Shallow Structural Deformation Reveals Intraplate Seismicity Triggered by Graben Motion in the South China Littoral Fault Zone
Abstract
1. Introduction
2. Geological Background
2.1. Regional Tectonic Evolution of the Southeastern South China Margin
2.2. The Littoral Fault Zone (LFZ)
3. Data and Methods
3.1. Seismic Reflection Data Acquisition
3.2. Seismic Data Processing
3.3. High-Precision Earthquake Location
3.4. Geological and Stratigraphic Interpretation
4. Results
4.1. Structural Characteristics of the Nan’ao Offshore Graben
4.2. Kinematic Analysis of Faults and Folds
- Among these structures, the monoclines show the largest deformation amplitudes at comparable depths, indicating their dominant role in the structural system. However, they also display intervals of deformation cessation, suggesting episodic behavior (Figure 6a).
4.3. Forward Modeling of the Shallow Deformation Evolution of the F1
5. Discussion
5.1. Evidence Linking F1 Shallow Deformation to the 1918 Nan’ao Earthquake
5.2. Gravitational Collapse and Seismogenic Structures
5.3. Coseismic Deformation Model
5.3.1. Role of the Mid-Crustal Ductile Layer
5.3.2. Plastic Deformation and Fault-Slip Mechanisms
5.3.3. Coseismic Deformation Model and Structural Interpretation
6. Conclusions
- Fault F1 exhibits a clear spatial and kinematic correlation with the 1918 Nan’ao earthquake. Its alternating phases of dormancy and activation, identified in shallow strata and seabed morphology, reflect cycles of long-term stress accumulation and sudden energy release, supporting its role as the primary seismogenic fault.
- Despite the current regional compressive stress regime, active normal faulting is observed offshore of Nan’ao. The lack of strike-slip or reverse faulting signatures suggests that gravitational loading, coupled with deep crustal and upper crustal structural controls, is the dominant driving force behind the ongoing normal fault activity.
- A gravitational collapse model is proposed based on differences in the movement patterns of faults F1 and F2. The graben-shaped hanging-wall block, bounded by faults F1 and F2, stores potential gravitational energy that is sufficient for producing an M7.2 earthquake, matching the magnitude of the 1918 Nan’ao event. This mechanism also explains the downward-draw tsunami observed during the earthquake.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, B.L. Characteristics of Seismic Activity in Southeast Coast Area; Seismological Press: Beijing, China, 2001. [Google Scholar]
- Peng, C.G.; Li, Y.G.; Wu, M.B. Analysis of Seismogenic Structure Mechanism ofthe Nanao Earthquakein 1918. South China J. Seismol. -Chin. Ed. 2017, 37, 1–14. [Google Scholar] [CrossRef]
- Chen, E.M.; Huang, Y.Y. Nineteen strong earthquakes in South China-The summary of continental margin seismic belt along the northern South China Sea. South China J. Seismol. 1984, 4, 14–35. [Google Scholar] [CrossRef]
- Yu, S.-B.; Chen, H.-Y.; Kuo, L.-C. Velocity field of GPS stations in the Taiwan Area. Tectonophysics 1997, 274, 41–59. [Google Scholar] [CrossRef]
- Kreemer, C.; Holt, W.; Haines, A. An integrated global model of present-day plate motions and plate boundary deformation. Geophys. J. Int. 2003, 154, 8–34. [Google Scholar] [CrossRef]
- Xu, H.L.; Qiu, X.L.; Zhao, M.H.; Sun, J.L.; Zhu, J.J. Characteristics of the crustal structure and hypocentral tectonics in the epicentral area of Nan’ao earthquake (M7.5), the northeastern South China Sea. Chin. Sci. Bull. 2006, 51, 95–106. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Hao, K.C.; Alvarez-Marron, J.; Brown, D.; Lin, A.T.S.; Xie, Z.Z.; Xing, J. Imaging active faulting in the western Taiwan Strait. Sci. Rep. 2020, 10, 3703. [Google Scholar] [CrossRef]
- Liu, Y.X. The active fractures in South China Coast. Mar. Geol. Quat. Geol. 1985, 5, 11–21. [Google Scholar] [CrossRef]
- Wang, S.W.; Zhan, W.H.; Zhang, F.; Zhu, J.J. The coulomb stress change associated with the Taiwan Strait MS7. 3 earthquake on Sep. 16, 1994 and the risk prediction of its surrounding faults. Earthq. Res. China 2011, 27, 419–430. [Google Scholar]
- Xiong, C.; Cao, J.H.; Sun, J.L.; Xia, S.H.; Wan, K.Y.; Fan, C.Y.; Yan, B.F. Variation characteristics along the strike of the littoral fault zone in offshore Pearl River Estuary. Earth Sci. 2018, 43, 16. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, X.; Wan, K.; Lv, Z.; Wen, G.; Xu, S. Fault structure, seismicity, and magmatism of the Littoral Fault zone, northern South China sea: Insights from high-resolution seismic reflection data. Mar. Pet. Geol. 2023, 160, 106605. [Google Scholar] [CrossRef]
- Cao, J.H.; Sun, J.L.; Xu, H.L.; Xia, S.H. Seismological features of the littoral fault zone in the Pearl River Estuary. Chin. J. Geophys. 2014, 57, 498–508. [Google Scholar] [CrossRef]
- Zhao, M.H.; Qiu, X.L.; Ye, C.M.; Xia, K.Y.; Huang, C.L.; Xie, J.B.; Wang, P. Analysis on deep crustal structure along the onshore-offshore seismic profile across the Binhai (littoral) fault zone in northeastern South China Sea. Chin. J. Geophys. 2004, 47, 845–852. [Google Scholar] [CrossRef]
- Xia, S.H.; Zhou, P.X.; Zhao, D.P.; Cao, J.H. Seismogenic structure in the source zone of the 1918 M7.5 NanAo earthquake in the northern South China Sea. Phys. Earth Planet. Inter. 2020, 302, 106472. [Google Scholar] [CrossRef]
- Lv, L.; Wang, D.; Wang, W.; Dai, X.; Zeng, F.; Li, L.; Hao, L.; Hui, G.; Long, W.; Zhang, P. The latest activity of the Slope Fault Zone (Pearl River Mouth) in northern South China Sea and implications for earthquake hazard assessments. Mar. Pet. Geol. 2024, 166, 106937. [Google Scholar] [CrossRef]
- Cao, J.; Xia, S.; Sun, J.; Zhao, F.; Wan, K.; Xu, H. Offshore Fault Geometrics in the Pearl River Estuary, Southeastern China: Evidence from Seismic Reflection Data. J. Ocean. Univ. China 2018, 17, 799–810. [Google Scholar] [CrossRef]
- Deng, K. Tectonic characteristics of the Binhai Fault Zone in Taiwan Strait. Mar. Geol. Quat. Geol. 2019, 39, 72–80. [Google Scholar] [CrossRef]
- Moernaut, J.; Howarth, J.; Kremer, K.; Wils, K. Lacustrine Records of Past Seismic Shaking. In Understanding Past Earthquakes; Elliott, A., Gruetzner, C., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 169–227. [Google Scholar]
- Lu, Y.; Wetzler, N.; Waldmann, N.; Agnon, A.; Biasi, G.; Marco, S. A 220,000-year-long continuous large earthquake record on a slow-slipping plate boundary. Sci. Adv. 2020, 6, eaba4170. [Google Scholar] [CrossRef]
- Ghazoui, Z.; Bertrand, S.; Vanneste, K.; Yokoyama, Y.; Nomade, J.; Gajurel, A.; Beek, P. Potentially large post-1505 AD earthquakes in western Nepal revealed by a lake sediment record. Nat. Commun. 2019, 10, 2258. [Google Scholar] [CrossRef]
- Praet, N.; Moernaut, J.; Van Daele, M.; Boes, E.; Haeussler, P.J.; Strupler, M.; Schmidt, S.; Loso, M.G.; De Batist, M. Paleoseismic potential of sublacustrine landslide records in a high-seismicity setting (south-central Alaska). Mar. Geol. 2017, 384, 103–119. [Google Scholar] [CrossRef]
- Sims, J. Records of prehistoric earthquakes in sedimentary deposits in lakes. Earthq. Inf. Bull. USGS 1979, 11, 228–233. [Google Scholar]
- Mérindol, M.; St-Onge, G.; Sultan, N.; Lajeunesse, P.; Garziglia, S. Earthquake-triggered submarine landslides in the St. Lawrence Estuary (Québec, Canada) during the last two millennia and the record of the major 1663 CE M ≥ 7 event. Quat. Sci. Rev. 2022, 291, 107640. [Google Scholar] [CrossRef]
- Singleton, D.; Brothers, D.; Haeussler, P.; Witter, R.; Hill, J. Constraining the Earthquake Recording Threshold of Intraslab Earthquakes With Turbidites in South-Central Alaska’s Lakes and Fjords. In Tectonics and Seismic Structure of Alaska and Northwestern Canada: EarthScope and Beyond; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2024; pp. 389–418. [Google Scholar]
- Beigt, D.; Villarosa, G.; Gómez, E.A.; Manzoni, C. Subaqueous landslides at the distal basin of Lago Nahuel Huapi (Argentina): Towards a tsunami hazard evaluation in Northern Patagonian lakes. Geomorphology 2016, 268, 197–206. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, J.; Hu, L. Condition prediction model of cumulative energy of seafloor ground motions in the Japan trench subduction zone. Chin. J. Geophys. 2024, 67, 2729–2743. [Google Scholar]
- Wetzler, N.; Marco, S.; Heifetz, E. Quantitative analysis of seismogenic shear-induced turbulence in lake sediments. Geology 2010, 38, 303–306. [Google Scholar] [CrossRef]
- Piegari, E.; Camanni, G.; Mercurio, M.; Marzocchi, W. Illuminating the Hierarchical Segmentation of Faults Through an Unsupervised Learning Approach Applied to Clouds of Earthquake Hypocenters. Earth Space Sci. 2024, 11, e2023EA003267. [Google Scholar] [CrossRef]
- Burnett, H.; Fan, W. Imaging microearthquake rupture processes using a dense array in Oklahoma. Seismica 2024, 3, 1354. [Google Scholar] [CrossRef]
- Smith, W.; Sandwell, D. Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings. Science 1997, 277, 1956–1962. [Google Scholar] [CrossRef]
- Morley, C.K. Major unconformities/termination of extension events and associated surfaces in the South China Seas: Review and implications for tectonic development. J. Asian Earth Sci. 2016, 120, 62–86. [Google Scholar] [CrossRef]
- Xu, Y.; Lü, Q.T.; Shi, D.N.; Zhang, Y.Q.; Yan, J.Y.; Xu, Z.W. Upper mantle velocity structure beneath the eastern South China Block and implications for late Mesozoic magmatism. J. Asian Earth Sci. 2022, 224, 105013. [Google Scholar] [CrossRef]
- Li, S.Z.; Suo, Y.H.; Li, X.Y.; Zho, J.; Santosh, M.; Wang, P.C.; Wang, G.Z.; Guo, L.L.; Yu, S.Y.; Lan, H.Y.; et al. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate. Earth-Sci. Rev. 2019, 192, 91–137. [Google Scholar] [CrossRef]
- Qiu, Y.; Huang, W.; Du, W.; Han, B. Analysis on the Formation of the Thin Continental Crust in the South China Sea. Earth Sci. 2021, 46, 899–915. [Google Scholar] [CrossRef]
- Li, Z.X.; Li, X.H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology 2007, 35, 179–182. [Google Scholar] [CrossRef]
- Li, J.H.; Dong, S.W.; Cawood, P.A.; Thybo, H.; Clift, P.D.; Johnston, S.T.; Zhao, G.C.; Zhang, Y.Q. Cretaceous long-distance lithospheric extension and surface response in South China. Earth-Sci. Rev. 2023, 243, 104496. [Google Scholar] [CrossRef]
- Li, X.H. Cretaceous magmatism and lithospheric extension in Southeast China. J. Asian Earth Sci. 2000, 18, 293–305. [Google Scholar] [CrossRef]
- Charvet, J.; Lapierre, H.; Yu, Y. Geodynamic significance of the Mesozoic volcanism of southeastern China. J. Southeast Asian Earth Sci. 1994, 9, 387–396. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, D.; Wu, G.G.; Vatuva, A.; Di, Y.J.; Yan, P.C.; Feng, H.B.; Ma, S. Late Paleozoic to Mesozoic extension in southwestern Fujian Province, South China: Geochemical, geochronological and Hf isotopic constraints from basic-intermediate dykes. Geosci. Front. 2017, 8, 529–540. [Google Scholar] [CrossRef]
- Ding, R.; Seward, D.; Zou, H. Late Cretaceous-Paleogene rift initiation of the southwestern East China Sea Basin: Implications from a fission-track study of the Changle–Nan’ao Belt. J. Asian Earth Sci. 2023, 256, 105824. [Google Scholar] [CrossRef]
- Li, Y.J.; Lin, L.; Zhao, J.B. A new model of the formation of the meso-cenozoic block basins in east China. Oil Gas. Geol. 1988, 9, 334–345. [Google Scholar] [CrossRef]
- Chou, Y.W.; Yu, H.S. Structural expressions of flexural extension in the arc-continent collisional foredeep of western Taiwan. Geol. Soc. Am. Spec. Pap. 2002, 358, 1–12. [Google Scholar] [CrossRef]
- Lin, A.T.; Watts, A.B.; Hesselbo, S.P. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Res. 2003, 15, 453–478. [Google Scholar] [CrossRef]
- Pedoja, K.; Shen, J.W.; Kershaw, S.; Tang, C. Coastal Quaternary morphologies on the northern coast of the South China Sea, China, and their implications for current tectonic models: A review and preliminary study. Mar. Geol. 2008, 255, 103–117. [Google Scholar] [CrossRef]
- Pedoja, K.; Regard, V.; Husson, L.; Martinod, J.; Guillaume, B.; Fucks, E.; Iglesias, M.; Weill, P. Uplift of quaternary shorelines in eastern Patagonia: Darwin revisited. Geomorphology 2011, 127, 121–142. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, H.; Yang, H.-Y.; Cai, H.-T.; Fang, H.; Xu, J.; Jin, X.; Kuo-Chen, H.; Liang, W.-T.; Chen, K.-X. 3-D Crustal Shear-Wave Velocity Structure of the Taiwan Strait and Fujian, SE China, Revealed by Ambient Noise Tomography. J. Geophys. Res. -Solid. Earth 2018, 123, 8016–8031. [Google Scholar] [CrossRef]
- Xia, S.; Lin, J.; Cao, J. Seismicity and Seismogenic Structure in the Northern Coastal Area of the South China Sea. Geotecton. Metallog. 2022, 46, 455–470. [Google Scholar] [CrossRef]
- Waldhauser, F.; Ellsworth, W. A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. Bull. Seismol. Soc. Am. 2000, 90, 1353–1368. [Google Scholar] [CrossRef]
- Cirillo, D.; Totaro, C.; Lavecchia, G.; Orecchio, B.; de Nardis, R.; Presti, D.; Ferrarini, F.; Bello, S.; Brozzetti, F. Structural complexities and tectonic barriers controlling recent seismic activity in the Pollino area (Calabria–Lucania, southern Italy)—Constraints from stress inversion and 3D fault model building. Solid. Earth 2022, 13, 205–228. [Google Scholar] [CrossRef]
- Muraoka, H.; Kamata, H. Displacement distribution along minor fault traces. J. Struct. Geol. 1983, 5, 483–495. [Google Scholar] [CrossRef]
- Jackson, C.; Bell, R.; Rotevatn, A.; Tvedt, A. Techniques to determine the kinematics of synsedimentary normal faults and implications for fault growth models. Geol. Soc. Lond. Spec. Publ. 2016, 439, 187–217. [Google Scholar] [CrossRef]
- La Bruna, V.; Agosta, F.; Lamarche, J.; Viseur, S.; Prosser, G. Fault growth mechanisms and scaling properties in foreland basin system: The case study of Monte Alpi, Southern Apennines, Italy. J. Struct. Geol. 2018, 116, 94–113. [Google Scholar] [CrossRef]
- Erslev, E.A. Trishear fault-propagation folding. Geology 1991, 19, 617–620. [Google Scholar] [CrossRef]
- Withjack, M.O.; Olson, J.; Peterson, E. Experimental-models of extensional forced folds. Aapg Bull.-Am. Assoc. Pet. Geol. 1990, 74, 1038–1054. [Google Scholar] [CrossRef]
- Coleman, A.J.; Duffy, O.B.; Jackson, C.A.L. Growth folds above propagating normal faults. Earth-Sci. Rev. 2019, 196, 102885. [Google Scholar] [CrossRef]
- Hardy, S.; McClay, K. Kinematic modelling of extensional fault-propagation folding. J. Struct. Geol. 1999, 21, 695–702. [Google Scholar] [CrossRef]
- Jin, G.H.; Groshong, R.H. Trishear kinematic modeling of extensional fault-propagation folding. J. Struct. Geol. 2006, 28, 170–183. [Google Scholar] [CrossRef]
- Hardy, S.; Ford, M. Numerical modeling of trishear fault propagation folding. Tectonics 1997, 16, 841–854. [Google Scholar] [CrossRef]
- Allmendinger, R.W. Inverse and forward numerical modeling of trishear fault-propagation folds. Tectonics 1998, 17, 640–656. [Google Scholar] [CrossRef]
- Yi, H.; Zhan, W.H.; Min, W.; Wu, X.C.; Li, J.; Feng, Y.C.; Ren, Z.K. A comparative study of source effect based on mini-multichannel seismic profile in marine active fault detection. Seismol. Geol. 2022, 44, 333–348. [Google Scholar] [CrossRef]
- Nabavi, S.T.; Fossen, H. Fold geometry and folding—A review. Earth-Sci. Rev. 2021, 222, 103812. [Google Scholar] [CrossRef]
- Yang, S.X.; Qiu, Y.; Zhu, B.D. Atlas of Geology and Geophysics of the South China Sea; China Navigation Publications Press: Tianjin, China, 2015. [Google Scholar]
- Bignami, C.; Valerio, E.; Carminati, E.; Doglioni, C.; Tizzani, P.; Lanari, R. Volume unbalance on the 2016 Amatrice—Norcia (Central Italy) seismic sequence and insights on normal fault earthquake mechanism. Sci. Rep. 2019, 9, 4250. [Google Scholar] [CrossRef]
- Doglioni, C.; Barba, S.; Carminati, E.; Riguzzi, F. Fault on-off versus strain rate and earthquakes energy. Geosci. Front. 2015, 6, 265–276. [Google Scholar] [CrossRef]
- Petricca, P.; Barba, S.; Carminati, E.; Doglioni, C.; Riguzzi, F. Graviquakes in Italy. Tectonophysics 2015, 656, 202–214. [Google Scholar] [CrossRef]
- Doglioni, C.; Barba, S.; Carminati, E.; Riguzzi, F. Fault on-off versus coseismic fluids reaction. Geosci. Front. 2014, 5, 767–780. [Google Scholar] [CrossRef]
- Savage, J.C.; Walsh, J.B. Gravitational energy and faulting. Bull. Seismol. Soc. Am. 1978, 68, 1613–1622. [Google Scholar]
- Albano, M.; Barba, S.; Bignami, C.; Carminati, E.; Doglioni, C.; Moro, M.; Stramondo, S.; Saroli, M. Three-dimensional numerical simulation of the interseismic and coseismic phases associated with the 6 April 2009, Mw 6.3 L’Aquila earthquake (Central Italy). Tectonophysics 2021, 798, 228685. [Google Scholar] [CrossRef]
- Albano, M.; Barba, S.; Bignami, C.; Carminati, E.; Doglioni, C.; Moro, M.; Saroli, M.; Samsonov, S.; Stramondo, S. Numerical analysis of interseismic, coseismic and post-seismic phases for normal and reverse faulting earthquakes in Italy. Geophys. J. Int. 2021, 225, 627–645. [Google Scholar] [CrossRef]
- Muldashev, I.A.; Pérez-Gussinyé, M.; Sobolev, S.V. Modeling of Continental Normal Fault Earthquakes. Geochem. Geophys. Geosystems 2022, 23, e2022GC010615. [Google Scholar] [CrossRef]
- Petricca, P.; Bignami, C.; Doglioni, C. The epicentral fingerprint of earthquakes marks the coseismically activated crustal volume. Earth-Sci. Rev. 2021, 218, 103667. [Google Scholar] [CrossRef]
- Bignami, C.; Valerio, E.; Carminati, E.; Doglioni, C.; Petricca, P.; Tizzani, P.; Lanari, R. Are Norm. Fault Earthq. Due Elastic Rebound Or. Gravitational Collapse? Ann. Geophys. 2020, 63, 1–15. [Google Scholar] [CrossRef]
- Carminati, E.; Bignami, C.; Doglioni, C.; Smeraglia, L. Lithological control on multiple surface ruptures during the 2016–2017 Amatrice-Norcia seismic sequence. J. Geodyn. 2020, 134, 101676. [Google Scholar] [CrossRef]
- Wang, Y. Heat flow pattern and lateral variations of lithosphere strength in China mainland: Constraints on active deformation. Phys. Earth Planet. Inter. 2001, 126, 121–146. [Google Scholar] [CrossRef]
- Zhou, D.; Yu, H.S.; Xu, H.H.; Shi, X.B.; Chou, Y.W. Modeling of thermo-rheological structure of lithosphere under the foreland basin and mountain belt of Taiwan. Tectonophysics 2003, 374, 115–134. [Google Scholar] [CrossRef]
- Brozzetti, F.; Mondini, A.C.; Pauselli, C.; Mancinelli, P.; Cirillo, D.; Guzzetti, F.; Lavecchia, G. Mainshock Anticipated by Intra-Sequence Ground Deformations: Insights from Multiscale Field and SAR Interferometric Measurements. Geosciences 2020, 10, 186. [Google Scholar] [CrossRef]
- Holland, M.; van Gent, H.; Bazalgette, L.; Yassir, N.; Strating, E.H.H.; Urai, J.L. Evolution of dilatant fracture networks in a normal fault—Evidence from 4D model experiments. Earth Planet. Sci. Lett. 2011, 304, 399–406. [Google Scholar] [CrossRef]
- Hardy, S. Discrete element modelling of extensional, growth, fault-propagation folds. Basin Res. 2018, 31, 584–599. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Zhang, S.H.; Luan, H.J.; Wang, C.S.; Wang, D.; Han, W. Numerical simulation on the 3D surface dynamic contact characteristics of rock discontinuity subject to shear loading. J. China Coal Soc. 2022, 47, 233–245. [Google Scholar] [CrossRef]
- Alessi, R.; Freddi, F. Phase-field modelling of failure in hybrid laminates. Compos. Struct. 2017, 181, 9–25. [Google Scholar] [CrossRef]
- Ferrill, D.A.; Morris, A.P.; Smart, K.J. Stratigraphic control on extensional fault propagation folding: Big Brushy Canyon monocline, Sierra Del Carmen, Texas. Geol. Soc. Lond. Spec. Publ. 2007, 292, 203–217. [Google Scholar] [CrossRef]
- Deckers, J. Decoupled extensional faulting and forced folding in the southern part of the Roer Valley Graben, Belgium. J. Struct. Geol. 2015, 81, 125–134. [Google Scholar] [CrossRef]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
Seismic Source | Minimum Offset /m | Number of Coverage | Sample Interval /ms | Receptor Interval /m | Shot Interval /m | Source Sinking Depth /m | Cable Sinking Depth /m |
---|---|---|---|---|---|---|---|
sparker 2000 J | 0 | 12 | 0.2 | 3.125 | 6.25 | 0.4 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, H.; Zhan, W.; Yang, X.; Li, J.; Wu, X.; Sun, J.; Yao, Y.; Huang, J.; Ju, Z. Shallow Structural Deformation Reveals Intraplate Seismicity Triggered by Graben Motion in the South China Littoral Fault Zone. Remote Sens. 2025, 17, 2153. https://doi.org/10.3390/rs17132153
Yi H, Zhan W, Yang X, Li J, Wu X, Sun J, Yao Y, Huang J, Ju Z. Shallow Structural Deformation Reveals Intraplate Seismicity Triggered by Graben Motion in the South China Littoral Fault Zone. Remote Sensing. 2025; 17(13):2153. https://doi.org/10.3390/rs17132153
Chicago/Turabian StyleYi, Hu, Wenhuan Zhan, Xiaodong Yang, Jian Li, Xiaochuan Wu, Jie Sun, Yantao Yao, Jiaxian Huang, and Zelong Ju. 2025. "Shallow Structural Deformation Reveals Intraplate Seismicity Triggered by Graben Motion in the South China Littoral Fault Zone" Remote Sensing 17, no. 13: 2153. https://doi.org/10.3390/rs17132153
APA StyleYi, H., Zhan, W., Yang, X., Li, J., Wu, X., Sun, J., Yao, Y., Huang, J., & Ju, Z. (2025). Shallow Structural Deformation Reveals Intraplate Seismicity Triggered by Graben Motion in the South China Littoral Fault Zone. Remote Sensing, 17(13), 2153. https://doi.org/10.3390/rs17132153