Hierarchical Design of High-Surface-Area Zinc Oxide Nanorods Grown on One-Dimensional Nanostructures
Abstract
1. Introduction
2. Materials Preparation and Characterization
2.1. Substrate Cleaning
2.2. Nanospring Growth
2.3. Plasma Treatment of Nanosprings
2.4. ZnO Seed Layer Deposition
2.5. Hydrothermal Growth and Characterization
2.6. Zinc Oxide Nanorod Characterization
3. Results and Discussion
3.1. Surface Morphology
3.2. Energy Dispersive X-Ray Spectroscopy
3.3. XRD Analysis
Crystallite Size (D) and Strain ()
3.4. X-Ray Photoelectron Analysis
3.5. Raman Spectroscopy
3.6. Photoluminescence Spectroscopy
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collares, F.M.; Garcia, I.M.; Klein, M.; Parolo, C.F.; Sánchez, F.A.L.; Takimi, A.; Bergmann, C.P.; Samuel, S.M.W.; Melo, M.A.; Leitune, V.C. Exploring Needle-Like Zinc Oxide Nanostructures for Improving Dental Resin Sealers: Design and Evaluation of Antibacterial, Physical and Chemical Properties. Polymers 2020, 12, 789. [Google Scholar] [CrossRef]
- Park, N.-K.; Han, G.B.; Lee, J.D.; Ryu, S.O.; Lee, T.J.; Chang, W.C.; Chang, C.H. The growth of ZnO nano-wire by a thermal evaporation method with very small amount of oxygen. Curr. Appl. Phys. 2006, 6, e176–e181. [Google Scholar] [CrossRef]
- Madlol, R.A.A. Structural and optical properties of ZnO nanotube synthesis via novel method. Results Phys. 2017, 7, 1498–1503. [Google Scholar] [CrossRef]
- Wang, L.; Chen, K.; Dong, L. Synthesis of Exotic Zigzag ZnO Nanoribbons and Their Optical, Electrical Properties. J. Phys. Chem. C 2010, 114, 17358–17361. [Google Scholar] [CrossRef]
- Gao, P.X.; Wang, Z.L. High-Yield Synthesis of Single-Crystal Nanosprings of ZnO. Small 2005, 1, 945–949. [Google Scholar] [CrossRef]
- Gao, P.-X.; Ding, Y.; Wang, Z.L. Electronic Transport in Superlattice-Structured ZnO Nanohelix. Nano Lett. 2009, 9, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.C.; Cai, W. Synthesis and characterization of ZnO nanorings with ZnO nanowires array aligned at the inner surface without catalyst. J. Cryst. Growth 2008, 310, 843–846. [Google Scholar] [CrossRef]
- Zhang, Q.; Bai, W. Synthesis and growth mechanism of macroscopic ZnO nanocombs and nanobelts. Vacuum 2011, 86, 398–402. [Google Scholar] [CrossRef]
- Qu, X.; Lü, S.; Wang, J.; Li, Z.; Xue, H. Preparation and optical property of porous ZnO nanobelts. Mater. Sci. Semicond. Process. 2012, 15, 244–250. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, S.K. Optical properties of ZnO. In Nanostructured Zinc Oxide; Elsevier: Amsterdam, The Netherlands, 2021; pp. 189–208. [Google Scholar] [CrossRef]
- Torkamani, R.; Aslibeiki, B.; Naghshara, H.; Darbandi, M. Structural and optical properties of ZnO nanorods: The effect of concentration and pH of the growth solution. Opt. Mater. 2022, 127, 112295. [Google Scholar] [CrossRef]
- Desai, A.V.; Haque, M.A. Mechanical properties of ZnO nanowires. Sens. Actuators Phys. 2007, 134, 169–176. [Google Scholar] [CrossRef]
- El-Shaarawy, M.G.; Khairy, M.; Mousa, M.A. Structural, electrical and electrochemical properties of ZnO nanoparticles synthesized using dry and wet chemical methods. Adv. Powder Technol. 2020, 31, 1333–1341. [Google Scholar] [CrossRef]
- Chen, Y.; Bagnall, D.; Yao, T. ZnO as a novel photonic material for the UV region. Mater. Sci. Eng. B 2000, 75, 190–198. [Google Scholar] [CrossRef]
