Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (917)

Search Parameters:
Keywords = vertical alignment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 3825 KiB  
Review
Three-Dimensional SERS Substrates: Architectures, Hot Spot Engineering, and Biosensing Applications
by Xiaofeng Zhou, Siqiao Liu, Hailang Xiang, Xiwang Li, Chunyan Wang, Yu Wu and Gen Li
Biosensors 2025, 15(9), 555; https://doi.org/10.3390/bios15090555 - 22 Aug 2025
Viewed by 72
Abstract
Three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrates have demonstrated remarkable abilities of ultrasensitive and reproducible molecular detection. The combination of both electromagnetic and chemical enhancement processes, light trapping, and multiple scattering effects of 3D structures are what enhance their performance. The principles of [...] Read more.
Three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrates have demonstrated remarkable abilities of ultrasensitive and reproducible molecular detection. The combination of both electromagnetic and chemical enhancement processes, light trapping, and multiple scattering effects of 3D structures are what enhance their performance. The principles of underlying enhancements are summarized systematically, and the main types of 3D substrates—vertically aligned nanowires, dendritic and fractal nanostructures, porous frameworks and aerogels, core–shell and hollow nanospheres, and hierarchical hybrid structures—are categorized in this review. Advances in fabrication techniques, such as template-assisted growth, electrochemical and galvanic deposition, dealloying and freeze-drying, self-assembly, and hybrid integration, are critically evaluated in terms of structural tunability and scalability. Novel developments in the field of biosensing are also highlighted, including non-enzymatic glucose sensing, tumor biomarker sensing, and drug delivery. The remaining limitations, such as low reproducibility, mechanical stability, and substrate standardization, are also noted, and future directions, such as stimuli-responsive designs, multifunctional hybrid platforms, and data-driven optimization strategies of SERS technologies, are also included. Full article
(This article belongs to the Special Issue Surface-Enhanced Raman Scattering in Biosensing Applications)
Show Figures

Figure 1

17 pages, 2028 KiB  
Review
CMOS-Compatible Ultrasonic 3D Beamforming Sensor System for Automotive Applications
by Khurshid Hussain, Wanhae Jeon, Yongmin Lee, In-Hyouk Song and Inn-Yeal Oh
Appl. Sci. 2025, 15(16), 9201; https://doi.org/10.3390/app15169201 - 21 Aug 2025
Viewed by 255
Abstract
This paper presents a fully electronic, CMOS-compatible ultrasonic sensing system integrated into a 3D beamforming architecture for advanced automotive applications. The proposed system eliminates mechanical scanning by implementing a dual-path beamforming structure comprising programmable transmit (TX) and receive (RX) paths. The TX beamformer [...] Read more.
This paper presents a fully electronic, CMOS-compatible ultrasonic sensing system integrated into a 3D beamforming architecture for advanced automotive applications. The proposed system eliminates mechanical scanning by implementing a dual-path beamforming structure comprising programmable transmit (TX) and receive (RX) paths. The TX beamformer introduces per-element time delays derived from steering angles to control the direction of ultrasonic wave propagation, while the RX beamformer aligns echo signals for spatial focusing. Electrostatic actuation governs the CMOS-compatible ultrasonic transmission mechanism, whereas dynamic modulation under acoustic pressure forms the reception mechanism. The system architecture supports full horizontal and vertical angular coverage, leveraging delay-and-sum processing to achieve electronically steerable beams. The system enables low-power, compact, and high-resolution sensing modules by integrating signal generation, beam control, and delay logic within a CMOS framework. Theoretical modeling demonstrates its capability to support fine spatial resolution and fast response, making it suitable for integration into autonomous vehicle platforms and driver-assistance systems. Full article
(This article belongs to the Special Issue Ultrasonic Transducers in Next-Generation Application)
Show Figures

