Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (526)

Search Parameters:
Keywords = velocity circulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 14097 KB  
Article
Comparative Analysis of Local Flow Fields of Typical Inner Jet Holes-Type Reverse Circulation Drill Bit for Pneumatic Hollow-Through DTH Hammer Based on CFD Simulation
by Jiwei Wen, Jiang Chen and Fengtao Zhang
Symmetry 2025, 17(10), 1625; https://doi.org/10.3390/sym17101625 - 1 Oct 2025
Abstract
The reverse circulation drill bit is the key component for the efficient and smooth implementation of the pneumatic hollow-through down-the-hole (DTH) hammer reverse circulation continuous coring (sampling) technology. To obtain the structural form of a reverse circulation drill bit with better reverse circulation [...] Read more.
The reverse circulation drill bit is the key component for the efficient and smooth implementation of the pneumatic hollow-through down-the-hole (DTH) hammer reverse circulation continuous coring (sampling) technology. To obtain the structural form of a reverse circulation drill bit with better reverse circulation performance, revealing its local flow fields by computational fluid dynamics (CFD) simulation is an effective approach. Taking the inner jet holes-type reverse circulation drill bit as the research object, three kinds of symmetrical and asymmetrical structures of inner jet holes were proposed. The CFD simulation results show that increasing the air volume supply and the number of inner jet holes leads to an increase in the velocity of air flow jet within the inner jet holes, an increase in the negative pressure formed in the central through channel below the inner jet holes, an enhancement of the reverse circulation performance and suction capacity formed by the reverse circulation drill bit, and an acceleration of the upward flow velocity of the rock cores (samples) located at the bottom of the borehole. Additionally, the reverse circulation performance formed by the reverse circulation drill bit with staggered arranged inner jet holes is superior to that of the reverse circulation drill bit with uniformly distributed inner jet holes. Under the same simulation conditions, the static pressure (i.e., negative pressure) and the upward flow velocity formed by the JB6 model are 2.34 kPa and 30.778 m/s higher than those formed by the JB3-3 model, while these two values formed by the JC6 model are 0.197 kPa and 3.689 m/s higher than those formed by the JB6 model, respectively. In conclusion, an asymmetric structural design would be more reasonable for the design of the inner jet holes-type reverse circulation drill bit. Full article
Show Figures

Figure 1

18 pages, 3189 KB  
Article
Optimizing Hole Cleaning in Horizontal Shale Wells: Integrated Simulation Modeling in Bakken Formation Through Insights from South Pars Gas Field
by Sina Kazemi, Farshid Torabi and Ali Cheperli
Processes 2025, 13(10), 3077; https://doi.org/10.3390/pr13103077 - 25 Sep 2025
Abstract
Horizontal wells in shale formations, such as those in the South Pars gas field (Iran) and the Bakken shale (Canada/USA), are essential for production from ultralow-permeability reservoirs but remain limited by poor hole cleaning, high torque, and unstable fluid transport. This study integrates [...] Read more.
Horizontal wells in shale formations, such as those in the South Pars gas field (Iran) and the Bakken shale (Canada/USA), are essential for production from ultralow-permeability reservoirs but remain limited by poor hole cleaning, high torque, and unstable fluid transport. This study integrates real-time field data from South Pars with Drillbench simulations in the Bakken to develop practical strategies for improving drilling efficiency. A water-based mud system (9–10.2 ppg, 29–35 cP) supplemented with 2 wt.% sulphonated asphalt was applied to mitigate shale hydration, enhance cuttings transport, and preserve near-wellbore injectivity. Field implementation in South Pars demonstrated that adjusting drillstring rotation to 90 RPM and circulation rates to 1100 GPM reduced torque by ~70% (24 to 7 klbf·ft) and increased the rate of penetration (ROP) by ~25% (8 to 10 m/h) across a 230 m interval. Simulations in the Bakken confirmed these improvements, showing consistent torque and pressure trends, with cuttings transport efficiency above 95%. Inducing controlled synchronous whirl further improved sweep efficiency by ~15% and stabilized annular velocities at 0.7 m/s. Overall, these optimizations enhanced drilling efficiency by up to 25%, reduced operational risks, and created better well conditions for field development and EOR applications. The results provide clear, transferable guidelines for designing and drilling shale wells that balance immediate operational gains with long-term reservoir recovery. Full article
(This article belongs to the Special Issue Recent Developments in Enhanced Oil Recovery (EOR) Processes)
Show Figures

