Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = vertical GaN transistor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 10348 KB  
Article
The Effect of Dual-Layer Carbon/Iron-Doped Buffers in an AlGaN/GaN High-Electron-Mobility Transistor
by Po-Hsuan Chang, Chong-Rong Huang, Chia-Hao Liu, Kuan-Wei Lee and Hsien-Chin Chiu
Micromachines 2025, 16(9), 1034; https://doi.org/10.3390/mi16091034 - 10 Sep 2025
Viewed by 363
Abstract
This study compared the effectiveness of gallium nitride (GaN) with a single carbon-doped (C-doped) buffer layer and a composite carbon/iron-doped (C/Fe-doped) buffer layer within an AlGaN/GaN high-electron-mobility transistor (HEMT). In traditional power devices, Fe-doping has a large memory effect, causing Fe ions to [...] Read more.
This study compared the effectiveness of gallium nitride (GaN) with a single carbon-doped (C-doped) buffer layer and a composite carbon/iron-doped (C/Fe-doped) buffer layer within an AlGaN/GaN high-electron-mobility transistor (HEMT). In traditional power devices, Fe-doping has a large memory effect, causing Fe ions to diffuse outwards, which is undesirable in high-power-device applications. In the present study, a C-doped GaN layer was added above the Fe-doped GaN layer to form a composite buffer against Fe ion diffusion. Direct current (DC) characteristics, pulse measurement, low-frequency noise, and variable temperature analysis were performed on both devices. The single C-doped buffer layer in the AlGaN/GaN HEMT had fewer defects in capturing and releasing carriers, and better dynamic characteristics, whereas the composite C/Fe-doped buffers, by suppressing Fe migration toward the channel, showed higher vertical breakdown voltage and lower sheet resistance, and still demonstrated potential for further performance tuning to achieve enhanced semi-insulating behavior. With optimized doping concentrations and layer thicknesses, the dual-layer configuration offers a promising path toward improved trade-offs between leakage suppression, trap control, and dynamic performance for next-generation GaN-based power devices. Full article
(This article belongs to the Special Issue III–V Compound Semiconductors and Devices, 2nd Edition)
Show Figures

Figure 1

11 pages, 1160 KB  
Article
Characteristics Prediction and Optimization of GaN CAVET Using a Novel Physics-Guided Machine Learning Method
by Wenbo Wu, Jie Wang, Jiangtao Su, Zhanfei Chen and Zhiping Yu
Micromachines 2025, 16(9), 1005; https://doi.org/10.3390/mi16091005 - 30 Aug 2025
Viewed by 521
Abstract
This paper presents a physics-guided machine learning (PGML) approach to model the I–V characteristics of GaN current aperture vertical field effect transistors (CAVET). By adopting the method of transfer learning and the shortcut structure, a physically guided neural network model is established. The [...] Read more.
This paper presents a physics-guided machine learning (PGML) approach to model the I–V characteristics of GaN current aperture vertical field effect transistors (CAVET). By adopting the method of transfer learning and the shortcut structure, a physically guided neural network model is established. The shallow neural network with tanh as the basis function is combined with a hypernetwork that dynamically generates its weight parameters. The influence of transconductance is added to the loss function. This model can synchronously predict the output and transfer characteristics of the device. Under the condition of small samples, the prediction error is controlled within 5%, and the R2 value reaches above 0.99. The proposed PGML approach outperforms conventional approaches, ensuring physically meaningful and robust predictions for device optimization and circuit-level simulations. Full article
(This article belongs to the Special Issue Power Semiconductor Devices and Applications, 3rd Edition)
Show Figures