Figure 1

18 pages, 7904 KiB  
Article
Statistical Analysis of Ionospheric Midnight Collapse Events Observed by Arecibo Incoherent Scatter Radar
by Yun Gong, Xinkun Chen, Zheng Ma, Shaodong Zhang and Qihou Zhou
Remote Sens. 2025, 17(16), 2897; https://doi.org/10.3390/rs17162897 - 20 Aug 2025
Viewed by 195
Abstract
This study presents a comprehensive statistical analysis of ionospheric midnight collapse events over Arecibo, based on incoherent scatter radar (ISR) observations collected between 1971 and 2019. A total of 224 nights with valid measurements were examined to characterize the timing, intensity, and seasonal [...] Read more.
This study presents a comprehensive statistical analysis of ionospheric midnight collapse events over Arecibo, based on incoherent scatter radar (ISR) observations collected between 1971 and 2019. A total of 224 nights with valid measurements were examined to characterize the timing, intensity, and seasonal variation of these collapse events. The results showed that midnight collapses occurred on 94.6% of the nights, with the highest occurrence rate observed during spring and winter. The first collapse typically began between 22:00 and 00:00 LT, lasted for 1–4 h, initiated at altitudes between 350 and 400 km, and involved a vertical collapse of 50–100 km. A second collapse was identified on 18.8% of nights, occurring predominantly between 01:00 and 02:00 LT, with a notably higher frequency during winter. Compared to the first collapse, the second collapse tended to originate at lower altitudes and exhibited faster collapse rates. Seasonal patterns in the vertical ion drift (Vz) were also identified, with winter events characterized by a persistently downward Vz throughout the night. Further decomposition of Vz into field-aligned (Vap) and perpendicular (Vpn) components indicated that Vap played a dominant role in modulating Vz, particularly on nights with double collapses. Analysis of meridional wind variations revealed that nighttime changes in Vap were largely controlled by meridional wind, suggesting a strong coupling between thermospheric wind dynamics and field-aligned ion motion. These findings suggest that variations in Vz, primarily driven by meridional-wind-controlled changes in Vap, are a key driver of ionospheric midnight collapse events at Arecibo. Full article
Show Figures

Figure 1

27 pages, 5572 KiB  
Article
Smartphone-Based Assessment of Bicycle Pavement Conditions Using the Bicycle Road Roughness Index and Faulting Impact Index for Sustainable Urban Mobility
by Dongyoun Lee, Hojun Yoo, Jaeyong Lee and Gyeongok Jeong
Sustainability 2025, 17(16), 7488; https://doi.org/10.3390/su17167488 - 19 Aug 2025
Viewed by 274
Abstract
This study presents a smartphone-based dual-index framework for evaluating bicycle pavement conditions, aimed at supporting sustainable urban mobility and cyclist safety. Conventional assessment methods, such as the International Roughness Index (IRI), often overlook short-range discontinuities and are impractical for micromobility-scale infrastructure monitoring. To [...] Read more.
This study presents a smartphone-based dual-index framework for evaluating bicycle pavement conditions, aimed at supporting sustainable urban mobility and cyclist safety. Conventional assessment methods, such as the International Roughness Index (IRI), often overlook short-range discontinuities and are impractical for micromobility-scale infrastructure monitoring. To address these limitations, two perception-aligned indices were developed: the Bicycle Road Roughness Index (BRI), reflecting sustained surface discomfort, and the Faulting Impact Index (FII), quantifying acute vertical shocks. Both indices were calibrated through structured panel surveys involving 40 experienced cyclists and validated using high-frequency tri-axial acceleration data collected in both experimental and field settings. Regression analysis confirmed strong alignment between sensor signals and user perception (R2 = 0.74 for BRI; R2 = 0.76 for FII). A five-grade classification system was proposed, with critical FII thresholds at 87.3 m/s2 for “risky” and 119.4 m/s2 for “not rideable” conditions. Field validation across four diverse sites revealed over 380 hazard segments requiring attention, demonstrating the framework’s ability to identify localized risks that may be masked by traditional metrics. By leveraging off-the-shelf smartphones and open-source sensing tools, the proposed approach enables scalable, low-cost, and cyclist-centered diagnostics. The dual-index system not only enhances rideability evaluation but also supports targeted maintenance planning, real-time hazard detection, and broader efforts toward data-driven, sustainable micromobility management. Full article
Show Figures