- Abubakar, S.; Tan, S.T.; Liew, J.Y.C.; Talib, Z.A.; Sivasubramanian, R.; Vaithilingam, C.A.; Indira, S.S.; Oh, W.-C.; Siburian, R.; Sagadevan, S.; et al. Controlled Growth of Semiconducting ZnO Nanorods for Piezoelectric Energy Harvesting-Based Nanogenerators. Nanomaterials 2023, 13, 1025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Nayak, T.; Hong, H.; Cai, W. Biomedical Applications of Zinc Oxide Nanomaterials. Curr. Mol. Med. 2013, 13, 1633–1645. [Google Scholar] [CrossRef] [PubMed]
- El-Atab, N.; Chowdhury, F.; Ulusoy, T.G.; Ghobadi, A.; Nazirzadeh, A.; Okyay, A.K.; Nayfeh, A. ~3-nm ZnO Nanoislands Deposition and Application in Charge Trapping Memory Grown by Single ALD Step. Sci. Rep. 2016, 6, 38712. [Google Scholar] [CrossRef] [PubMed]
- Noorasid, N.S.; Arith, F.; Alias, S.N.; Mustafa, A.N.; Roslan, H.; Johari, S.H.; Rahim, H.R.A.; Ismail, M.M. Synthesis of ZnO Nanorod Using Hydrothermal Technique for Dye-Sensitized Solar Cell Application. In Intelligent Manufacturing and Mechatronics; Bahari, M.S., Harun, A., Zainal Abidin, Z., Hamidon, R., Zakaria, S., Eds.; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2021; pp. 895–905. [Google Scholar] [CrossRef]
- Tian, Z.R.; Voigt, J.A.; Liu, J.; Mckenzie, B.; Mcdermott, M.J.; Rodriguez, M.A.; Konishi, H.; Xu, H. Complex and oriented ZnO nanostructures. Nat. Mater. 2003, 2, 821–826. [Google Scholar] [CrossRef]
- Park, C.-I.; Jin, Z.; Hwang, I.-H.; Jeong, E.-S.; Han, S.-W. Linear defects and electrical properties of ZnO nanorods. Appl. Phys. Lett. 2018, 112, 253101. [Google Scholar] [CrossRef]
- Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators Phys. 2017, 267, 242–261. [Google Scholar] [CrossRef]
- Rasmidi, R.; Duinong, M.; Chee, F.P. Radiation damage effects on zinc oxide (ZnO) based semiconductor devices—A review. Radiat. Phys. Chem. 2021, 184, 109455. [Google Scholar] [CrossRef]
- Galdámez-Martinez, A.; Santana, G.; Güell, F.; Martínez-Alanis, P.R.; Dutt, A. Photoluminescence of ZnO Nanowires: A Review. Nanomaterials 2020, 10, 857. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.W.; Tsui, Y.Y. Production of porous nanostructured zinc oxide thin films by pulsed laser deposition. Opt. Mater. 2007, 29, 1111–1114. [Google Scholar] [CrossRef]
- Castañeda, L. Assembly and electroluminescence of sheet-like zinc oxide/silicon light-emitting diode by a radio frequency magnetron sputtering technique. In Silicon-Based Hybrid Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2022; pp. 89–101. [Google Scholar] [CrossRef]
- Zunke, I.; Wolf, S.; Heft, A.; Schimanski, A.; Grünler, B.; Ronning, C.; Seidel, P. Structural properties of zinc oxide deposited using atmospheric pressure combustion chemical vapour deposition. Thin Solid Films 2014, 565, 45–53. [Google Scholar] [CrossRef]
- Wojnarowicz, J.; Chudoba, T.; Lojkowski, W. A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphologies. Nanomaterials 2020, 10, 1086. [Google Scholar] [CrossRef]
- Ullah, S.; Shaban, M.; Siddique, A.B.; Zulfiqar, A.; Lali, N.S.; Naeem-ul-Hassan, M.; Irfan, M.I.; Sher, M.; Fayyaz Ur Rehman, M.; Hanbashi, A.; et al. Greenly synthesized zinc oxide nanoparticles: An efficient, cost-effective catalyst for dehydrogenation of formic acid and with improved antioxidant and phyto-toxic properties. J. Environ. Chem. Eng. 2024, 12, 113350. [Google Scholar] [CrossRef]
