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Abstract: Substrate voltage (VSUB) effects on GaN-on-Si high electron mobility transistors (HEMTs)
power application performance with superlattice transition layer structure was investigated. The
2DEG conductivity and buffer stack charge redistribution can be affected by neutral/ionized donor
and acceptor traps. As the donor/acceptor traps are excessively ionized or de-ionized by applying
VSUB, the depletion region between the unintentionally doped (UID)/Carbon-doped (C-doped) GaN
layer may exhibit a behavior similar to the p–n junction. An applied negative VSUB increases the
concentration of both the ionized donor and acceptor traps, which increases the breakdown voltage
(BV) by alleviating the non-uniform distribution of the vertical electric field. On the other hand,
an applied positive VSUB causes the energy band bending flattener to refill the ionized traps and
slightly improves the dynamic Ron degradation. Moreover, the amount of electrons injected into
the buffer stack layer from the front side (2DEG channel/Ohmic contact) and the back side (AlN
nucleation layer/superlattice transition layer) are asymmetric. Therefore, different VSUB can affect
the conductivity of 2DEG through the field effect, buffer trapping effect, and charge redistribution,
which can change the electrical performance of the device.

Keywords: GaN; HEMT; substrate voltage; breakdown voltage; dynamic on-resistance; donor trap;
charge redistribution

1. Introduction

In recent years, GaN-on-Si power HEMTs have gained tremendous interest due to their
superior electrical characteristics, such as high breakdown voltage (BV), low on-resistance
(Ron), and fast switching speed [1–3]. Compared to GaN-on-SiC and GaN-on-sapphire,
GaN-on-Si is most suitable for commercialization owing to the low cost and the scalability to
large wafer sizes [3]. The epitaxial structure of a lateral GaN-on-Si buffer stack from bottom
to top is usually composed of an AlN nucleation layer, called a superlattice, or graded
AlGaN transition layer, a carbon-doped (C-doped) GaN layer, and an unintentionally
doped (UID) GaN channel layer [4]. However, GaN buffer stacks usually have plenty
of dislocations, lattice defects, and bulk traps due to the lattice and thermal expansion
coefficient mismatch between GaN and silicon [5]. The dynamic Ron of GaN-on-Si HEMT
is related to the surface- and buffer-induced trapping. When the devices are switched from
the off- to on-state, the hot electrons generated in the two-dimensional electron gas (2DEG)
channel are injected into the surface and buffer layers. When the surface and buffer traps

Micromachines 2022, 13, 2140. https://doi.org/10.3390/mi13122140 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13122140
https://doi.org/10.3390/mi13122140
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-3757-2497
https://orcid.org/0000-0003-1015-9181
https://orcid.org/0000-0002-9373-4649
https://doi.org/10.3390/mi13122140
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13122140?type=check_update&version=2


Micromachines 2022, 13, 2140 2 of 10

cannot immediately release the trapping electrons, the 2DEG channel is partially depleted
to increase the dynamic Ron [6].

The surface-induced trapping can be suppressed by the passivation and field plate. In
contrast, the buffer-induced trapping caused by the compensated doping and crystalline
defects is more challenging to address. During the epitaxial growth, the AlN nucleation
layer is usually defective. It contains many donor-type impurities (e.g., Si, O), resulting in a
lower effective energy barrier at the AlN/Si junction [7,8] for the enhanced charge injection
to occur. Moreover, due to the energy barrier at the AlN–Si substrate interface, the electrons
induced from the Si substrate may also be injected into the buffer with positive Vtop-to-sub
(or negative VSUB) by trap-assisted tunneling, thermionic emission, and Poole–Frenkel
emission [7–9].