Figure 1

39 pages, 2144 KiB  
Article
A Causal Modeling Approach to Agile Project Management and Progress Evaluation
by Saulius Gudas, Vitalijus Denisovas, Jurij Tekutov and Karolis Noreika
Mathematics 2025, 13(16), 2657; https://doi.org/10.3390/math13162657 - 18 Aug 2025
Viewed by 176
Abstract
Despite widespread adoption, traditional Agile project management practices often fail to ensure successful delivery of enterprise-scale software projects. One key limitation lies in the absence of a conceptually defined structure for the various types of Agile activities and their interactions. As a result, [...] Read more.
Despite widespread adoption, traditional Agile project management practices often fail to ensure successful delivery of enterprise-scale software projects. One key limitation lies in the absence of a conceptually defined structure for the various types of Agile activities and their interactions. As a result, Agile methodologies typically lack formal indicators for evaluating the semantic content and progress status of project activities. Although widely used tools for Agile project management, such as Atlassian Jira, capture operational data, project status assessment interpretation remains largely subjective—relying on the experience and judgment of managers and team members rather than on a formal knowledge model or well-defined semantic attributes. As Agile project activities continue to grow in complexity, there is a pressing need for a modeling approach that captures their causal structure in order to describe the essential characteristics of the processes and ensure systematic monitoring and evaluation of the project. The complexity of the corresponding model must correlate with the causality of processes to avoid losing essential properties and to reveal the content of causal interactions. To address these gaps, this paper introduces a causal Agile process model that formalizes the internal structure and transformation pathways of Agile activity types. To our knowledge, it is the first framework to integrate a recursive, causally grounded structure into Agile management, enabling both semantic clarity and quantitative evaluation of project complexity and progress. The aim of the article is, first, to describe conceptually different Agile activity types from a causal modeling perspective, its internal structure and information transformations, and, second, to formally define the causal Agile management model and its characteristics. Each Agile activity type (e.g., theme, initiative, epic, user story) is modeled using the management transaction (MT) framework—an internal model of activity that comprises a closed-loop causal relationship among management function (F), process (P), state attribute (A), and control (V) informational flows. Using this framework, the internal structure of Agile activity types is normalized and the different roles of activities in internal MT interactions are defined. An important feature of this model is its recursive structure, formed through a hierarchy of MTs. Additionally, the paper presents classifications of vertical and horizontal causal interactions, uncovering theoretically grounded patterns of information exchange among Agile activities. These classifications support the derivation of quantitative indicators for assessing project complexity and progress at a given point in time, offering insights into activity specification completeness at hierarchical levels and overall project content completeness. Examples of complexity indicator calculations applied to real-world enterprise application system (EAS) projects are included. Finally, the paper describes enhancements to the Jira tool, including a causal Agile management repository and a prototype user interface. An experimental case study involving four Nordic EAS projects (using Scrum at the team level and SAFe at the program level) demonstrates that the Jira tool, when supplemented with causal analysis, can reveal missing links between themes and initiatives and align interdependencies between teams in real time. The causal Agile approach reduced the total number of requirements by an average of 13% and the number of change requests by 14%, indicating a significant improvement in project coordination and quality. Full article
Show Figures