- Moharram, A.H.; Mansour, S.A.; Hussein, M.A.; Rashad, M. Direct Precipitation and Characterization of ZnO Nanoparticles. J. Nanomater. 2014, 2014, 716210. [Google Scholar] [CrossRef]
- Minoura, H.; Yoshida, T. Electrodeposition of ZnO/Dye Hybrid Thin Films for Dye-Sensitized Solar Cells. Electrochemistry 2008, 76, 109–117. [Google Scholar] [CrossRef]
- Syed, A.; Kalloudis, M.; Koutsos, V.; Mastropaolo, E. Controlled hydrothermal growth of vertically-aligned zinc oxide nanowires using silicon and polyimide substrates. Microelectron. Eng. 2015, 145, 86–90. [Google Scholar] [CrossRef]
- Lehraki, N.; Aida, M.S.; Abed, S.; Attaf, N.; Attaf, A.; Poulain, M. ZnO thin films deposition by spray pyrolysis: Influence of precursor solution properties. Curr. Appl. Phys. 2012, 12, 1283–1287. [Google Scholar] [CrossRef]
- Ohyama, M.; Kouzuka, H.; Yoko, T. Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution. Thin Solid Films 1997, 306, 78–85. [Google Scholar] [CrossRef]
- Baruah, S.; Thanachayanont, C.; Dutta, J. Growth of ZnO nanowires on nonwoven polyethylene fibers. Sci. Technol. Adv. Mater. 2008, 9, 025009. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.G.; Kim, E.H.; Kim, S.S. Growth of ZnO Nanorods on ITO Film for Piezoelectric Nanogenerators. Materials 2021, 14, 1461. [Google Scholar] [CrossRef] [PubMed]
- Slimani, H.; Bessous, N.; Dagher, S.; Hilal-Alnaqbi, A.; El Gamal, M.; Akhozheya, B.; Mohammed, M. Growth of ZnO nanorods on FTO glass substrate. Mater. Res. Express 2020, 7, 025026. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, J.Y.; Chang, H.; Kim, M.S.; Leem, J.-Y.; Ballato, J.; Kim, S.-O. Low-temperature growth of multiple-stack high-density ZnO nanoflowers/nanorods on plastic substrates. Nanotechnology 2012, 23, 485606. [Google Scholar] [CrossRef]
- Fei, J.; Luo, D.; Huang, J.; Zhang, C.; Duan, X.; Zhang, L. Growth of aligned ZnO nanorods on carbon fabric and its composite for superior mechanical and tribological performance. Surf. Coat. Technol. 2018, 344, 433–440. [Google Scholar] [CrossRef]
- Hussein, A.D.; Muhsen Ali, A. Growth powder and seed layers ZnO on foil aluminum using hydrothermal method. In Full Text Book of Minar Congress 7; Rimar Academy: Istanbul, Türkiye, 2023; pp. 199–206. [Google Scholar]
- Hazarika, A.; Deka, B.K.; Kim, D.; Kong, K.; Park, Y.-B.; Park, H.W. Growth of aligned ZnO nanorods on woven Kevlar® fiber and its performance in woven Kevlar® fiber/polyester composites. Compos. Part Appl. Sci. Manuf. 2015, 78, 284–293. [Google Scholar] [CrossRef]
- Wang, X.; Ahmad, M.; Sun, H. Three-Dimensional ZnO Hierarchical Nanostructures: Solution Phase Synthesis and Applications. Materials 2017, 10, 1304. [Google Scholar] [CrossRef]
- Witkowski, B. Applications of ZnO Nanorods and Nanowires—A Review. Acta Phys. Pol. A 2018, 134, 1226–1246. [Google Scholar] [CrossRef]
- Bakranova, D.; Nagel, D. ZnO for Photoelectrochemical Hydrogen Generation. Clean Technol. 2023, 5, 1248–1268. [Google Scholar] [CrossRef]