Figure 1

13 pages, 2826 KB  
Article
Design and Application of p-AlGaN Short Period Superlattice
by Yang Liu, Changhao Chen, Xiaowei Zhou, Peixian Li, Bo Yang, Yongfeng Zhang and Junchun Bai
Micromachines 2025, 16(8), 877; https://doi.org/10.3390/mi16080877 - 29 Jul 2025
Viewed by 547
Abstract
AlGaN-based high-electron-mobility transistors are critical for next-generation power electronics and radio-frequency applications, yet achieving stable enhancement-mode operation with a high threshold voltage remains a key challenge. In this work, we designed p-AlGaN superlattices with different structures and performed energy band structure simulations using [...] Read more.
AlGaN-based high-electron-mobility transistors are critical for next-generation power electronics and radio-frequency applications, yet achieving stable enhancement-mode operation with a high threshold voltage remains a key challenge. In this work, we designed p-AlGaN superlattices with different structures and performed energy band structure simulations using the device simulation software Silvaco. The results demonstrate that thin barrier structures lead to reduced acceptor incorporation, thereby decreasing the number of ionized acceptors, while facilitating vertical hole transport. Superlattice samples with varying periodic thicknesses were grown via metal-organic chemical vapor deposition, and their crystalline quality and electrical properties were characterized. The findings reveal that although gradient-thickness barriers contribute to enhancing hole concentration, the presence of thick barrier layers restricts hole tunneling and induces stronger scattering, ultimately increasing resistivity. In addition, we simulated the structure of the enhancement-mode HEMT with p-AlGaN as the under-gate material. Analysis of its energy band structure and channel carrier concentration indicates that adopting p-AlGaN superlattices as the under-gate material facilitates achieving a higher threshold voltage in enhancement-mode HEMT devices, which is crucial for improving device reliability and reducing power loss in practical applications such as electric vehicles. Full article
(This article belongs to the Special Issue III–V Compound Semiconductors and Devices, 2nd Edition)
Show Figures

Figure 1

12 pages, 11779 KB  
Communication
Normally-Off Trench-Gated AlGaN/GaN Current Aperture Vertical Electron Transistor with Double Superjunction
by Jong-Uk Kim, Do-Yeon Park, Byeong-Jun Park and Sung-Ho Hahm
Technologies 2024, 12(12), 262; https://doi.org/10.3390/technologies12120262 - 16 Dec 2024
Viewed by 2372
Abstract
This study proposes an AlGaN/GaN current aperture vertical electron transistor (CAVET) featuring a double superjunction (SJ) to enhance breakdown voltage (BV) and investigates its electrical characteristics via technology computer-aided design (TCAD) Silvaco Atlas simulation. An additional p-pillar was formed beneath the gate [...] Read more.
This study proposes an AlGaN/GaN current aperture vertical electron transistor (CAVET) featuring a double superjunction (SJ) to enhance breakdown voltage (BV) and investigates its electrical characteristics via technology computer-aided design (TCAD) Silvaco Atlas simulation. An additional p-pillar was formed beneath the gate current blocking layer to create a lateral depletion region that provided a high off-state breakdown voltage. To address the tradeoff between the drain current and off-state breakdown voltage, the key design parameters were carefully optimized. The proposed device exhibited a higher off-state breakdown voltage (2933 V) than the device with a single SJ (2786 V), although the specific on-resistance of the proposed method (1.29 mΩ·cm−2) was slightly higher than that of the single SJ device (1.17 mΩ·cm−2). In addition, the reverse transfer capacitance was improved by 15.6% in the proposed device. Full article
Show Figures