For the GaN-on-Si HEMT, carbon doped (C-doped) is a common technique to reduce
buffer conductivity, reduce current collapse, and increase BV during the epitaxial growth
process [10]. The carbon atoms can substitute Ga or N sites, occupy interstitial positions
in the nitride, and form chemical complexes with intrinsic defects [11–13]. A dominant
deep-acceptor trap at EV +0.9 eV (generally considered to correspond to the CN state) and
a shallow donor trap at EC −0.11 eV (more likely related to the CGa state) of the two main
energy states are related to the carbon doping in the GaN buffer [10]. An appropriate ratio
of acceptor trap and donor trap concentration may exist to achieve the optimum BV and
buffer leakage current due to the vertical electric field modulation [14].

C-doped GaN layers could behave as p-type materials due to sufficient compensation
doping and the Fermi level (EF) in the lower half of the bandgap [15]. UID GaN layers are
observed to show light n-type conductivity owing to the existence of nitrogen vacancies [4].
The neutral, ionized donor, and acceptor traps can affect the 2DEG conductivity and buffer-
stacks charge redistribution. The applied VSUB or VD at the UID/C-doped GaN interface
may result in a behavior similar to the p–n junction [4]. The applied positive/negative
VSUB causes different charging/discharging behaviors, which could be related to the non-
uniform spatial distribution of dopant traps and the charge redistribution in the buffer
stacks. The intrinsic trap time constants and the charge transport in the buffer stacks are
both related to the response of donor/acceptor traps in the UID/C-doped GaN layers [15].

Recently, several studies discussed the impacts of VSUB on buffer-related perfor-
mances, such as dynamic Ron [4,16] BV [17,18] vertical leakage current [19,20], gate charge
change [21], and output capacitance [22]. However, most works were limited to the indi-
vidual properties mentioned above. There are few reports [17,18] to investigate the overall
device characteristics such as BV, on-state drain current, and dynamic Ron respective to
VSUB for a GaN HEMT structure, thus, they are lacking unified models and discussions.
Compared to these reports [17,18], which applied a VSUB of about ±60 V, we can apply
a higher VSUB because the superlattice transition layer with a higher energy barrier can
prevent electrons from injecting into the buffer stack layer at a high VSUB. In this study,
we investigate the effects of a positive/negative VSUB on the above-mentioned device
characteristics of the AlGaN/GaN HEMT having a superlattice transition layer. The impact
of 2DEG conductivity and the charge trapping/de-trapping procedure are also investigated
under the different VSUB and off-state VD.

2. Materials and Methods

The AlGaN/GaN heterostructures were grown on a 6-inch silicon substrate by metal-
organic chemical vapor deposition (MOCVD), as shown schematically in Figure 1. The
AlGaN/GaN HEMT structure consists of an AlN nucleation layer, a superlattice transition
layer, a C-doped GaN layer, a GaN channel layer, and 22 nm Al0.25Ga0.75N barrier layer.
The mesa isolation was performed by BCl3 + Cl2 mixed gas plasma etching. To perform
the Ohmic contact formation at source and drain, Ti/Al/Ni/Au was deposited by e-beam
evaporation and was annealed by rapid temperature annealing (RTA) at 840 ◦C for 30 s in
N2 ambient. The Ni/Au (50/300 nm) Schottky gate contact was deposited by the electron
beam evaporation. Finally, 20 nm SiN was deposited as a passivation layer. The source-
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drain length, gate length, and gate width were maintained at 20, 3, and 25 µm, respectively.
The buffer stacks can be considered insulated capacitors when the leakage current of
each layer is smaller than the “displacement current”; i.e., IDISS = CTOTdVSUB/dt, CTOT is
the series combination of the capacitances of UID GaN, C-doped GaN, and superlattice
transition layer, respectively [15].
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Figure 1. Schematic cross section of the GaN-on-Si device with superlattice buffer.

3. Results and Discussion

As shown in Figure 2, the buffer trap charging/discharging mechanism of HEMT
devices with a superlattice transition layer is demonstrated schematically. The substrate
of GaN-on-Si power HEMT can be used as an independent contact terminal for applying
VSUB [23]. The VSUB can modulate the 2DEG concentration through the back-gate effect.
Figure 2a shows that the buffer acceptor and donor traps are partly ionized and neutralized
at the initial state. The un-ionized neutral donor/acceptor traps may exist in the UID/C-
doped GaN layer. The opposite doping polarities may lead to the formation of the p–n
junction at the UID/C-doped GaN interface [4,9,15].