- Harinipriya, S.; Usmani, B.; Rogers, D.J.; Sandana, V.E.; Teherani, F.H.; Lusson, A.; Bove, P.; Drouhin, H.-J.; Razeghi, M. ZnO nanorod electrodes for hydrogen evolution and storage. In Proceedings of the SPIE OPTO, San Francisco, CA, USA, 21–26 January 2012; Teherani, F.H., Look, D.C., Rogers, D.J., Eds.; SPIE: Bellingham, WA, USA, 2012; p. 82631Y. [Google Scholar] [CrossRef]
- Dobrokhotov, V.; Oakes, L.; Sowell, D.; Larin, A.; Hall, J.; Kengne, A.; Bakharev, P.; Corti, G.; Cantrell, T.; Prakash, T.; et al. ZnO coated nanospring-based chemiresistors. J. Appl. Phys. 2012, 111, 044311. [Google Scholar] [CrossRef]
- Corti, G.; Brown, J.; Rajabi, N.; McIlroy, D.N. Threefold growth efficiency improvement of silica nanosprings by using silica nanosprings as a substrate. Nanotechnology 2018, 29, 115604. [Google Scholar] [CrossRef] [PubMed]
- McIlroy, D.N.; Alkhateeb, A.; Zhang, D.; Aston, D.E.; Marcy, A.C.; Norton, M.G. Nanospring formation—Unexpected catalyst mediated growth. J. Phys. Condens. Matter 2004, 16, R415–R440. [Google Scholar] [CrossRef]
- Wojcik, P.M.; Bakharev, P.V.; Corti, G.; McIlroy, D.N. Nucleation, evolution, and growth dynamics of amorphous silica nanosprings. Mater. Res. Express 2017, 4, 015004. [Google Scholar] [CrossRef]
- Timalsina, Y.P.; Oriero, D.; Cantrell, T.; Prakash, T.; Branen, J.; Aston, D.E.; Noren, K.; Nagler, J.J.; Rastogi, S.; McIlroy, D.N.; et al. Characterization of a vertically aligned silica nanospring-based sensor by alternating current impedance spectroscopy. J. Micromech. Microeng. 2010, 20, 095005. [Google Scholar] [CrossRef]
- Rajabi, N.; Wojcik, P.M.; Khanal, L.R.; Qiang, Y.; McIlroy, D.N. A comparison of the morphological and electrical properties of sol-gel dip coating and atomic layer deposition of ZnO on 3D nanospring mats. Mater. Res. Express 2018, 6, 035902. [Google Scholar] [CrossRef]
- Boubenia, S.; Dahiya, A.S.; Poulin-Vittrant, G.; Morini, F.; Nadaud, K.; Alquier, D. A facile hydrothermal approach for the density tunable growth of ZnO nanowires and their electrical characterizations. Sci. Rep. 2017, 7, 15187. [Google Scholar] [CrossRef]
- Baruah, S.; Dutta, J. Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 2009, 10, 013001. [Google Scholar] [CrossRef]
- Schmidt-Mende, L.; MacManus-Driscoll, J.L. ZnO—Nanostructures, defects, and devices. Mater. Today 2007, 10, 40–48. [Google Scholar] [CrossRef]
- Pauchard, L.; Giorgiutti-Dauphiné, F.; McIlroy, D. Crack quasi-healing in films of vertically aligned 1D nanostructures: Impact of compliance in a 1D geometry. J. Appl. Phys. 2022, 131, 164701. [Google Scholar] [CrossRef]
- McIlroy, D.; Pauchard, L. Evolution of the crack patterns in nanostructured films with subsequent wetting and drying cycles. Europhys. Lett. 2024, 147, 56002. [Google Scholar] [CrossRef]
- Ahsanulhaq, Q.; Kim, J.H.; Lee, J.S.; Hahn, Y.B. Electrical and gas sensing properties of ZnO nanorod arrays directly grown on a four-probe electrode system. Electrochem. Commun. 2010, 12, 475–478. [Google Scholar] [CrossRef]
- Naiel, B.; Fawzy, M.; Halmy, M.W.A.; Mahmoud, A.E.D. Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: Characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Sci. Rep. 2022, 12, 20370. [Google Scholar] [CrossRef] [PubMed]
- Kar, N.; Kamilla, S.K.; Medicherla, V.R.R.; Bedanta, S.; Deshpande, U.P.; Sathe, V.; Behera, S.S.; Mallick, P. Effective role of vibrational annealing in enhancing room temperature physical properties of Co doped ZnO nanoparticles by using novel TVA technique. J. Mater. Res. Technol. 2023, 24, 2522–2537. [Google Scholar] [CrossRef]