Figure 1

10 pages, 3712 KB  
Article
A Novel Isolation Approach for GaN-Based Power Integrated Devices
by Zahraa Zaidan, Nedal Al Taradeh, Mohammed Benjelloun, Christophe Rodriguez, Ali Soltani, Josiane Tasselli, Karine Isoird, Luong Viet Phung, Camille Sonneville, Dominique Planson, Yvon Cordier, Frédéric Morancho and Hassan Maher
Micromachines 2024, 15(10), 1223; https://doi.org/10.3390/mi15101223 - 30 Sep 2024
Cited by 1 | Viewed by 2259
Abstract
This paper introduces a novel technology for the monolithic integration of GaN-based vertical and lateral devices. This approach is groundbreaking as it facilitates the drive of high-power GaN vertical switching devices through lateral GaN HEMTs with minimal losses and enhanced stability. A significant [...] Read more.
This paper introduces a novel technology for the monolithic integration of GaN-based vertical and lateral devices. This approach is groundbreaking as it facilitates the drive of high-power GaN vertical switching devices through lateral GaN HEMTs with minimal losses and enhanced stability. A significant challenge in this technology is ensuring electrical isolation between the two types of devices. We propose a new isolation method designed to prevent any degradation of the lateral transistor’s performance. Specifically, high voltage applied to the drain of the vertical GaN power FinFET can adversely affect the lateral GaN HEMT’s performance, leading to a shift in the threshold voltage and potentially compromising device stability and driver performance. To address this issue, we introduce a highly doped n+ GaN layer positioned between the epitaxial layers of the two devices. This approach is validated using the TCAD-Sentaurus simulator, demonstrating that the n+ GaN layer effectively blocks the vertical electric field and prevents any depletion or enhancement of the 2D electron gas (2DEG) in the lateral GaN HEMT. To our knowledge, this represents the first publication of such an innovative isolation strategy between vertical and lateral GaN devices. Full article
(This article belongs to the Special Issue GaN Heterostructure Devices: From Materials to Application)
Show Figures

Figure 1

9 pages, 3241 KB  
Article
Mobility Extraction Using Improved Resistance Partitioning Methodology for Normally-OFF Fully Vertical GaN Trench MOSFETs
by Valentin Ackermann, Blend Mohamad, Hala El Rammouz, Vishwajeet Maurya, Eric Frayssinet, Yvon Cordier, Matthew Charles, Gauthier Lefevre, Julien Buckley and Bassem Salem
Electronics 2024, 13(12), 2350; https://doi.org/10.3390/electronics13122350 - 15 Jun 2024
Cited by 1 | Viewed by 2489
Abstract
In this work, fully vertical GaN trench MOSFETs were fabricated and characterized to evaluate their electrical performances. Transistors show a normally-OFF behavior with a high ION/IOFF (~109) ratio and a significantly small gate leakage current (10−11 A/mm). [...] Read more.
In this work, fully vertical GaN trench MOSFETs were fabricated and characterized to evaluate their electrical performances. Transistors show a normally-OFF behavior with a high ION/IOFF (~109) ratio and a significantly small gate leakage current (10−11 A/mm). Thanks to an improved resistance partitioning method, the resistances of the trench bottom and trench channel were extracted accurately by taking into account different charging conditions. This methodology enabled an estimation of the effective channel and bottom mobility of 11.1 cm2/V·s and 15.1 cm2/V·s, respectively. Full article
(This article belongs to the Special Issue Wide-Bandgap Device Application: Devices, Circuits, and Drivers)
Show Figures

Figure 1

13 pages, 6105 KB  
Article
Improving Optical and Electrical Characteristics of GaN Films via 3D Island to 2D Growth Mode Transition Using Molecular Beam Epitaxy
by Thi Thu Mai, Jin-Ji Dai, Wu-Ching Chou, Hua-Chiang Wen, Le Trung Hieu and Huy Hoang Luc
Coatings 2024, 14(2), 191; https://doi.org/10.3390/coatings14020191 - 1 Feb 2024
Cited by 3 | Viewed by 2675
Abstract
Molecular beam epitaxy (MBE) is demonstrated as an excellent growth technique for growing a low-defect GaN channel layer, which is crucial for controlling vertical leakage current and improving breakdown voltage (BV) in GaN-based high-electron mobility transistors (HEMTs). The 3D islands to 2D growth [...] Read more.
Molecular beam epitaxy (MBE) is demonstrated as an excellent growth technique for growing a low-defect GaN channel layer, which is crucial for controlling vertical leakage current and improving breakdown voltage (BV) in GaN-based high-electron mobility transistors (HEMTs). The 3D islands to 2D growth mode transition approach was induced by modulating substrate growth temperature (Tsub), displaying an overall improvement in film quality. A comprehensive investigation was conducted into the effects of Tsub on surface morphologies, crystal quality, and the optical and electrical properties of GaN films. Optimal results were achieved with a strain-relaxed GaN film grown at 690 °C, exhibiting significantly improved surface characteristics (root-mean-square roughness, Rq = 0.3 nm) and impressively reduced edge dislocations. However, the film with the smoothest surface roughness, attributed to the effect of the Ga-rich condition, possessed a high surface pit density, negatively affecting optical and electrical properties. A reduction in defect-related yellow emission further confirmed the enhanced crystalline quality of MBE GaN films. The optimized GaN film demonstrated outstanding electrical properties with a BV of ~1450 V, surpassing that of MOCVD GaN (~1180 V). This research significantly contributes to the advancement of MBE GaN-based high electron mobility transistor (HEMT) applications by ensuring outstanding reliability. Full article
Show Figures