Figure 1

18 pages, 2249 KiB  
Article
An Innovative Approach for Assessing Foam Stability Based on Electrical Conductivity Measurements of Liquid Films
by Angelos T. Zamanis, Sotiris P. Evgenidis, Thodoris D. Karapantsios and Margaritis Kostoglou
Colloids Interfaces 2025, 9(4), 52; https://doi.org/10.3390/colloids9040052 - 18 Aug 2025
Viewed by 198
Abstract
Foam stability plays a critical role in a wide range of industrial and scientific applications. In this study, an innovative method is presented for assessing foam stability through electrical conductivity measurements of liquid films formed within a controlled experimental setup. A modified horizontal [...] Read more.
Foam stability plays a critical role in a wide range of industrial and scientific applications. In this study, an innovative method is presented for assessing foam stability through electrical conductivity measurements of liquid films formed within a controlled experimental setup. A modified horizontal glass capillary system with vertically aligned copper electrodes was developed, allowing the continuous monitoring of film drainage and rupture behavior under precise humidity (92% RH) and temperature (30 °C). Experiments were conducted using various concentrations of sodium dodecyl sulfate and Ethylan 1005, with and without NaCl addition. The results demonstrate that film stability increases with higher surfactant concentrations up to a point, beyond which the addition of salt can have either stabilizing or destabilizing effects depending on whether concentration levels are below or above the Critical Micelle Concentration (CMC). At sub-CMC levels, NaCl enhanced film stability by promoting surfactant adsorption and reducing electrostatic repulsion. Conversely, in super-CMC conditions, NaCl led to film destabilization, likely due to changes in interfacial structure and micellar behavior. This approach provides a simple, sensitive, and reproducible technique to quantitatively characterize foam film stability, offering key mechanistic insights and practical guidance for the formulation and optimization of foaming systems across diverse applications. Full article
Show Figures

Graphical abstract

14 pages, 1078 KiB  
Article
Through Another’s Eyes: Implicit SNARC-like Attention Bias Reveals Allocentric Mapping of Numerical Magnitude
by Wanying Luo
Behav. Sci. 2025, 15(8), 1114; https://doi.org/10.3390/bs15081114 - 17 Aug 2025
Viewed by 251
Abstract
Numerical magnitude can bias spatial attention, typically facilitating faster responses to the left for small numbers and to the right for large numbers—an effect traditionally attributed to egocentric spatial mappings. However, in everyday environments, individuals often share space with others, raising the question [...] Read more.
Numerical magnitude can bias spatial attention, typically facilitating faster responses to the left for small numbers and to the right for large numbers—an effect traditionally attributed to egocentric spatial mappings. However, in everyday environments, individuals often share space with others, raising the question of whether such spatial–numerical associations can spontaneously reorganize based on another person’s visual perspective. To investigate this, we employed a digit-primed visual detection paradigm in which participants judged the location (left, right, up, or down) of a briefly presented peripheral probe following centrally displayed digits. If numerical magnitude implicitly guides attention, probe detection should be faster when its location is congruent with the digit-induced spatial bias. Critically, in the avatar condition, a task-irrelevant avatar was positioned on the participant’s left side, such that the avatar’s horizontal (left–right) axis corresponded to the participant’s vertical (up–down) axis—an axis along which egocentric numerical biases are typically absent. If participants spontaneously adopted the avatar’s perspective, numerical cues might induce attentional biases along this axis. Results revealed two simultaneous effects: a canonical egocentric SNARC-like effect (small–left, large–right) and a novel allocentric effect (small–up, large–down) emerged along the vertical axis, implicitly aligned with the avatar’s left–right spatial orientation. Numerical extremity enhanced the egocentric SNARC-like effect but had no effect in the allocentric case, pointing to a distinct mechanism rooted in embodied spatial perspective. These findings suggest that numerical magnitude can implicitly map onto both egocentric and allocentric spatial frames, reflecting a implicit and embodied mechanism of social understanding. Full article
(This article belongs to the Section Cognition)
Show Figures