- Abd-Elkader, O.H.; Deraz, N.M.; Aleya, L. Rapid Bio-Assisted Synthesis and Magnetic Behavior of Zinc Oxide/Carbon Nanoparticles. Crystals 2023, 13, 1081. [Google Scholar] [CrossRef]
- Ahmad, M.; Rehman, W.; Khan, M.M.; Qureshi, M.T.; Gul, A.; Haq, S.; Ullah, R.; Rab, A.; Menaa, F. Phytogenic fabrication of ZnO and gold decorated ZnO nanoparticles for photocatalytic degradation of Rhodamine B. J. Environ. Chem. Eng. 2021, 9, 104725. [Google Scholar] [CrossRef]
- Azmi, Z.H.; Mohd Aris, S.N.; Abubakar, S.; Sagadevan, S.; Siburian, R.; Paiman, S. Effect of Seed Layer on the Growth of Zinc Oxide Nanowires by Chemical Bath Deposition Method. Coatings 2022, 12, 474. [Google Scholar] [CrossRef]
- Roddu, A.K.; Wahab, A.W.; Ahmad, A.; Taba, P.; Sutapa, I.W. Theoretical Analysis Properties of Gold Nanoparticles Resulted by Bioreduction Process. J. Phys. Conf. Ser. 2020, 1463, 012008. [Google Scholar] [CrossRef]
- Hassanzadeh-Tabrizi, S.A. Precise calculation of crystallite size of nanomaterials: A review. J. Alloys Compd. 2023, 968, 171914. [Google Scholar] [CrossRef]
- Ramadurai, R.; Bhattacharyya, S. Strain Engineering in Crystalline Solids. In Strain Engineering in Functional Materials and Devices; Ramadurai, R., Bhattacharyya, S., Eds.; AIP Publishing LLC: Melville, NY, USA, 2023; p. 1-1–1-22. [Google Scholar] [CrossRef]
- Zak, A.K.; Majid, W.A.; Abrishami, M.E.; Yousefi, R. X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 2011, 13, 251–256. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the “Debye-Scherrer equation. ” Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef]
- Singh, A.; Vishwakarma, H.L. Study of structural, morphological, optical and electroluminescent properties of undoped ZnO nanorods grown by a simple chemical precipitation. Mater. Sci.-Pol. 2015, 33, 751–759. [Google Scholar] [CrossRef]
- Abdulrahman, A.F.; Barzinjy, A.A.; Hamad, S.M.; Almessiere, M.A. Impact of Radio Frequency Plasma Power on the Structure, Crystallinity, Dislocation Density, and the Energy Band Gap of ZnO Nanostructure. ACS Omega 2021, 6, 31605–31614. [Google Scholar] [CrossRef]
- Hegde, V.N.; V, M.V.; M, P.T.; C, H.B. Study on structural, morphological, elastic and electrical properties of ZnO nanoparticles for electronic device applications. J. Sci. Adv. Mater. Devices 2024, 9, 100733. [Google Scholar] [CrossRef]
- Quang, L.H.; Chua, S.J.; Ping Loh, K.; Fitzgerald, E. The effect of post-annealing treatment on photoluminescence of ZnO nanorods prepared by hydrothermal synthesis. J. Cryst. Growth 2006, 287, 157–161. [Google Scholar] [CrossRef]
- Jaszek, R. Carrier scattering by dislocations in semiconductors. J. Mater. Sci. Mater. Electron. 2001, 12, 1–9. [Google Scholar] [CrossRef]
- Bindu, P.; Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 2014, 8, 123–134. [Google Scholar] [CrossRef]
- Wang, X.S.; Wu, Z.C.; Webb, J.F.; Liu, Z.G. Ferroelectric and dielectric properties of Li-doped ZnO thin films prepared by pulsed laser deposition. Appl. Phys. A 2003, 77, 561–565. [Google Scholar] [CrossRef]
- Schulz, H.; Thiemann, K.H. Structure parameters and polarity of the wurtzite type compounds Sic—2H and ZnO. Solid State Commun. 1979, 32, 783–785. [Google Scholar] [CrossRef]