Figure 1

15 pages, 11909 KB  
Review
Research Progress in Breakdown Enhancement for GaN-Based High-Electron-Mobility Transistors
by Zhiwen Tian, Xuan Ji, Dongwei Yang and Pei Liu
Electronics 2023, 12(21), 4435; https://doi.org/10.3390/electronics12214435 - 27 Oct 2023
Cited by 6 | Viewed by 4615
Abstract
The breakdown characteristics are very important for GaN high-electron-mobility transistors (HEMTs), which affect the application voltage, power density, efficiency, etc. In order to further enhance the breakdown voltage of the device, it is necessary to carry out research on the breakdown mechanisms of [...] Read more.
The breakdown characteristics are very important for GaN high-electron-mobility transistors (HEMTs), which affect the application voltage, power density, efficiency, etc. In order to further enhance the breakdown voltage of the device, it is necessary to carry out research on the breakdown mechanisms of the device. This article summarizes several breakdown mechanisms of GaN devices, including electric field concentration, buffer leakage current, gate leakage current, and vertical breakdown. In order to suppress the breakdown mechanisms, techniques such as the use of a field plate, reduced surface field (RESURF), back barrier, gate dielectric, substrate removal, and addition of AlGaN channels can be developed. With the continuous development of various technologies, the breakdown characteristics of GaN devices can be fully explored, laying the foundation for improving the performance of power electronic systems. Full article
Show Figures

Figure 1

16 pages, 5559 KB  
Article
Simulation and Comprehensive Analysis of AlGaN/GaN HBT for High Voltage and High Current
by Xinyuan Wang, Lian Zhang, Jiaheng He, Zhe Cheng, Zhe Liu and Yun Zhang
Electronics 2023, 12(17), 3590; https://doi.org/10.3390/electronics12173590 - 25 Aug 2023
Cited by 2 | Viewed by 2655
Abstract
We present a series of TCAD analysis of gallium nitride (GaN) heterojunction bipolar transistors (HBTs) that investigates the impact of various key parameters on the gain characteristics, output characteristics, and breakdown characteristics. It has been observed that the DC gain of the AlGaN/GaN [...] Read more.
We present a series of TCAD analysis of gallium nitride (GaN) heterojunction bipolar transistors (HBTs) that investigates the impact of various key parameters on the gain characteristics, output characteristics, and breakdown characteristics. It has been observed that the DC gain of the AlGaN/GaN HBTs exhibits a non-linear relationship with the increase in the Al fraction. Specifically, the DC gain initially rises, then declines after reaching its peak value at approximately 7%. By optimizing the concentration of the base and the concentration and thickness of the collector epitaxial layer, it is possible to achieve devices with breakdown voltages of 1270 V (with a collector thickness of 6 μm and a carrier concentration of 2 × 1016 cm−3), specific on-resistance of 0.88 mΩ·cm2, and a current gain of 73. In addition, an investigation on breakdown characteristics is conducted for HBTs with two types of substrates, namely QV-HBTs and FV-HBTs, at different inclinations of the ramp. We propose that critical angles are 79° and 69° to prevent the surface breakdown of the device, which helps to achieve an avalanche in GaN HBTs. We anticipate that the aforementioned findings will offer valuable insights for designing GaN-based power HBTs with elevated breakdown thresholds, heightened current densities, and increased power capabilities. Full article
(This article belongs to the Special Issue GaN Power Devices and Applications)
Show Figures

