in-place protective walls for manually excavated piles, a prefabricated protective wall structure is proposed. This study aims to investigate its mechanical properties and key influencing parameters through experiments. Six groups of prefabricated wall segment specimens with different wall thicknesses (50 mm, 65 mm) and concrete strengths (C50 concrete, reactive powder concrete RPC) were designed, and two-point bending tests were conducted to systematically analyze their failure characteristics, crack development patterns, and strain distribution laws. The test results show that the peak vertical bending displacements at mid-span of the specimens are 11–18 mm (1.83–2.71% of the radius). The 65-mm-thick specimens exhibit 3–10% higher flexural strength than the 50-mm-thick ones, and reactive powder concrete (RPC) specimens of the same thickness show an 8.3% increase in strength compared to C50 concrete specimens. When the load reaches 80% of the ultimate load, abrupt changes in concrete strain occur at the mid-span and loading points, while the strain at the fixed end is only 15–20% of the mid-span strain. The prefabricated protective wall demonstrates superior deformation resistance, with vertical displacements (3–5% of the radius) significantly lower than those of cast-in-place walls. This research clarifies the influence of wall thickness and concrete strength on the mechanical properties of prefabricated protective walls, providing key mechanical parameters to support their engineering applications. Full article
Show Figures

Figure 1

16 pages, 9595 KiB  
Article
Flexural Behavior of Concrete Slabs Reinforced with Embedded 3D Steel Trusses
by Javier Hernández-Pérez, Juan B. Pascual-Francisco, Alexander López-González, Adán Jiménez-Montoya and Orlando Susarrey-Huerta
Buildings 2025, 15(13), 2144; https://doi.org/10.3390/buildings15132144 - 20 Jun 2025
Viewed by 425
Abstract
This paper presents a proposal for slabs reinforced with 3D steel reinforcements. Two configurations of 3D steel reinforcement, manually fabricated using 4 mm diameter rods, were investigated: cubic and square pyramid truss lattices. Two control groups were produced: a non-reinforced slab and a [...] Read more.
This paper presents a proposal for slabs reinforced with 3D steel reinforcements. Two configurations of 3D steel reinforcement, manually fabricated using 4 mm diameter rods, were investigated: cubic and square pyramid truss lattices. Two control groups were produced: a non-reinforced slab and a linear steel rod-reinforced slab. Three-point bending tests were conducted to assess the flexural behavior of the slabs. The results were analyzed in terms of flexural strength, peak load, mid-span displacement, energy absorption, crack formation, and ductility. The digital image correlation (DIC) technique was employed to capture the full-field principal strain and determine the mid-span displacement at the point of crack initiation. Furthermore, the compression capacity of each slab was evaluated. The results were compared with those of the non-reinforced and linear reinforced slabs, revealing that the slab with the cubic truss lattice configuration exhibited the highest bending moment capacity. While the square pyramid truss slab demonstrated relatively low bending strength, it exhibited exceptional energy absorption characteristics. In terms of ductility, the cubic truss-reinforced slab showed superior performance. When compared to the slabs with linear rod reinforcement, the 3D-reinforced slabs with cubic and square pyramid configurations enhanced the bending strength by approximately 51.19% and 47.32%, respectively. Overall, this study shows that the oblique connectors in the pyramidal reinforcement, compared to the vertical connectors in the cubic reinforcement, provide greater ductility and promote a more uniform distribution of smaller cracks, thereby enhancing energy absorption. Full article
(This article belongs to the Special Issue Experimental and Theoretical Studies on Steel and Concrete Structures)
Show Figures

Figure 1

11 pages, 3736 KiB  
Article
Shear Force–Displacement Curve of a Steel Shear Wall Considering Compression
by Yi Liu, Yan He and Yang Lv
Buildings 2025, 15(12), 2112; https://doi.org/10.3390/buildings15122112 - 18 Jun 2025
Viewed by 288
Abstract
The shear strength of a steel shear wall (SSW) is typically governed by the yield strength of the steel. However, changes in mechanical properties beyond yielding—particularly those related to steel hardening and the effects of gravity loads—are not yet fully understood. These factors [...] Read more.
The shear strength of a steel shear wall (SSW) is typically governed by the yield strength of the steel. However, changes in mechanical properties beyond yielding—particularly those related to steel hardening and the effects of gravity loads—are not yet fully understood. These factors are critical for accurately assessing the shear capacity of SSWs during seismic events. In the current study, a method to calculate the shear force–displacement curve of a steel shear wall while considering the compression effect is presented, which incorporates both steel hardening and gravity effects. The analysis derives strains in tensile strips undergoing shear deformation using a strip model. Corresponding stresses are then determined using the stress–strain relationships obtained from tensile tests of the steel. Furthermore, the vertical stress induced by gravity loads is modeled using a three-segment distribution proposed before. For each tensile strip, the tension field stress is calculated by accounting for reductions due to vertical stress and the influence of steel hardening through the von Mises yield criterion. This approach enables the development of a shear force–displacement curve, which is subsequently validated against results from an experimentally verified finite element model. The findings demonstrate that the pushover curves predicted by this method closely align with those obtained from finite element analysis. Notably, the results indicate that the shear strength provided by the CAN/CSA-S16-01 equation may be overestimated by approximately 4%, 9%, and 18% when the vertical compression stresses are 50, 100, and 150 MPa for a wall with a slenderness of 150, respectively. Full article
(This article belongs to the Special Issue Advances in Steel and Composite Structures)
Show Figures