- Bakry, M.; Ismail, W.; Abdelfatah, M.; El-Shaer, A. Low-cost fabrication methods of ZnO nanorods and their physical and photoelectrochemical properties for optoelectronic applications. Sci. Rep. 2024, 14, 23788. [Google Scholar] [CrossRef]
- Seetawan, U.; Jugsujinda, S.; Seetawan, T.; Ratchasin, A.; Euvananont, C.; Junin, C.; Thanachayanont, C.; Chainaronk, P. Effect of Calcinations Temperature on Crystallography and Nanoparticles in ZnO Disk. Mater. Sci. Appl. 2011, 2, 1302–1306. [Google Scholar] [CrossRef]
- Araújo Júnior, E.A.; Nobre, F.X.; Sousa, G.D.S.; Cavalcante, L.S.; Rita De Morais Chaves Santos, M.; Souza, F.L.; Elias De Matos, J.M. Synthesis, growth mechanism, optical properties and catalytic activity of ZnO microcrystals obtained via hydrothermal processing. RSC Adv. 2017, 7, 24263–24281. [Google Scholar] [CrossRef]
- Mathumba, P.; Bilibana, M.P.; Olatunde, O.C.; Onwudiwe, D.C. X-ray diffraction profile analysis of green synthesized ZnO and TiO2 nanoparticles. Mater. Res. Express 2024, 11, 075011. [Google Scholar] [CrossRef]
- Kalita, A.; Kalita, M.P.C. Williamson-Hall analysis and optical properties of small sized ZnO nanocrystals. Phys. E Low-Dimens. Syst. Nanostruct. 2017, 92, 36–40. [Google Scholar] [CrossRef]
- Arun, V.; Prabhu, S.; Priyadharsan, A.; Maadeswaran, P.; Sohila, S.; Ramesh, R.; Kumar, A.S. Facile, low cost synthesis of cauliflower-shaped ZnO with MWCNT/rGO nanocomposites and their photocatalytic activity. J. Mater. Sci. Mater. Electron. 2021, 32, 15763–15777. [Google Scholar] [CrossRef]
- Byrne, D.; McGlynn, E.; Henry, M.O.; Kumar, K.; Hughes, G. A novel, substrate independent three-step process for the growth of uniform ZnO nanorod arrays. Thin Solid Films 2010, 518, 4489–4492. [Google Scholar] [CrossRef]
- Ballerini, G.; Ogle, K.; Barthés-Labrousse, M.-G. The acid–base properties of the surface of native zinc oxide layers: An XPS study of adsorption of 1,2-diaminoethane. Appl. Surf. Sci. 2007, 253, 6860–6867. [Google Scholar] [CrossRef]
- Marrani, A.G.; Caprioli, F.; Boccia, A.; Zanoni, R.; Decker, F. Electrochemically deposited ZnO films: An XPS study on the evolution of their surface hydroxide and defect composition upon thermal annealing. J. Solid State Electrochem. 2014, 18, 505–513. [Google Scholar] [CrossRef]
- Maffeis, T.G.G.; Penny, M.W.; Castaing, A.; Guy, O.J.; Wilks, S.P. XPS investigation of vacuum annealed vertically aligned ultralong ZnO nanowires. Surf. Sci. 2012, 606, 99–103. [Google Scholar] [CrossRef]
- Wang, J.; Mueller, D.N.; Crumlin, E.J. Recommended strategies for quantifying oxygen vacancies with X-ray photoelectron spectroscopy. J. Eur. Ceram. Soc. 2024, 44, 116709. [Google Scholar] [CrossRef]
- Zhang, R.; Yin, P.-G.; Wang, N.; Guo, L. Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci. 2009, 11, 865–869. [Google Scholar] [CrossRef]
- Damen, T.C.; Porto, S.P.S.; Tell, B. Raman Effect in Zinc Oxide. Phys. Rev. 1966, 142, 570–574. [Google Scholar] [CrossRef]
- Cuscó, R.; Alarcón-Lladó, E.; Ibáñez, J.; Artús, L.; Jiménez, J.; Wang, B.; Callahan, M.J. Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 2007, 75, 165202. [Google Scholar] [CrossRef]
- Vink, R.L.C.; Barkema, G.T.; Van Der Weg, W.F. Raman spectra and structure of amorphous Si. Phys. Rev. B 2001, 63, 115210. [Google Scholar] [CrossRef]
- Wang, L.; Giles, N.C. Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy. J. Appl. Phys. 2003, 94, 973–978. [Google Scholar] [CrossRef]
- Mahesh, A.; Kumar, G.P.; Jawahar, I.N.; Biju, V. Temperature Dependent Photoluminescence Spectra of Nanocrystalline Zinc Oxide: Effect of processing condition on the excitonic and defect mediated emissions. Chem. Phys. Impact 2024, 8, 100456. [Google Scholar] [CrossRef]
- Liao, Z.-M.; Zhang, H.-Z.; Zhou, Y.-B.; Xu, J.; Zhang, J.-M.; Yu, D.-P. Surface effects on photoluminescence of single ZnO nanowires. Phys. Lett. A 2008, 372, 4505–4509. [Google Scholar] [CrossRef]
- Ye, J.D.; Gu, S.L.; Qin, F.; Zhu, S.M.; Liu, S.M.; Zhou, X.; Liu, W.; Hu, L.Q.; Zhang, R.; Shi, Y.; et al. Correlation between green luminescence and morphology evolution of ZnO films. Appl. Phys. A 2005, 81, 759–762. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, J.; Tripathi, R.; Chauhan, S.R. Photoluminescence Investigations and Band Gap Engineering in Environment Friendly ZnO Nanorods: Enhanced Water Treatment Application and Defect Model. ACS Omega 2023, 8, 27732–27742. [Google Scholar] [CrossRef]
- Bastatas, L.D.; Wagle, P.; Echeverria, E.; Slinker, J.D.; McIlroy, D.N. Electrical characterization of ZnO-coated nanospring ensemble by impedance spectroscopy: Probing the effect of thermal annealing. Nanotechnology 2019, 30, 234006. [Google Scholar] [CrossRef]
- Dobrokhotov, V.; Oakes, L.; Sowell, D.; Larin, A.; Hall, J.; Kengne, A.; Bakharev, P.; Corti, G.; Cantrell, T.; Prakash, T.; et al. Toward the nanospring-based artificial olfactory system for trace-detection of flammable and explosive vapors. Sens. Actuators B Chem. 2012, 168, 138–148. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, L.; Bao, Y.; Zhang, Y.; Wang, J.; Fu, M.; Wu, J.; Ye, D. The Applications of Morphology Controlled ZnO in Catalysis. Catalysts 2016, 6, 188. [Google Scholar] [CrossRef]
- Liu, T.-J.; Wang, Q.; Jiang, P. Morphology-dependent photo-catalysis of bare zinc oxide nanocrystals. RSC Adv. 2013, 3, 12662. [Google Scholar] [CrossRef]
- Bakharev, P.; Dobrokhotov, V.; McIlroy, D. A Method for Integrating ZnO Coated Nanosprings into a Low Cost Redox-Based Chemical Sensor and Catalytic Tool for Determining Gas Phase Reaction Kinetics. Chemosensors 2014, 2, 56–68. [Google Scholar] [CrossRef]
- Valikhani, D.; Bolivar, J.M.; Viefhues, M.; McIlroy, D.N.; Vrouwe, E.X.; Nidetzky, B. A Spring in Performance: Silica Nanosprings Boost Enzyme Immobilization in Microfluidic Channels. ACS Appl. Mater. Interfaces 2017, 9, 34641–34649. [Google Scholar] [CrossRef]
- Wu, C.-M.; Baltrusaitis, J.; Gillan, E.G.; Grassian, V.H. Sulfur Dioxide Adsorption on ZnO Nanoparticles and Nanorods. J. Phys. Chem. C 2011, 115, 10164–10172. [Google Scholar] [CrossRef]
- Hafez, H.S. Highly active ZnO rod-like nanomaterials: Synthesis, characterization and photocatalytic activity for dye removal. Phys. E Low-Dimens. Syst. Nanostruct. 2012, 44, 1522–1527. [Google Scholar] [CrossRef]
- Lu, Y.; Hsieh, C.; Su, G. The Role of ALD-ZnO Seed Layers in the Growth of ZnO Nanorods for Hydrogen Sensing. Micromachines 2019, 10, 491. [Google Scholar] [CrossRef] [PubMed]
- Bastatas, L.D.; Echeverria-Mora, E.; Wagle, P.; Mainali, P.; Austin, A.; McIlroy, D.N. Emergent Electrical Properties of Ensembles of 1D Nanostructures and Their Impact on Room Temperature Electrical Sensing of Ammonium Nitrate Vapor. ACS Sens. 2018, 3, 2367–2374. [Google Scholar] [CrossRef] [PubMed]
- Dobrokhotov, V.; Oakes, L.; Sowell, D.; Larin, A.; Hall, J.; Barzilov, A.; Kengne, A.; Bakharev, P.; Corti, G.; Cantrell, T.; et al. Thermal and Optical Activation Mechanisms of Nanospring-Based Chemiresistors. Sensors 2012, 12, 5608–5622. [Google Scholar] [CrossRef]
- Kwon, D.-H.; Jin, E.-H.; Yoo, D.-H.; Roh, J.-W.; Suh, D.; Commerell, W.; Huh, J.-S. Analysis of the Response Characteristics of Toluene Gas Sensors with a ZnO Nanorod Structure by a Heat Treatment Process. Sensors 2022, 22, 4125. [Google Scholar] [CrossRef]
- Fukuda, T.; Uratani, Y. Inverted Organic Photovoltaic Cell with ZnO Nanorod Structure. Electrochemistry 2017, 85, 249–252. [Google Scholar] [CrossRef]
- Wahab, R.; Ansari, Z.A.; Ansari, S.G.; Kim, Y.-S.; Hwang, I.H.; Kim, D.-H.; Mussarat, J.; Al-Khedhairy, A.A.; Siddiqi, M.A.; Shin, H.-S. Hydrogen Storage Properties of Heterostructured Zinc Oxide Nanostructures. J. Nanoeng. Nanomanuf. 2011, 1, 188–195. [Google Scholar] [CrossRef]
Diffraction Planes (h k l) | 2θ (Degree) | FWHM (Radian) | Line Breadth | Crystallite Size, D (nm) | Dislocation Density, δ ×103 (nm−2) | d-Spacing (Å) |
---|---|---|---|---|---|---|
(1 0 0) | 31.2 | 0.0083 | 0.008 | 17.1 | 3.84 | 2.8 |
(0 0 2) | 33.9 | 0.0085 | 0.008 | 16.8 | 3.98 | 2.6 |
(1 0 1) | 35.7 | 0.0083 | 0.008 | 17.3 | 3.81 | 2.5 |
(1 0 2) | 47.1 | 0.0078 | 0.007 | 19.3 | 3.24 | 1.9 |
(1 1 0) | 56.1 | 0.0066 | 0.006 | 23.4 | 2.49 | 1.6 |
(1 0 3) | 62.4 | 0.0075 | 0.006 | 21.3 | 2.97 | 1.5 |
(1 1 2) | 67.5 | 0.0065 | 0.005 | 25.4 | 2.43 | 1.4 |
(2 0 1) | 68.6 | 0.0053 | 0.004 | 31.1 | 1.95 | 1.4 |
Diffraction Planes (h k l) | 2θ (Degree) | FWHM (Radian) | Line Breadth | Crystallite Size, D (nm) | Dislocation Density, δ ×10−3 (nm−2) | d-Spacing (Å) |
---|---|---|---|---|---|---|
(1 0 0) | 31.0 | 0.0079 | 0.008 | 18.0 | 3.10 | 2.9 |
(0 0 2) | 33.6 | 0.0052 | 0.005 | 27.6 | 1.32 | 2.7 |
(1 0 1) | 35.4 | 0.0096 | 0.009 | 15.0 | 4.42 | 2.5 |
(1 0 2) | 46.8 | 0.0072 | 0.007 | 20.8 | 2.32 | 2.0 |
(1 1 0) | 55.9 | 0.0064 | 0.006 | 24.4 | 1.67 | 1.7 |
(1 0 3) | 62.1 | 0.0082 | 0.007 | 19.6 | 2.66 | 1.5 |
(2 0 1) | 68.3 | 0.0074 | 0.006 | 22.3 | 2.02 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puri, S.; Kalkan, A.K.; McIlroy, D.N. Hierarchical Design of High-Surface-Area Zinc Oxide Nanorods Grown on One-Dimensional Nanostructures. Sci 2025, 7, 114. https://doi.org/10.3390/sci7030114
Puri S, Kalkan AK, McIlroy DN. Hierarchical Design of High-Surface-Area Zinc Oxide Nanorods Grown on One-Dimensional Nanostructures. Sci. 2025; 7(3):114. https://doi.org/10.3390/sci7030114
Chicago/Turabian StylePuri, Sharad, Ali Kaan Kalkan, and David N. McIlroy. 2025. "Hierarchical Design of High-Surface-Area Zinc Oxide Nanorods Grown on One-Dimensional Nanostructures" Sci 7, no. 3: 114. https://doi.org/10.3390/sci7030114
APA StylePuri, S., Kalkan, A. K., & McIlroy, D. N. (2025). Hierarchical Design of High-Surface-Area Zinc Oxide Nanorods Grown on One-Dimensional Nanostructures. Sci, 7(3), 114. https://doi.org/10.3390/sci7030114