Figure 1

29 pages, 8435 KiB  
Article
Study on the Bearing Characteristics of a Novel Inner Support Structure for Deep Foundation Pits Based on Full-Scale Experiments
by Xingui Zhang, Jianhang Liang, Gang Wei, Chengkao Liang, Li’e Yan, Wei Han, Yidan Zhang, Yingzhi Tian and Huai Zhang
Buildings 2025, 15(16), 2887; https://doi.org/10.3390/buildings15162887 - 15 Aug 2025
Viewed by 256
Abstract
Traditional internal support systems for deep foundation pits often suffer from issues such as insufficient stiffness, excessive displacement, and large support areas. To address these problems, the authors developed a novel spatial steel joist internal support system. Based on a large-scale field model [...] Read more.
Traditional internal support systems for deep foundation pits often suffer from issues such as insufficient stiffness, excessive displacement, and large support areas. To address these problems, the authors developed a novel spatial steel joist internal support system. Based on a large-scale field model test, this study investigates the bearing characteristics of the proposed system in deep foundation pits. A stiffness formulation for the novel support system was analytically derived and experimentally validated through a calibrated finite element model. After validation with test results, the effects of different vertical prestressing forces on the structure were analyzed. The results indicate that the proposed system provides significant support in deep foundation pits. The application of both horizontal and vertical prestressing increases the internal forces within the support structure while reducing overall displacement. The numerical predictions of horizontal displacement, bending moment, and the axial force distribution of the main support, as well as their development trends, align well with the model test results. Moreover, increasing the prestressing force of the steel tie rods effectively controls the deformation of the vertical arch support and enhances the stability of the spatial structure. The derived stiffness formula shows a small error compared with the finite element results, demonstrating its high accuracy. Furthermore, the diagonal support increases the stiffness of the lower chord bar support by 28.24%. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

12 pages, 1622 KiB  
Article
Pitch Invariance Reveals Skill-Specific Coordination in Human Movement: A Screw-Theoretic Reanalysis of Golf Swing Dynamics
by Wangdo Kim
J. Funct. Morphol. Kinesiol. 2025, 10(3), 315; https://doi.org/10.3390/jfmk10030315 - 15 Aug 2025
Viewed by 328
Abstract
Background: Skilled human movement, such as the golf swing, emerges from coordinated rotational and translational dynamics. This study investigates pitch—a screw-theoretic invariant defined as the ratio of linear to angular velocity along the instantaneous screw axis (ISA)—as a compact metric for quantifying motor [...] Read more.
Background: Skilled human movement, such as the golf swing, emerges from coordinated rotational and translational dynamics. This study investigates pitch—a screw-theoretic invariant defined as the ratio of linear to angular velocity along the instantaneous screw axis (ISA)—as a compact metric for quantifying motor coordination. Methods: We reanalyzed a validated motion capture dataset involving a proficient and a novice female golfer. ISA trajectories and pitch values were computed from 3D marker data, and synchronized with vertical ground reaction force (GRF) signals collected via force plate. Results: The proficient golfer exhibited tightly bounded pitch oscillations (approximately ±0.0025 cm/rad) that were temporally aligned with a single, well-defined GRF peak. In contrast, the novice showed irregular pitch fluctuations (−0.025 to +0.01 cm/rad) and asynchronous GRF patterns with multiple peaks. Conclusions: These findings demonstrate that pitch can serve as a biomechanical indicator of skilled performance, reflecting the degree of intersegmental coordination and force timing. Screw theory thus offers a rigorous framework for evaluating movement efficiency in sport and rehabilitation contexts. Full article
(This article belongs to the Section Kinesiology and Biomechanics)
Show Figures

Figure 1

18 pages, 6449 KiB  
Article
Analysis of the Microscopic Pore Structure Characteristics of Sandstone Based on Nuclear Magnetic Resonance Experiments and Nuclear Magnetic Resonance Logging Technology
by Shiqin Li, Chuanqi Tao, Haiyang Fu, Huan Miao and Jiutong Qiu
Fractal Fract. 2025, 9(8), 532; https://doi.org/10.3390/fractalfract9080532 - 14 Aug 2025
Viewed by 244
Abstract
This study focuses on the complex pore structure and pronounced heterogeneity of tight sandstone reservoirs in the Linxing area of the Ordos Basin and develops a multi-scale quantitative characterization approach to investigate the coupling mechanism between pore structure and reservoir properties. Six core [...] Read more.
This study focuses on the complex pore structure and pronounced heterogeneity of tight sandstone reservoirs in the Linxing area of the Ordos Basin and develops a multi-scale quantitative characterization approach to investigate the coupling mechanism between pore structure and reservoir properties. Six core samples were selected from the Shiqianfeng Formation (depth interval: 1326–1421 m) for detailed analysis. Cast thin sections and scanning electron microscopy (SEM) experiments were employed to characterize pore types and structural features. Nuclear magnetic resonance (NMR) experiments were conducted to obtain T2 spectra, which were used to classify bound and movable pores, and their corresponding fractal dimensions were calculated separately. In addition, NMR logging data from the corresponding well intervals were integrated to assess the applicability and consistency of the fractal characteristics at the logging scale. The results reveal that the fractal dimension of bound pores shows a positive correlation with porosity, whereas that of movable pores is negatively correlated with permeability, indicating that different scales of pore structural complexity exert distinct influences on reservoir performance. Mineral composition affects the evolution of pore structures through mechanisms such as framework support, dissolution, and pore-filling, thereby further enhancing reservoir heterogeneity. The consistency between logging responses and experimental observations verifies the regional applicability of fractal analysis. Bound pores dominate within the studied interval, and the vertical variation of the PMF/BVI ratio aligns closely with both the NMR T2 spectra and fractal results. This study demonstrates that fractal dimension is an effective descriptor of structural characteristics across different pore types and provides a theoretical foundation and methodological support for the evaluation of pore complexity and heterogeneity in tight sandstone reservoirs. Full article
(This article belongs to the Special Issue Multiscale Fractal Analysis in Unconventional Reservoirs)
Show Figures

Figure 1

13 pages, 2073 KiB  
Article
Hierarchical VOx@Wood Aerogel Electrodes with Tunable Valence States for Enhanced Energy Storage
by Yu Wang, Yuan Yu, Zhenle Hu, Lei Qiao, Huaiyuan Peng, Jingwen Xie, Haiyue Yang and Chengyu Wang
Nanomaterials 2025, 15(16), 1249; https://doi.org/10.3390/nano15161249 - 14 Aug 2025
Viewed by 227
Abstract
Vanadium-based electrode materials are limited in practical applications, due to their low energy density, cycling instability, and poor electrochemical stability. To address these limitations, a wood-derived vanadium oxide (VOx) electrode was developed through sol–gel assembly followed by thermal annealing, in which [...] Read more.
Vanadium-based electrode materials are limited in practical applications, due to their low energy density, cycling instability, and poor electrochemical stability. To address these limitations, a wood-derived vanadium oxide (VOx) electrode was developed through sol–gel assembly followed by thermal annealing, in which VOx aerogel formed within the vertically aligned wood channels, resulting in a continuous porous network to mitigate particle aggregation and enhance ion diffusion. After thermal annealing at 800 °C, V5+ partially converts to V4+, forming a mixed-valence heterostructure that significantly increases the density of redox-active sites and facilitates efficient charge transfer. The optimized VOx@Wood-800 °C (VOW-800) electrode exhibits a high specific capacitance of 317.8 F g−1 at 2 mA cm−2 and a specific surface area of 111.22 m−2 g−1, attributed to the synergistic effects of the mixed-valence structure and the enhanced ion accessibility provided by the wood-derived porous framework. This approach offers a promising pathway for developing vanadium-based electrodes with improved charge storage capacity and interface stability. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

22 pages, 5292 KiB  
Article
Hierarchical Design of High-Surface-Area Zinc Oxide Nanorods Grown on One-Dimensional Nanostructures
by Sharad Puri, Ali Kaan Kalkan and David N. McIlroy
Sci 2025, 7(3), 114; https://doi.org/10.3390/sci7030114 - 14 Aug 2025
Viewed by 1045
Abstract
In this work, ZnO nanorods were grown on vertically aligned and randomly aligned silica nanosprings using the hydrothermal method. The initial step was the deposition of a ZnO seed layer by atomic layer deposition to promote nucleation. For hydrothermal growth, equimolar (0.2 M) [...] Read more.
In this work, ZnO nanorods were grown on vertically aligned and randomly aligned silica nanosprings using the hydrothermal method. The initial step was the deposition of a ZnO seed layer by atomic layer deposition to promote nucleation. For hydrothermal growth, equimolar (0.2 M) solutions of Zinc nitrate hexahydrate and hexamethylene tetraamine prepared in DI water were used. The ZnO NR grown on the VANS were flower-like clusters, while for the RANS, the ZnO NR grew radially outward from the individual nanosprings. The lengths and diameters of ZnO NR grown on VANS and RANS were 175 and 650 nm, and 35 and 250 nm, respectively. Scanning electron microscopy confirmed the formation of ZnO nanorods, while X-ray diffraction and Raman spectroscopy verified that they have a hexagonal wurtzite crystal structure with preferential growth along the c-axis. X-ray photoelectron spectroscopy, in conjunction with in vacuo annealing, was used to examine the surface electronic structure of ZnO nanorods and defect healing. Photoluminescence of the ZnO nanorods indicates high crystal quality, as inferred from the weak defect band relative to strong excitonic band edge emission. Full article
Show Figures

Figure 1

13 pages, 6309 KiB  
Article
Reusable Three-Dimensional TiO2@MoS2 Core–Shell Photoreduction Material: Designed for High-Performance Seawater Uranium Extraction
by Chen Xie, Tianyi Zhao, Feng Zhou and Bohao Zhao
Catalysts 2025, 15(8), 769; https://doi.org/10.3390/catal15080769 - 13 Aug 2025
Viewed by 456
Abstract
Photocatalysis offers a cost-effective and eco-friendly approach for environmental remediation, yet traditional powdered photocatalysts suffer from poor recyclability and separation challenges. To address these limitations, we developed a recyclable carbon fiber-supported composite photocatalyst (CC/TiO2 NRs@MoS2 NPs) featuring a three-dimensional hierarchical core–shell [...] Read more.
Photocatalysis offers a cost-effective and eco-friendly approach for environmental remediation, yet traditional powdered photocatalysts suffer from poor recyclability and separation challenges. To address these limitations, we developed a recyclable carbon fiber-supported composite photocatalyst (CC/TiO2 NRs@MoS2 NPs) featuring a three-dimensional hierarchical core–shell architecture. This structure comprises a TiO2 seed layer, vertically aligned TiO2 nanorod arrays as the core, and a MoS2 nanoparticle shell, fabricated via sequential deposition. Under simulated solar irradiation, the TiO2@MoS2 heterojunction exhibited significantly enhanced uranium adsorption capacity, achieving a remarkable 97.3% photocatalytic removal efficiency within 2 h. At an initial uranium concentration of 200 ppm, the material demonstrated an exceptional extraction capacity of 976.7 mg g−1, outperforming most reported photocatalysts. These findings highlight the potential of this 3D core–shell design for efficient uranium recovery and environmental purification applications. Full article
(This article belongs to the Special Issue Synthesis and Catalytic Applications of Advanced Porous Materials)
Show Figures

Graphical abstract

21 pages, 6065 KiB  
Article
Numerical Study on Hydrodynamic Performances of Novel Dual-Layer Flower-Shaped Heave Plates of a Floating Offshore Wind Turbine
by Ruosi Zha, Junwen Liang, Jiahao Chen, Xiaodi Wu, Xiaotian Li and Zebin Liang
Energies 2025, 18(16), 4304; https://doi.org/10.3390/en18164304 - 13 Aug 2025
Viewed by 317
Abstract
This paper proposes novel designs of dual-layer flower-shaped heave plates, featuring both aligned and staggered configurations with three, six, and nine petals. Numerical simulations were conducted to study the hydrodynamic effects of these various heave plate designs integrated with the OC4 DeepCwind semisubmersible [...] Read more.
This paper proposes novel designs of dual-layer flower-shaped heave plates, featuring both aligned and staggered configurations with three, six, and nine petals. Numerical simulations were conducted to study the hydrodynamic effects of these various heave plate designs integrated with the OC4 DeepCwind semisubmersible floating offshore wind turbine platform under prescribed heave oscillations. The overset mesh technique was employed to treat the floating platform’s motions. Comprehensive assessments of vertical force, radiated wave patterns, vorticity fields, added mass, and damping coefficients were conducted. The results revealed that the novel flower-shaped staggered heave plates significantly outperformed conventional circular plates in terms of damping coefficients. Specifically, the damping coefficient of flower-shaped staggered heave plates was greater than that of circular heave plates, while the aligned configuration exhibited a lower damping coefficient. The damping coefficient increased with a reduction in the number of petals for the staggered heave plates. Among the evaluated designs, the dual-layer flower-shaped staggered heave plates with three petals demonstrated the highest effectiveness in attenuating heave motion of the floating platform. The utilization of novel dual-layer flower-shaped staggered heave plates is therefore a promising practice aimed at damping the heave motion of platforms in rough seas. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

23 pages, 4352 KiB  
Article
Nondestructive Mechanical and Electrical Characterization of Piezoelectric Zinc Oxide Nanowires for Energy Harvesting
by Frank Eric Boye Anang, Markys Cain, Min Xu, Zhi Li, Uwe Brand, Darshit Jangid, Sebastian Seibert, Chris Schwalb and Erwin Peiner
Micromachines 2025, 16(8), 927; https://doi.org/10.3390/mi16080927 - 12 Aug 2025
Viewed by 305
Abstract
In this study we report on the structural, mechanical, and electrical characterization of different structures of vertically aligned zinc oxide (ZnO) nanowires (NWs) synthesized using hydrothermal methods. By optimizing the growth conditions, scanning electron microscopy (SEM) micrographs show that the ZnO NWs could [...] Read more.
In this study we report on the structural, mechanical, and electrical characterization of different structures of vertically aligned zinc oxide (ZnO) nanowires (NWs) synthesized using hydrothermal methods. By optimizing the growth conditions, scanning electron microscopy (SEM) micrographs show that the ZnO NWs could reach an astounding 51.9 ± 0.82 µm in length, 0.7 ± 0.08 µm in diameter, and 3.3 ± 2.1 µm−2 density of the number of NWs per area within 24 h of growth time, compared with a reported value of ~26.8 µm in length for the same period. The indentation modulus of the as-grown ZnO NWs was determined using contact resonance (CR) measurements using atomic force microscopy (AFM). An indentation modulus of 122.2 ± 2.3 GPa for the NW array sample with an average diameter of ~690 nm was found to be close to the reference bulk ZnO value of 125 GPa. Furthermore, the measurement of the piezoelectric coefficient (d33) using the traceable ESPY33 tool under cyclic compressive stress gave a value of 1.6 ± 0.4 pC/N at 0.02 N with ZnO NWs of 100 ± 10 nm and 2.69 ± 0.05 µm in diameter and length, respectively, which were embedded in an S1818 polymer. Current–voltage (I-V) measurements of the ZnO NWs fabricated on an n-type silicon (Si) substrate utilizing a micromanipulator integrated with a tungsten (W) probe exhibits Ohmic behavior, revealing an important phenomenon which can be attributed to the generated electric field by the tungsten probe, dielectric residue, or conductive material. Full article
(This article belongs to the Special Issue Research Progress on Advanced Piezoelectric Energy Harvesters)
Show Figures

Figure 1

Back to TopTop