Figure 1

16 pages, 4334 KiB  
Article
Dynamic Monitoring of a Bridge from GNSS-RTK Sensor Using an Improved Hybrid Denoising Method
by Chunbao Xiong, Zhi Shang, Meng Wang and Sida Lian
Sensors 2025, 25(12), 3723; https://doi.org/10.3390/s25123723 - 13 Jun 2025
Viewed by 326
Abstract
This study focused on the monitoring of a bridge using the global navigation satellite system real-time kinematic (GNSS-RTK) sensor. An improved hybrid denoising method was developed to enhance the GNSS-RTK’s accuracy. The improved hybrid denoising method consists of the improved complete ensemble empirical [...] Read more.
This study focused on the monitoring of a bridge using the global navigation satellite system real-time kinematic (GNSS-RTK) sensor. An improved hybrid denoising method was developed to enhance the GNSS-RTK’s accuracy. The improved hybrid denoising method consists of the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), the detrended fluctuation analysis (DFA), and an improved wavelet threshold denoising method. The stability experiment demonstrated the superiority of the improved wavelet threshold denoising method in reducing the noise of the GNSS-RTK. A noisy simulation signal was created to assess the performance of the proposed method. Compared to the ICEEMDAN method and the CEEMDAN-WT method, the proposed method achieves lower RMSE and higher SNR. The signal obtained by the proposed method is similar to the original signal. Then, GNSS-RTK was used to monitor a bridge in maintenance and rehabilitation construction. The bridge monitoring experiment lasted for four hours. (Considering the space limitation of the article, only representative 600 s data is displayed in the paper.) The bridge is located in Tianjin, China. The original displacement ranges are −14.9~19.3 in the north–south direction; −26.9~24.7 in the east–west direction; and −46.7~52.3 in the vertical direction. The displacement ranges processed by the proposed method are −12.3~17.2 in the north–south direction; −24.6~24.1 in the east–west direction; and −46.7~51.1 in the vertical direction. The proposed method processed fewer displacements than the initial monitoring displacements. It indicates the proposed method reduces noise significantly when monitoring the bridge based on the GNSS-RTK sensor. The average sixth-order frequency from PSD is 1.0043 Hz. The difference between the PSD and FEA is only 0.99%. The sixth-order frequency from the PSD is similar to that from the FEA. The lower modes’ natural frequencies from the PSD are smaller than those from the FEA. It illustrates the fact that, during the repair process, the missing load-bearing rods made the bridge less stiff and strong. The smaller natural frequencies of the bridge, the complex construction environment, the diversity of workers’ operations, and some unforeseen circumstances occurring in the construction all bring risks to the safety of the bridge. We should pay more attention to the dynamic monitoring of the bridge during construction in order to understand the structural status in time to prevent accidents. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

14 pages, 3831 KiB  
Article
Research on Online Non-Contact Test Device and Test Method for Bearing Stiffness of Electric Spindle
by Chuanhai Chen, Liang Zhang, Chunlei Hua, Zhifeng Liu, Qingyu Meng and Junze Shi
Machines 2025, 13(6), 516; https://doi.org/10.3390/machines13060516 - 13 Jun 2025
Viewed by 386
Abstract
To enable experimental research on the dynamic support stiffness of electric spindle bearings, the authors designed a magnetic non-contact excitation and test device that can test the support stiffness of electric spindle bearings under a rotating state. The device includes load excitation and [...] Read more.
To enable experimental research on the dynamic support stiffness of electric spindle bearings, the authors designed a magnetic non-contact excitation and test device that can test the support stiffness of electric spindle bearings under a rotating state. The device includes load excitation and displacement detection components, which can collect the load loading and displacement data of electric spindle bearings under machine state in real time. The radial and axial loads can be applied at the same time, and the displacement detection component adopts a high-precision displacement sensor, which can measure the displacement data generated by the electric spindle bearing under the action of the excitation component in real time. A magnetic loading method was proposed for testing the supporting stiffness of the front and rear bearings in electric spindles along the three orthogonal directions of radial X/Y and axial Z. According to the designed device and test method, the dynamic support stiffness of an electric spindle bearing in a vertical machining center is tested, and the variation trend of the bearing support stiffness under the combined action of axial load, radial load and rotational speed is analyzed. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