Figure 1

48 pages, 12849 KB  
Article
Analysis of the Functional Efficiency of a Prototype Filtration System Dedicated for Natural Swimming Ponds
by Wojciech Walczak, Artur Serafin, Tadeusz Siwiec, Jacek Mielniczuk and Agnieszka Szczurowska
Water 2025, 17(19), 2816; https://doi.org/10.3390/w17192816 - 25 Sep 2025
Abstract
Water treatment systems in swimming ponds support the natural self-cleaning capabilities of water based on the functions of repository macrophytes in their regeneration zone and the regulation of the internal metabolism of the reservoirs. As part of the project, a functional modular filtration [...] Read more.
Water treatment systems in swimming ponds support the natural self-cleaning capabilities of water based on the functions of repository macrophytes in their regeneration zone and the regulation of the internal metabolism of the reservoirs. As part of the project, a functional modular filtration chamber with system multiplication capabilities was designed and created. This element is dedicated to water treatment systems in natural swimming ponds. The prototype system consisted of modular filtration chambers and pump sections, as well as equipment adapted to the conditions prevailing in the eco-pool. An innovative solution for selective shutdown of the filtration chamber without closing the circulation circuit was also used, which forms the basis of a patent application. A verified high-performance adsorbent, Rockfos® modified limestone, was used in the filtration chamber. In order to determine the effective filtration rate for three small test ponds with different flow rates (5 m/h, 10 m/h and 15 m/h), the selected physicochemical parameters of water (temperature, pH, electrolytical conductivity, oxygen saturation, total hardness, nitrites, nitrates, and total phosphorus, including adsorption efficiency and bed absorption capacity) were researched before and after filtration. Tests were also carried out on the composition of fecal bacteria and phyto- and zooplankton. Based on high effective phosphorus filtration efficiency of 32.65% during the operation of the bed, the following were determined: no exceedances of the standards for the tested parameters in relation to the German standards for eco-pools (FLL—Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau e. V., 2011); lower number of fecal pathogens (on average 393—coliform bacteria; 74—Escherichia coli; 34—fecal enterococci, most probably number/100 mL); the lowest share of problematic cyanobacteria in phytoplankton (<250,000 individuals/dm3 in number and <0.05 µg/dm3—biomass); low chlorophyll a content (2.2 µg/dm3—oligotrophy) and the presence of more favorable smaller forms of zooplankton, an effective filtration speed of 5 m/h. This velocity was recommended in the FLL standards for swimming ponds, which were adopted in this study as a reference for rapid filters. In testing the functional efficiency of a dedicated filtration system for a Type II test pond (50 m2—area and 33 m3—capacity), at a filtration rate of 5 m/h, an average effective phosphorus adsorption efficiency of 18.28–53.98% was observed under the bed work-in-progress conditions. Analyses of other physicochemical water parameters, with appropriate calculations and statistical tests, indicated progressive functional efficiency of the system under bathing conditions. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

18 pages, 2206 KB  
Article
Hepatic and Pulmonary Vasoactive Response Triggered by Potentially Hazardous Chemicals After Passing Through the Gut Mucosa
by Mircea Dragoteanu, Ștefan Tolea, Ioana Duca, Raluca Mititelu and Kalevi Kairemo
Diagnostics 2025, 15(19), 2444; https://doi.org/10.3390/diagnostics15192444 - 25 Sep 2025
Abstract
Background/Objectives: In a previous study, we observed significantly prolonged hepatic and pulmonary first-pass transit times (TTs) for 99mTc-pertechnetate absorbed through the colorectal mucosa during per-rectal portal scintigraphy (PRPS). This decrease in radiotracer flow velocity was not seen when 99mTc-pertechnetate was [...] Read more.
Background/Objectives: In a previous study, we observed significantly prolonged hepatic and pulmonary first-pass transit times (TTs) for 99mTc-pertechnetate absorbed through the colorectal mucosa during per-rectal portal scintigraphy (PRPS). This decrease in radiotracer flow velocity was not seen when 99mTc-pertechnetate was administered into the spleen during trans-splenic portal scintigraphy or injected intravenously in radionuclide angiocardiography. We hypothesized that 99mTc-pertechnetate, an artificial compound, is recognized during colorectal absorption as a potentially hazardous chemical (PHC), with its hepatic and pulmonary slowdown aiding elimination. A similar sudden decrease in portal flow occurs during early metastasis of colorectal cancer (CRC), as shown by a pathological rise in the hepatic perfusion index. We aimed to study the hepatic and pulmonary vasoactive responses triggered by PHCs after they pass through the gut mucosa and evaluate the potential activation of this mechanism in early CRC metastasis. Methods: We measured transit times to determine whether hepatic and pulmonary vasoconstriction occur in response to radiotracers administered at different sites. We performed PRPS with in vivo 99mTc-labelled RBC to evaluate the liver transit time (LTT) and right heart to liver circulation time (RHLT). Liver angioscintigraphy (LAS) was used to assess RHLT following the intravenous injection of 99mTc-pertechnetate and 99mTc-HDP (hydroxyethylene-diphosphate). Lower rectum transmucosal dynamic scintigraphy (LR-TMDS) was conducted to measure RHLT of 99mTc-pertechnetate delivered into the lower rectum submucosa. LAS was performed to assess LTT for 99mTc-HDP intravenously injected and delivered to the gut mucosa via arterial flow. Results: In healthy volunteers, PRPS showed notably increased LTT, ranging from 23.5 to 25.5 s, and RHLT (between 39.5 and 42.5 s) for in vivo 99mTc-labelled RBC. Significantly lower RHLT values ranging from 9 to 13.5 were observed for 99mTc-pertechnetate and 99mTc-HDP administered intravenously during LAS, as well as for 99mTc-pertechnetate at LR–TMDS (between 12 and 15 s). The LTT assessed at LAS for 99mTc-HDP ranged from 22 to 27 s. Conclusions: An intense vasoconstriction occurs in the liver and lungs in response to substances recognized by the body as PHCs when they pass through the gut mucosa, aiding their elimination. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

30 pages, 21593 KB  
Article
Design and CFD Analysis of a Compact Anaerobic Digestion Bioreactor Evaluating Agitation Designs and Configurations for Energy Efficiency
by Hoe-Gil Lee and Brett Rice
Energies 2025, 18(19), 5085; https://doi.org/10.3390/en18195085 - 24 Sep 2025
Viewed by 36
Abstract
Anaerobic digestion (AD) plays a crucial role in renewable energy production and waste management by converting organic waste into biogas and reduces greenhouse gas emissions. Optimized bioreactor performance depends on two main categories of factors: (1) reactor and geometric factors of agitator geometry, [...] Read more.
Anaerobic digestion (AD) plays a crucial role in renewable energy production and waste management by converting organic waste into biogas and reduces greenhouse gas emissions. Optimized bioreactor performance depends on two main categories of factors: (1) reactor and geometric factors of agitator geometry, blade configuration, rotational speed, torque, power consumption, and the impeller-to-tank ration (d/D), and (2) fluid property factors of viscosity and flow characteristics, which relates turbulence, circulation patters, and stratification. Impeller power strongly influences nutrient distribution, gas exchange, and temperature uniformity within the reactor. While higher power inputs improve turbulence and prevent stratification, they also increase energy demand. This study evaluated fifteen blade configurations to determine the optimal fluid circulation using ANSYS 2024 R1 Fluent simulations. The bioreactor tank, with a diameter of 0.130 m and a height of 0.225 m, was tested at speeds ranging from 40 to 150 RPM. Among the single-blade configurations, the curved blade achieved the highest velocity at 0.521 m/s, generating localized circulations. The Rushton blade produced strong radial flows with a velocity of 0.364 m/s, while the propeller blade reached 0.254 m/s, supporting axial flow. In double-blade arrangements, the curved-propeller combination exhibited velocities between 0.261 and 0.342 m/s, enhancing fluid motion. The three-blade configurations resulted in the highest power consumption, ranging from 1.94 W to 1.99 W, with power increasing at higher RPMs and larger impeller sizes. However, torque values decreased over time. The most efficient mixing was achieved at moderate RPMs (80–120) and an impeller-to-tank diameter ratio (d/D) of approximately 0.75. These findings highlight the significance of blade selection in balancing mixing efficiency and energy consumption for scalable AD systems. Full article
(This article belongs to the Special Issue Advanced Technologies in Waste-to-Bioenergy)
Show Figures

Figure 1

19 pages, 9764 KB  
Article
Modelling of the Present Oceanographic Situation of the Gulfs of Patras and Corinth
by Basile Caterina, Aurélia Hubert-Ferrari, Alexander Barth and Jean-Marie Beckers
J. Mar. Sci. Eng. 2025, 13(9), 1827; https://doi.org/10.3390/jmse13091827 - 21 Sep 2025
Viewed by 182
Abstract
In our study we investigated the hydrodynamic circulation of the Gulfs of Patras and Corinth through modelling. To this end, ROMS was used to numerically calculate the parameters of the waters for these peculiar semi-enclosed basins. Several oceanographic forcings were used with an [...] Read more.
In our study we investigated the hydrodynamic circulation of the Gulfs of Patras and Corinth through modelling. To this end, ROMS was used to numerically calculate the parameters of the waters for these peculiar semi-enclosed basins. Several oceanographic forcings were used with an emphasis on the tides and the winds. With several simulations, each focusing on a specific element, we were able to describe more accurately the dynamics under the surface to complete what was previously done. The high velocity currents (0.6 m/s at the Patraic end of the strait) were validated through ADCP and satellite data, proving that modelling can be trusted to fill the gap in the in situ data over these two gulfs. Our simulations, mainly based on the month of May 2023, allowed us to understand the importance of the tides, especially in the Rio–Antirio Strait. There, the bottom currents are the strongest while the center of the Corinthian Gulf remains quiet. The surface dynamics were observed to be sensitive to the tides, the winds and the season, but general patterns were still highlighted for the oceanographic circulation of the gulfs. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

26 pages, 6597 KB  
Article
Analysis of Flow Characteristics in a Hydrogen Circulation Pump Featuring a Variable Radius Circular Arc
by Jiankang Lu, Zhengdian Xu, Changdong Wan and Renrui Wang
Machines 2025, 13(9), 869; https://doi.org/10.3390/machines13090869 - 18 Sep 2025
Viewed by 238
Abstract
This study proposes a novel variable-radius arc rotor, developed based on the conventional arc rotor, for application in a hydrogen circulation pump. Numerical simulations are conducted to analyze and compare the flow characteristics of the optimized rotor with those of the baseline rotor. [...] Read more.
This study proposes a novel variable-radius arc rotor, developed based on the conventional arc rotor, for application in a hydrogen circulation pump. Numerical simulations are conducted to analyze and compare the flow characteristics of the optimized rotor with those of the baseline rotor. Results show that the optimized rotor increases outlet mass flow rates by over 15%; however, it has little effect on pressure pulsation, indicating limited influence on flow stability. Flow field analysis reveals that the optimized rotor promotes a more stable and streamlined internal velocity distribution, suppressing localized disturbances and vortices that are prevalent with the baseline rotor. Furthermore, assessments of turbulent kinetic energy (TKE) and three-dimensional vortex structures show that the optimized rotor confines high-energy zones to essential areas and facilitates controlled vortex evolution. These effects collectively lead to lower turbulence intensity, reduced energy loss, improved operational efficiency, and enhanced mechanical reliability of the pump. Full article
Show Figures

Figure 1

14 pages, 2287 KB  
Article
Applicability of Reynolds Analogy and Visualization of Coolant Flow Mixing in Downcomer of Land-Based Water-Cooled SMR
by Anton Riazanov, Sergei Dmitriev, Aleksandr Dobrov, Denis Doronkov, Aleksey Pronin, Tatiana Demkina, Daniil Kuritsin, Danil Nikolaev and Dmitriy Solntsev
Fluids 2025, 10(9), 244; https://doi.org/10.3390/fluids10090244 - 16 Sep 2025
Viewed by 236
Abstract
This article presents an experimental study on the hydrodynamics of coolant flow within the pressure vessel of a small modular reactor (SMR) cooled with water, including areas such as the annular downcomer, bottom chamber, and core-simulating channels that are being developed for use [...] Read more.
This article presents an experimental study on the hydrodynamics of coolant flow within the pressure vessel of a small modular reactor (SMR) cooled with water, including areas such as the annular downcomer, bottom chamber, and core-simulating channels that are being developed for use in land-based nuclear power plants. This paper describes the experimental setup and test model, measurement techniques used, experimental conditions under which this research was conducted, and results obtained. This study was conducted at the Nizhny Novgorod State Technical University (NNSTU) using a high-pressure aerodynamic testing facility and a scale model that included structural components similar to those found in loop-type reactors. Experiments were performed with Reynolds numbers (Re) ranging from 20,000 to 50,000 in the annular downcomer space of the test model. Two independent techniques were used to simulate the non-uniform flow field in the pressure vessel: passive impurity injection (adding propane to the airflow) and hot tracer (heating one of the reactor circulation loops). The axial velocity field at the inlet to the reactor core was also investigated. This study provided information about the spatial distribution of a tracer within the coolant flow in the annular downcomer and bottom chamber of the pressure vessel. Data on the distribution of the contrasting admixture are presented in plots. The swirling nature of the coolant flow within the pressurized vessel was analyzed. It was shown that the intensity of mixing within the bottom chamber of the pressure vessel is influenced by the presence of a central vortex. Parameters associated with the mixing of admixtures within the model for the pressure vessel were estimated. Additionally, the possibility for simulating flow with different temperature mixing processes using isothermal models was observed. Full article
(This article belongs to the Special Issue Flow Visualization: Experiments and Techniques, 2nd Edition)
Show Figures

Figure 1

25 pages, 6532 KB  
Article
Representing Small Shallow Water Estuary Hydrodynamics to Uncover Litter Transport Patterns
by Lubna Benchama Ahnouch, Frans Buschman, Helene Boisgontier, Ana Bio, Luis R. Vieira, Sara C. Antunes, Gary F. Kett, Isabel Sousa-Pinto and Isabel Iglesias
Water 2025, 17(18), 2698; https://doi.org/10.3390/w17182698 - 12 Sep 2025
Viewed by 733
Abstract
Plastic pollution is an increasing global concern, with estuaries being especially vulnerable as transition zones between freshwater and marine systems. These ecosystems often accumulate large amounts of waste, affecting wildlife and water quality. This study focuses on analysing the circulation patterns of the [...] Read more.
Plastic pollution is an increasing global concern, with estuaries being especially vulnerable as transition zones between freshwater and marine systems. These ecosystems often accumulate large amounts of waste, affecting wildlife and water quality. This study focuses on analysing the circulation patterns of the Ave Estuary, a small, shallow system on Portugal’s north-western coast, and their influence on litter transport and distribution. This site was selected for installing an aquatic litter removal technology under the EU-funded MAELSTROM project. A 2DH hydrodynamic model using Delft3D FM, coupled with the Wflow hydrological model, was implemented and validated. Various scenarios were simulated to assess estuarine dynamics and pinpoint zones prone to litter accumulation and flood risk. The results show that tidal action and river discharge mainly drive the estuary’s behaviour. Under low discharge, floating litter should be mostly transported toward the ocean, while high discharge conditions should result in litter movement at all depths due to stronger currents. High water levels and flooding occur mainly upstream and in specific low-lying areas near the mouth. Low-velocity zones, which can favour litter accumulation, were found around the main channel and on the western margin near the estuary’s mouth, even during high flows. These findings highlight persistent accumulation zones, even under extreme event conditions. Full article
(This article belongs to the Special Issue Marine Plastic Pollution: Recent Advances and Future Challenges)
Show Figures

Figure 1

21 pages, 7311 KB  
Article
Thermal State Simulation and Parameter Optimization of Circulating Fluidized Bed Boiler
by Jin Xu, Kaixuan Zhou, Fengchao Li, Zongyan Zhou, Yuelei Wang and Wenbin Huang
Processes 2025, 13(9), 2776; https://doi.org/10.3390/pr13092776 - 29 Aug 2025
Viewed by 402
Abstract
In order to solve the problem of low thermal efficiency of a 130 t/h industrial circulating fluidized bed boiler, a computational particle fluid dynamic approach was used in this work to study two-phase gas–solid flow, heat transfer, and combustion. The factors influencing coal [...] Read more.
In order to solve the problem of low thermal efficiency of a 130 t/h industrial circulating fluidized bed boiler, a computational particle fluid dynamic approach was used in this work to study two-phase gas–solid flow, heat transfer, and combustion. The factors influencing coal particle size distributions, air distribution strategies, and operational loads are addressed. The results showed that particle distribution exhibits “core–annulus” flow with a dense-phase bottom region and dilute-phase upper zone. A higher primary air ratio (0.8–1.5) enhances axial gas velocity and bed temperature but reduces secondary air zone (2.5–5.8 m) temperature. A higher primary air ratio also decreases outlet O2 mole fraction and increases fly ash carbon content, with optimal thermal efficiency at a ratio of 1.0. In addition, as the coal PSD decreases and the load increases, the overall temperature of the furnace increases and the outlet O2 mole fraction decreases. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

19 pages, 4623 KB  
Article
Effect of the Pore Distribution of Fishing Tanks on Hydrodynamic Characteristics Under the Wave Action
by Xiaojian Ma, Xiao Yu, Jian Yang and Fali Huo
J. Mar. Sci. Eng. 2025, 13(9), 1619; https://doi.org/10.3390/jmse13091619 - 25 Aug 2025
Viewed by 406
Abstract
A perforated aquaculture vessel represents an environmentally sustainable approach to fish farming, leveraging seawater circulation to optimize water quality and enhance fish health and growth. The perforations on the side of the fish tank significantly influence its hydrodynamic characteristics. This study investigated the [...] Read more.
A perforated aquaculture vessel represents an environmentally sustainable approach to fish farming, leveraging seawater circulation to optimize water quality and enhance fish health and growth. The perforations on the side of the fish tank significantly influence its hydrodynamic characteristics. This study investigated the influence of pore parameters on the perforated fishing tank with various pore designs, such as the asymmetric distribution of the opening in depth, windward, and leeward directions. A numerical study was conducted using STAR-CCM+ to analyze the perforated tank under beam wave conditions. This study aimed to analyze the effects of pore location, opening ratio, and asymmetric distribution on the hydrodynamic performance and flow characteristics within aquaculture tanks. The results demonstrated that an asymmetric pore distribution on the windward and leeward sides of the vessel had a notable impact on the roll motion and the flow velocity in the vicinity of the pores. The findings also indicated that the effects of pore distribution were more significant than those of opening ratio, especially regarding asymmetry. The results revealed that higher flow velocities occurred under a smaller opening ratio. Modifying pore structure parameters on the windward and leeward sides can alter the local flow field. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 3836 KB  
Article
A Microfluidic Approach for Assessing the Rheological Properties of Healthy Versus Thalassemic Red Blood Cells
by Hao Jiang, Xueying Li, Zhuoyan Liu, Siyu Luo, Junbin Huang, Chun Chen, Rui Chen and Fenfang Li
Micromachines 2025, 16(8), 957; https://doi.org/10.3390/mi16080957 - 19 Aug 2025
Cited by 1 | Viewed by 768
Abstract
The deformability of red blood cells (RBCs) is critical for microvascular circulation and is impaired in hematological disorders such as thalassemia, a prevalent public health concern in Guangdong, China. While microfluidics enable high-precision deformability assessment, current studies lack standardization in deformation metrics and [...] Read more.
The deformability of red blood cells (RBCs) is critical for microvascular circulation and is impaired in hematological disorders such as thalassemia, a prevalent public health concern in Guangdong, China. While microfluidics enable high-precision deformability assessment, current studies lack standardization in deformation metrics and rarely investigate post-deformation recovery dynamics. This study introduces an automated microfluidic platform for systematically evaluating RBC deformability in healthy and thalassemic individuals. A biomimetic chip featuring 4 µm, 8 µm, and 16 µm wide channels (7 µm in height) was designed to simulate capillary dimensions, with COMSOL CFD numerical modeling validating shear stress profiles. RBC suspensions (107 cells/mL in DPBS) were hydrodynamically focused through constrictions while high-speed imaging (15,000 fps) captured deformation–recovery dynamics. Custom-built algorithms with deep-learning networks automated cell tracking, contour analysis, and multi-parametric quantification. Validation confirmed significantly reduced deformability in Paraformaldehyde (PFA)-treated RBCs compared to normal controls. Narrower channels and higher flow velocities amplified shear-induced deformations, with more deformable cells exhibiting faster post-constriction shape recovery. Crucially, the platform distinguished thalassemia patient-derived RBCs from healthy samples, revealing significantly lower deformability in diseased cells, particularly in 4 µm channels. These results establish a standardized, high-throughput framework for RBC mechanical characterization, uncovering previously unreported recovery dynamics and clinically relevant differences in deformability in thalassemia. The method’s diagnostic sensitivity highlights its translational potential for screening hematological disorders. Full article
(This article belongs to the Special Issue Application of Microfluidic Technology in Bioengineering)
Show Figures

Figure 1

21 pages, 3288 KB  
Article
Three-Dimensional Hydrodynamic and Sediment-Transport Modeling of a Shallow Urban Lake in the Brazilian Amazon
by Marco Antônio Vieira Callado, Ana Hilza Barros Queiroz and Marcelo Rollnic
Water 2025, 17(16), 2444; https://doi.org/10.3390/w17162444 - 19 Aug 2025
Viewed by 827
Abstract
A three-dimensional numerical model was developed using Delft3D-Flow to simulate temperature dynamics, flow circulation, and sediment transport in Água Preta Lake, a shallow urban lake in the Brazilian Amazon. The simulation incorporated meteorological and physical data—including water inflows, temperature, bathymetry, and bed roughness—collected [...] Read more.
A three-dimensional numerical model was developed using Delft3D-Flow to simulate temperature dynamics, flow circulation, and sediment transport in Água Preta Lake, a shallow urban lake in the Brazilian Amazon. The simulation incorporated meteorological and physical data—including water inflows, temperature, bathymetry, and bed roughness—collected through in situ campaigns and meteorological stations. It was calibrated using a temperature time series (RMSE = 0.27 °C; MAE = 0.87 °C; R2 = 0.79; ρ = 0.89), and validated with two flow velocity measurements (RMSE = 0.009–0.012 m/s; ρ = 0.1–0.5) and with 19 temperature profiles over 4 months (RMSE = 0.08–0.93 °C; MAE = 0.12–2.04 °C; R2 = 0.00–0.99; ρ = −0.29–0.99). Due to its shallowness, the lake does not develop thermal stratification, with a maximum vertical temperature difference of only 2 °C. The lake is fed by high-discharge inflows that significantly affect internal circulation and promote resuspension. This may increase turbidity and possibly alter ecological dynamics, favoring eutrophication processes. Additionally, the simulation showed sediment accumulation rate of 27,780 m3/year; if continuous, this indicates complete siltation in about 318 years. These results emphasize the importance of ongoing monitoring, effective management of anthropogenic pressures, and restoration efforts, to prevent further degradation of these systems. Full article
Show Figures

Figure 1

20 pages, 10486 KB  
Article
Improving the Assimilation of T-TREC-Retrieved Wind Fields with Iterative Smoothing Constraints During Typhoon Linfa
by Huimin Bian, Haiyan Fei, Yuqing Mao, Cong Li, Aiqing Shu and Jiajun Chen
Remote Sens. 2025, 17(16), 2821; https://doi.org/10.3390/rs17162821 - 14 Aug 2025
Viewed by 375
Abstract
Enhancing radar data assimilation at cloud-resolving scales is essential for advancing typhoon analysis and forecasting. This study focuses on Typhoon Linfa, the 10th Pacific Typhoon of 2015, and proposes T-TREC-IS (Typhoon Circulation Tracking Radar Echo by Correlations with Iterative Smoothing), an enhanced version [...] Read more.
Enhancing radar data assimilation at cloud-resolving scales is essential for advancing typhoon analysis and forecasting. This study focuses on Typhoon Linfa, the 10th Pacific Typhoon of 2015, and proposes T-TREC-IS (Typhoon Circulation Tracking Radar Echo by Correlations with Iterative Smoothing), an enhanced version of the T-TREC algorithm. The enhancement incorporates an iterative smoothing constraint into the T-TREC algorithm, which improves the continuity of the retrieved wind field and mitigates the effects of velocity aliasing in radar data, thereby increasing the operational feasibility of the method. Building on this improvement, we evaluate the effectiveness of assimilating the T-TREC-IS-retrieved wind field for analyzing and forecasting Typhoon Linfa. The results demonstrate that the iterative smoothing constraint effectively filters out velocity de-aliasing errors during radar data quality control, enhances wind field intensity near the typhoon core, and retrieves the typhoon circulation more accurately. The refined wind field exhibits improved consistency and continuity, resulting in superior performance in subsequent assimilation analyses and forecasts. Full article
Show Figures

Graphical abstract

25 pages, 4874 KB  
Article
Hydrodynamic Responses and Machine Learning-Based Shape Classification of Harbor Seal Whiskers in the Wake of Bluff Bodies
by Xianghe Li, Zhimeng Zhang, Hanghao Zhao, Yaling Qin, Muyuan Du, Taolin Huang and Chunning Ji
Biomimetics 2025, 10(8), 534; https://doi.org/10.3390/biomimetics10080534 - 14 Aug 2025
Viewed by 500
Abstract
Harbor seals, equipped with their uniquely structured whiskers, demonstrate remarkable proficiency in tracking the trajectories of prey within dark and turbid marine environments. This study experimentally investigates the wake-induced vibrations of an elastically supported whisker model placed in the wakes of circular, square, [...] Read more.
Harbor seals, equipped with their uniquely structured whiskers, demonstrate remarkable proficiency in tracking the trajectories of prey within dark and turbid marine environments. This study experimentally investigates the wake-induced vibrations of an elastically supported whisker model placed in the wakes of circular, square, and equilateral triangular cylinders of varying dimensions. Thereafter, a machine learning model is trained to identify and classify these intrinsic responses. The findings reveal a positive correlation between the amplitude of vibration and the total circulation shed by the bluff bodies. In the wake flow fields of triangular and circular cylinders, the mean drag is quite similar. Meanwhile, the whisker’s vibration amplitude and drag fluctuation show that the triangular cylinder is comparable to the square cylinder, and both are higher than the circular cylinder. To classify the wake-generating body shapes based on the hydrodynamic characteristics, hydrodynamic features encompassing vibration amplitudes, fluid forces, and frequency-related information were extracted to train an LSTM-based model, and it was found that the mean drag significantly enhances the model’s flow velocity generalization performance. Full article
Show Figures

Figure 1

Back to TopTop