Figure 1

10 pages, 3112 KB  
Article
High Current Density Trench CAVET on Bulk GaN Substrates with Low-Temperature GaN Suppressing Mg Diffusion
by Xinyi Wen, Kwang Jae Lee, Yusuke Nakazato, Jaeyi Chun and Srabanti Chowdhury
Crystals 2023, 13(4), 709; https://doi.org/10.3390/cryst13040709 - 21 Apr 2023
Cited by 6 | Viewed by 3849
Abstract
We report that, for the first time, a low-temperature GaN (LT-GaN) layer prepared by metal–organic chemical vapor deposition (MOCVD) regrowth was used as a Mg stopping layer (MSL) for a GaN trench current–aperture vertical electron transistor (CAVET) with p-GaN as a carrier blocking [...] Read more.
We report that, for the first time, a low-temperature GaN (LT-GaN) layer prepared by metal–organic chemical vapor deposition (MOCVD) regrowth was used as a Mg stopping layer (MSL) for a GaN trench current–aperture vertical electron transistor (CAVET) with p-GaN as a carrier blocking layer (CBL). Inserting LT-GaN on top of the p-GaN effectively suppresses Mg out-diffusion into the regrown AlGaN/GaN channel, contributing to the high current capability of GaN vertical devices with a p-GaN CBL. With different MOCVD growth conditions, MSLs inserted in trench CAVETs were comprehensively investigated for the influence of MSL regrowth temperature and thickness on device performance. With the best on-state current performance obtained in this study, the trench CAVET with a 100 nm thick MSL regrown at 750 °C shows a high drain current of 3.2 kA/cm2 and a low on-state resistance of 1.2 mΩ∙cm2. The secondary ion mass spectrometry (SIMS) depth profiles show that the trench CAVET with the 100 nm thick MSL regrown at 750 °C has a dramatically decreased Mg diffusion decay rate (~39 nm/decade) in AlGaN/GaN channel, compared to that of the CAVET without a MSL (~104 nm/decade). In developing GaN vertical devices embedded with a Mg-doped p-type layer, the LT-GaN as the MSL demonstrates a promising approach to effectively isolate Mg from the subsequently grown layers. Full article
(This article belongs to the Special Issue Research in GaN-based Materials and Devices)
Show Figures

Figure 1

19 pages, 6366 KB  
Article
Workbench Study Concerning the Highest Reliability Outcome for PoL Converters with Different Output Capacitor Technologies
by Dan Butnicu and Alexandru Lazar
Energies 2023, 16(6), 2768; https://doi.org/10.3390/en16062768 - 16 Mar 2023
Cited by 2 | Viewed by 2065
Abstract
The last decade’s studies show that the PoL (point-of-load) converter’s output capacitor is an important component for reliability, implying that its careful selection may determine the overall converter’s failure rate and lifetime. PoL converters are commonly found in many electronic systems, usually as [...] Read more.
The last decade’s studies show that the PoL (point-of-load) converter’s output capacitor is an important component for reliability, implying that its careful selection may determine the overall converter’s failure rate and lifetime. PoL converters are commonly found in many electronic systems, usually as part of the Intermediate Bus Architecture (IBA). Their important requirements are a stable output voltage at load current variation, good temperature stability, a low output ripple voltage, high efficiency, and reliability. If the electronic system is portable, a small footprint and low volume are also important considerations. These were recently well accomplished with eGaN (enhancement gallium nitride) transistor technology, whose VUFoM (vertical unipolar figure of merit) is 1.48 compared to 1.00 for silicon. This ensures a higher converter power density (watts/area). This paper reviews the most-used capacitor technologies, highlighting the reliability of these components as part of the converter’s output filter by presenting original data related to their best performance. The test was set up with EPC’s eGaN FET transistor, which was enclosed within a 9059/30 V evaluation board with a 12 V input and 1.2 V output. Different output capacitor technologies were evaluated, and reliability was calculated based on measurements of the ripple of the output voltage and thermal scanning. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

14 pages, 4279 KB  
Article
Three-Dimensional MoS2 Nanosheet Structures: CVD Synthesis, Characterization, and Electrical Properties
by Sobin Mathew, Johannes Reiprich, Shilpashree Narasimha, Saadman Abedin, Vladislav Kurtash, Sebastian Thiele, Bernd Hähnlein, Theresa Scheler, Dominik Flock, Heiko O. Jacobs and Jörg Pezoldt
Crystals 2023, 13(3), 448; https://doi.org/10.3390/cryst13030448 - 4 Mar 2023
Cited by 6 | Viewed by 3154
Abstract
The proposed study demonstrates a single-step CVD method for synthesizing three-dimensional vertical MoS2 nanosheets. The postulated synthesizing approach employs a temperature ramp with a continuous N2 gas flow during the deposition process. The distinctive signals of MoS2 were revealed via [...] Read more.
The proposed study demonstrates a single-step CVD method for synthesizing three-dimensional vertical MoS2 nanosheets. The postulated synthesizing approach employs a temperature ramp with a continuous N2 gas flow during the deposition process. The distinctive signals of MoS2 were revealed via Raman spectroscopy study, and the substantial frequency difference in the characteristic signals supported the bulk nature of the synthesized material. Additionally, XRD measurements sustained the material’s crystallinity and its 2H-MoS2 nature. The FIB cross-sectional analysis provided information on the origin and evolution of the vertical MoS2 structures and their growth mechanisms. The strain energy produced by the compression between MoS2 islands is assumed to primarily drive the formation of vertical MoS2 nanosheets. In addition, vertical MoS2 structures that emerge from micro fissures (cracks) on individual MoS2 islands were observed and examined. For the evaluation of electrical properties, field-effect transistor structures were fabricated on the synthesized material employing standard semiconductor technology. The lateral back-gated field-effect transistors fabricated on the synthesized material showed an n-type behavior with field-effect mobility of 1.46 cm2 V−1 s−1 and an estimated carrier concentration of 4.5 × 1012 cm−2. Furthermore, the effects of a back-gate voltage bias and channel dimensions on the hysteresis effect of FET devices were investigated and quantified. Full article
(This article belongs to the Special Issue Recent Developments of Inorganic Crystalline Materials)
Show Figures

Figure 1

10 pages, 2573 KB  
Article
GaN Vertical Transistors with Staircase Channels for High-Voltage Applications
by Kuntal Barman, Dai-Jie Lin, Rohit Gupta, Chih-Kang Chang and Jian-Jang Huang
Materials 2023, 16(2), 582; https://doi.org/10.3390/ma16020582 - 6 Jan 2023
Cited by 1 | Viewed by 2731
Abstract
In this study, we propose and simulate the design of a non-regrowth staircase channel GaN vertical trench transistor, demonstrating an exceptional threshold and breakdown characteristic for high power and high frequency applications. The unique staircase design provides a variable capacitance through the gate-dielectric-semiconductor [...] Read more.
In this study, we propose and simulate the design of a non-regrowth staircase channel GaN vertical trench transistor, demonstrating an exceptional threshold and breakdown characteristic for high power and high frequency applications. The unique staircase design provides a variable capacitance through the gate-dielectric-semiconductor interface, which results in a high breakdown voltage of 1.52 kV and maintains a channel on-resistance of 2.61 mΩ∙cm2. Because of the variable length and doping profile in the channel region, this model offers greater flexibility to meet a wide range of device application requirements. Full article
(This article belongs to the Special Issue Opto/Electronics Materials and Devices Applied for Telecommunications)
Show Figures

Graphical abstract

10 pages, 4311 KB  
Article
Buffer Traps Effect on GaN-on-Si High-Electron-Mobility Transistor at Different Substrate Voltages
by Yuan Lin, Min-Lu Kao, You-Chen Weng, Chang-Fu Dee, Shih-Chen Chen, Hao-Chung Kuo, Chun-Hsiung Lin and Edward-Yi Chang
Micromachines 2022, 13(12), 2140; https://doi.org/10.3390/mi13122140 - 3 Dec 2022
Cited by 5 | Viewed by 4373
Abstract
Substrate voltage (VSUB) effects on GaN-on-Si high electron mobility transistors (HEMTs) power application performance with superlattice transition layer structure was investigated. The 2DEG conductivity and buffer stack charge redistribution can be affected by neutral/ionized donor and acceptor traps. As the donor/acceptor [...] Read more.
Substrate voltage (VSUB) effects on GaN-on-Si high electron mobility transistors (HEMTs) power application performance with superlattice transition layer structure was investigated. The 2DEG conductivity and buffer stack charge redistribution can be affected by neutral/ionized donor and acceptor traps. As the donor/acceptor traps are excessively ionized or de-ionized by applying VSUB, the depletion region between the unintentionally doped (UID)/Carbon-doped (C-doped) GaN layer may exhibit a behavior similar to the p–n junction. An applied negative VSUB increases the concentration of both the ionized donor and acceptor traps, which increases the breakdown voltage (BV) by alleviating the non-uniform distribution of the vertical electric field. On the other hand, an applied positive VSUB causes the energy band bending flattener to refill the ionized traps and slightly improves the dynamic Ron degradation. Moreover, the amount of electrons injected into the buffer stack layer from the front side (2DEG channel/Ohmic contact) and the back side (AlN nucleation layer/superlattice transition layer) are asymmetric. Therefore, different VSUB can affect the conductivity of 2DEG through the field effect, buffer trapping effect, and charge redistribution, which can change the electrical performance of the device. Full article
(This article belongs to the Special Issue GaN-Based Semiconductor Devices, Volume II)
Show Figures

Figure 1

22 pages, 45170 KB  
Article
Design of High Peak Power Pulsed Laser Diode Driver
by Ching-Yao Liu, Chih-Chiang Wu, Li-Chuan Tang, Wei-Hua Chieng, Edward-Yi Chang, Chun-Yen Peng and Hao-Chung Kuo
Photonics 2022, 9(9), 652; https://doi.org/10.3390/photonics9090652 - 14 Sep 2022
Cited by 9 | Viewed by 11368
Abstract
This paper attempts to describe a laser diode driver circuit using the depletion mode gallium nitride high electron mobility transistor (D-mode GaN HEMT) to generate nanosecond pulses at a repetition rate up to 10 MHz from the vertical-cavity surface-emitting laser (VCSEL). The feature [...] Read more.
This paper attempts to describe a laser diode driver circuit using the depletion mode gallium nitride high electron mobility transistor (D-mode GaN HEMT) to generate nanosecond pulses at a repetition rate up to 10 MHz from the vertical-cavity surface-emitting laser (VCSEL). The feature of this driver circuit is a large instantaneous laser power output designed in the most efficient way. The design specifications include a pulse duration between 10 ns and 100 ns and a peak power up to above 100 W. The pulsed laser diode driver uses the D-mode GaN HEMT, which has very small Coss difference between turn-on and turn-off states. The analysis is according to a laser diode model that is adjusted to match the VCSEL, made in National Yang Ming Chiao Tung University (NYCU). A design guide is summarized from the derivations and analysis of the proposed laser diode driver. According to the design guide, we selected the capacitor, resistor, and diode components to achieve 10 ns to 100 ns pulse duration for laser lighting. The experiment demonstrated that the maximum power-to-light efficiency can be as high as 86% and the maximum peak power can be 150 W, which matches the specifications of certain applications such as light detection and ranging (LiDAR). Full article
Show Figures

Figure 1

Back to TopTop