Figure 2b shows that the electrons are injected from the Ohmic contact or 2DEG
channel into the buffer layer when applying a positive VSUB [24,25]. The Ohmic contact
provides the reservoir of free electrons that can be injected into the buffer layer when
applying a positive VSUB. Without applying VSUB, the acceptor trap pulls down the
EF in the buffer/transition layer so that the EF is below the acceptor trap level (ETA).
Many acceptor traps are not ionized (charge-neutral) because the acceptor traps are deep.
When the positive VSUB increases, the high vertical electric field induces electron trapping
(ionization at the acceptor trap level) in the buffer layer of the acceptor trap [24,25]. Because
a positive VSUB of 200 V is smaller than the traps-filled-limit voltage of donor traps (VTFL2),
both with the positive VSUB and without the VSUB do not affect the concentration of the
ionized donor trap.
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Figure 2. (a) Without VSUB: the traps charging/discharging in the buffer while applying the low or
high drain voltage (VD). (b) With positive VSUB: the traps charging/discharging in the buffer while
applying the low or high VD. (c) With negative VSUB: the traps charging/discharging in the buffer
while applying the low or high VD.

Figure 2c shows that the concentration of both ionized acceptor and donor traps
increases with the negative VSUB. In addition to the inherent barrier of the AlN/Si junction,
the superlattice transition layer makes the electrons more difficult to be injected into
the buffer layer in the off-state under the high VD. The top and bottom asymmetric
vertical leakage and the fundamental difference between the carrier injection/transport
mechanisms induced a different buffer layer trapping. The acceptor traps in the carbon-
doped GaN are mostly ionized at a VSUB of −100 V, resulting in a net negative charge [4].
This net negative charge lifts the buffer energy band, increasing the energy barrier of the
transition layer to a higher value, and injecting fewer electrons to the buffer layer [16].
The transition layer with a superlattice buffer structure can block the electron injections
from the AlN/Si junction to the buffer layer. At off-state and high VD, the electrons from
the Si substrate begin to overcome the energy barrier of the superlattice layer and inject
into the buffer layer. When part of the buffer layer starts to conduct, the negative charge
accumulates in the buffer layer, resulting in an increase in the buffer leakage current [15].

Figure 3 shows the energy band diagram when a different VSUB and low/high VD are
applied. Figure 3a shows that without VSUB, the energy band has more bending as the VD
increases. Figure 3b shows that at low VD, the applied positive VSUB causes the Si substrate
to bend downward. The 2DEG channel tends to inject more electrons into the buffer stack,
resulting in an entirely negative charge redistribution in the buffer layer and an increase in
the concentration of the ionized acceptor trap. The positive VSUB can alleviate the energy
band bending caused by applied high VD, and the electrons in the inversion layer formed
at the Si substrate/AlN interface are less able to overcome the energy barrier of AlN and
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superlattice and inject into the buffer layer, avoiding the accumulation of negative charge in
the buffer layer. Figure 3c shows that the negative VSUB can raise the energy band of the Si
substrate even more and accumulate electrons in the inversion layer at the Si substrate/AlN
interface at lower VD. After the electrons overcome the AlN energy barrier, the electrons
are blocked by the superlattice layer and are not injected into the buffer layer. When the
VD becomes larger, the bending of the energy band becomes more significant, which is
equal to the applied drain voltage of |VD + VSUB| to the device. This causes the electrons
accumulated in the Si substrate/AlN inversion layer to have higher energy to overcome
the energy barrier of AlN and superlattice to inject into the buffer layer. This results in a
significant amount of electrons injected into and accumulated in the C-doped GaN layer.
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Table 1 and Figure 4 compare the overview of DC characteristics under the posi-
tive/negative VSUB. Applying the positive VSUB tends to induce more electrons in the
2DEG channel. However, the maximum drain current (ID) is almost constant because
the ionized acceptor traps caused by injection electrons from the 2DEG channel or ohmic
contact could clamp the increasing 2DEG concentration [4]. Under the positive VSUB, the
DC characteristics are similar to the device without VSUB. A slightly reduced off-state ID is
observed with a positive VSUB due to the leakage current flow from the drain to the buffer
layer. Part of the electrons are also captured by the acceptor trap of the GaN carbon-doped
layer, resulting in a slightly reduced total leakage current. Figure 2b shows that due to
the applied positive VSUB, the electrons from the Ohmic contact at the interface of source
and drain with GaN or 2DEG are injected into the buffer layer, where the acceptor trap of
the GaN carbon-doped layer is ionized for the lower VD (12 V) case. An applied negative
VSUB ideally reduces the maximum ID due to the simple electric field effect or capacitive
coupling [15]. The ionization of acceptor traps in the buffer layers depletes the 2DEG
channel; both can degrade the 2DEG conductivity. The Vth increases because the required
gate voltage (VG) for turning on the depleted channel is increased. As Figure 2c shows,
off-state applied negative VSUB causes the ionized donor trap concentration in the UID GaN
layer to increase. An increase in ionized donor trap concentration indicates that positive
charges have accumulated in the buffer layer. Hence, the positive charges neutralize part of
the leakage current flowing into the buffer layer. Therefore, the total off-state ID decreases,
and the on/off current ratio increases. The subthreshold swing (S.S) of this HEMT device is
related to the ID magnitude when VG is smaller than the threshold voltage (Vth). As the
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off-state leakage current reduces due to the negative VSUB, a reduction in S.S is observed.
The transconductance (gm) hike of this superlattice HEMT device with a negative VSUB
applied is also observed. Firstly, the applied negative VSUB reduced the off current and
increased the change in current per unit voltage, making the gm maximum larger. Secondly,
when the negative VSUB is between −50 and −200 V, charge redistribution occurs in the
GaN carbon doping layer. The higher maximum gm is related to the buffer stack charge
redistribution due to the capacitance change of UID GaN, C-doped GaN, and superlattice
transition layer [26].

Table 1. DC characteristics of the GaN-on-Si HEMT with different substrate voltages.

Substrate Voltage
(V)

On/Off ID
Ratio

S.S
(mV/dec)

Vth
(V)

Ron
(Ω•mm)

gm
(mS/mm)

ID,max
(mA/mm)

Off-State ID
(mA/mm)

−200 1.16 × 106 155 −9.59 9.45 87.5 608 5.24 × 10−4

−100 4.79 × 105 180 −10.59 9.39 82 644 1.34 × 10−3

0 2.16 × 105 202 −11.76 9.28 80.4 696 3.22 × 10−3

100 2.91 × 105 203 −11.8 9.21 81.5 702 2.41 × 10−3

200 3.05 × 105 201 −11.78 9.16 81.7 701 2.3 × 10−3
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Figure 5 shows the BV characteristics measured using off-state leakage current with
the positive/negative VSUB. Figure 5a,b show that the negative VSUB can increase the BV
due to the increased ionized donor trap concentration. The BV was measured starting
from VD = 0 V and gradually increased in voltage by 2 V/s. The electrons forming in
the inversion layer between the Si substrate and AlN layer slowly accumulate energy to
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overcome the energy barriers to inject into the buffer stack. The electrons injected into the
buffer layer have a sufficient reaction time to neutralize the ionized donor trap in the UID
GaN with a positive charge. The ionized donor trap is more critical to BV than the ionized
acceptor trap due to the alleviation of the non-uniform distribution of the high electric field
caused by high VD [14]. Applying the negative VSUB (or positive Vtop-to-sub) causes the
donor/acceptor traps to ionize at the UID/carbon-doped GaN interface [27]. An increase
in ionized donor trap concentration with a moderate acceptor trap can increase the BV and
reduces the off-state leakage current [14]. Therefore, the concentration of ionized donor
trap and BV increase when a negative VSUB is applied. On the other hand, Figure 2a,b show
that the electrons from the 2DEG channel or the Ohmic contact are primarily injected into
the buffer layer to increase the ionized acceptor traps without decreasing the concentration
of the ionized donor traps [15]. The BV at the applied positive VSUB and VSUB = 0 are very
similar due to the same concentration of ionized donor traps.
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The dynamic Ron characteristics for the HEMT devices with different Vsub were also
measured. After each dynamic Ron measurement, the device’s initial state is fully recovered
by shining microscopic light for 30 s, so that all trapped electrons were de-trapped [28].
Figure 6a shows that the device is switched to the on-state with a total switching time
of 200 µs after 10 ms of high VD stress at off-state. As shown in Figure 6b, the positive
VSUB slightly reduces the dynamic Ron, while the negative VSUB significantly increases
the dynamic Ron. The dynamic Ron ratio for applying the positive VSUB is slightly lower
than without VSUB (the off-state VD is from 100 to 300 V). As shown in Figure 3b, the
positive VSUB can relax the energy band bending of the Si substrate/AlN junction caused
by high VD, reducing the electrons that can overcome the energy barrier injected into the
buffer layer.

Although an ionized acceptor trap in a C-doped layer may screen the electric field
of a positive VSUB, applying a positive VSUB slightly increases the 2DEG conductivity by
the field effect. Due to the electron injections into the buffer layer from the 2DEG channel
and Ohmic contact, the ionization of the acceptor trap concentration in the C-doped GaN
layer increases by applying a positive VSUB. The donor trap concentration is almost similar
when applying a positive VSUB and without VSUB. The literature has reported that the
ionization donor trap in UID GaN can alleviate the dynamic Ron degradation [9,14]. The
ionization donor trap leads to a redistribution of the positive charge in the buffer stack.
However, as shown in Figure 3c, the negative VSUB aggravates the Si substrate energy band
bending, allowing the electrons to have higher energy to overcome the energy barriers
between the AlN nucleation layer and superlattice transition layer injection into the buffer
layer. The electrons injected into the buffer layer are not neutralized by the ionization donor
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trap (positive charge) in a short time. The 2DEG channel may be depleted, resulting in
dynamic Ron degradation. Therefore, under the negative VSUB, the dynamic Ron degraded
more seriously.
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4. Conclusions

The effect of VSUB on the power application characteristics of GaN-on-Si high electron
mobility transistors (HEMTs) with a superlattice transition layer, including breakdown volt-
age (BV) and dynamic on-resistance (Ron), was investigated. The negative VSUB increases
the BV due to the increasing ionized donor-trap concentration. However, the positive
VSUB and without VSUB do not affect the ionization donor-trap concentration, so both
BVs are similar. The applied positive VSUB can relax the energy band bending of the Si
substrate/AlN junction caused by the high vertical electric field. Therefore, the reducing
electrons inject the buffer stack layer. The dynamic Ron ratio can be slightly reduced by
applying a positive VSUB of 200 V at high off-state VD. Although the applied negative VSUB
increases the ionized donor trap concentration, it also raises the Si substrate energy band.
More electrons overcome the energy barrier and are injected into the buffer layer, causing
the buffer trap to capture more electrons, and depleting the two-dimensional electron gas
(2DEG) channel, making the dynamic Ron degradation more serious. When applying the
negative VSUB, S.S decreases, the on/off current ratio increases, and threshold voltage (Vth)
shifts to positive due to the reduction in source-drain leakage current. When applying the
positive VSUB, the DC performances of the devices, such as on/off current ratio, S.S, and
Vth, remain almost the same as without an applied VSUB because both 2DEG conductivities
remain nearly the same.
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