19 pages, 7600 KiB  
Article
Experimental Study on a Laterally Loaded Pile Under Scour Condition Using Particle Image Velocimetry Technology
by Feng Yu, Xiaofeng Yang, Zhaoming Yao and Yaoyao Meng
J. Mar. Sci. Eng. 2025, 13(6), 1125; https://doi.org/10.3390/jmse13061125 - 4 Jun 2025
Viewed by 366
Abstract
The monopile foundation is a popular foundation type for offshore wind turbines; due to the harsh marine environment, there are lateral loads applied on the monopile foundation from winds and currents, and scouring also often occurs around the pile, reducing the bearing capacity [...] Read more.
The monopile foundation is a popular foundation type for offshore wind turbines; due to the harsh marine environment, there are lateral loads applied on the monopile foundation from winds and currents, and scouring also often occurs around the pile, reducing the bearing capacity and impacting the normal operation of offshore wind turbines. A series of 1 g model tests is conducted to investigate the lateral load response and scouring response of the monopile in sand. Based on the experimental results, the characteristics of the pile’s load-displacement curves, bending moments, and p-y curves under the effects of scour were analyzed. Particle Image Velocimetry technology was adopted to analyze the deformation development rules of soil particles around the pile. It is found that under the same lateral load, the maximum bending moment of the pile increases and the bearing capacity is reduced as the scour depth increases, the scour width increases, or the scour slope decreases. The effects of scour depth, slope, and width on pile bearing stability decrease successively. Soil displacements and strains in the passive zone in front of the pile develop gradually in both radial and vertical directions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

21 pages, 14573 KiB  
Article
Dynamic Response and Computational Modeling of Truss-Reinforced Phosphogypsum-Concrete Composite Slabs Subjected to Impact Loading: A Parametric Finite Element Analysis
by Lirong Sha, Yan Han and Lijie Zhang
Buildings 2025, 15(11), 1948; https://doi.org/10.3390/buildings15111948 - 4 Jun 2025
Viewed by 339
Abstract
As a by-product of phosphate fertilizer production, phosphogypsum (PG) poses pressing environmental challenges that demand urgent resolution. To address the research gap in dynamic impact behavior of PG-modified concrete (PGC), this study developed truss-reinforced PGC slabs (PG volumetric fractions: 0% and 2%) and [...] Read more.
As a by-product of phosphate fertilizer production, phosphogypsum (PG) poses pressing environmental challenges that demand urgent resolution. To address the research gap in dynamic impact behavior of PG-modified concrete (PGC), this study developed truss-reinforced PGC slabs (PG volumetric fractions: 0% and 2%) and evaluated their impact resistance through drop-weight tests from a 3.75 m height. A systematic parametric investigation was conducted to quantify the effects of slab thickness (100–120 mm), steel plate reinforcement at the tension zone, PG content, and impact cycles. Experimental results revealed that increasing slab thickness to 120 mm reduced mid-span displacement by 13%, while incorporating steel plate reinforcement provided an additional 5.3% reduction. Notably, PG addition effectively suppressed crack propagation, transitioning failure modes from radial fracture patterns to localized mid-span damage. Finite element modeling ABAQUS (2022) validated experimental observations, demonstrating strong agreement. While optimized PG dosage (2%) exhibited limited influence on impact resistance, it enhanced PG utilization efficiency by 18%. Combined with increased slab thickness (displacement reduction: 13%), this study establishes a design framework balancing environmental sustainability and structural reliability for impact-resistant PGC applications. Within the framework of truss-reinforced concrete slabs with constant PG dosage, this study established a numerical model for geometric parameter modulation of impactors. Through systematic adjustment of the drop hammer’s contact width (a) and vertical geometric height (h), a dimensionless control parameter—aspect ratio c = h/a (0.2 ≤ c ≤ 1.8)—was proposed. Nonlinear dynamic analysis revealed that the peak impact load demonstrates an inverse proportional functional decay relationship with increasing c, yielding an empirical predictive model. These parametrized regularities provide theoretical foundations for contact interface optimization in impact-resistant structural design. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop