Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,564)

Search Parameters:
Keywords = vehicle state

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 2799 KiB  
Article
GAPO: A Graph Attention-Based Reinforcement Learning Algorithm for Congestion-Aware Task Offloading in Multi-Hop Vehicular Edge Computing
by Hongwei Zhao, Xuyan Li, Chengrui Li and Lu Yao
Sensors 2025, 25(15), 4838; https://doi.org/10.3390/s25154838 - 6 Aug 2025
Abstract
Efficient task offloading for delay-sensitive applications, such as autonomous driving, presents a significant challenge in multi-hop Vehicular Edge Computing (VEC) networks, primarily due to high vehicle mobility, dynamic network topologies, and complex end-to-end congestion problems. To address these issues, this paper proposes a [...] Read more.
Efficient task offloading for delay-sensitive applications, such as autonomous driving, presents a significant challenge in multi-hop Vehicular Edge Computing (VEC) networks, primarily due to high vehicle mobility, dynamic network topologies, and complex end-to-end congestion problems. To address these issues, this paper proposes a graph attention-based reinforcement learning algorithm, named GAPO. The algorithm models the dynamic VEC network as an attributed graph and utilizes a graph neural network (GNN) to learn a network state representation that captures the global topological structure and node contextual information. Building on this foundation, an attention-based Actor–Critic framework makes joint offloading decisions by intelligently selecting the optimal destination and collaboratively determining the ratios for offloading and resource allocation. A multi-objective reward function, designed to minimize task latency and to alleviate link congestion, guides the entire learning process. Comprehensive simulation experiments and ablation studies show that, compared to traditional heuristic algorithms and standard deep reinforcement learning methods, GAPO significantly reduces average task completion latency and substantially decreases backbone link congestion. In conclusion, by deeply integrating the state-aware capabilities of GNNs with the decision-making abilities of DRL, GAPO provides an efficient, adaptive, and congestion-aware solution to the resource management problems in dynamic VEC environments. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

25 pages, 77176 KiB  
Article
Advancing Energy Management Strategies for Hybrid Fuel Cell Vehicles: A Comparative Study of Deterministic and Fuzzy Logic Approaches
by Mohammed Essoufi, Mohammed Benzaouia, Bekkay Hajji, Abdelhamid Rabhi and Michele Calì
World Electr. Veh. J. 2025, 16(8), 444; https://doi.org/10.3390/wevj16080444 - 6 Aug 2025
Abstract
The increasing depletion of fossil fuels and their environmental impact have led to the development of fuel cell hybrid electric vehicles. By combining fuel cells with batteries, these vehicles offer greater efficiency and zero emissions. However, their energy management remains a challenge requiring [...] Read more.
The increasing depletion of fossil fuels and their environmental impact have led to the development of fuel cell hybrid electric vehicles. By combining fuel cells with batteries, these vehicles offer greater efficiency and zero emissions. However, their energy management remains a challenge requiring advanced strategies. This paper presents a comparative study of two developed energy management strategies: a deterministic rule-based approach and a fuzzy logic approach. The proposed system consists of a proton exchange membrane fuel cell (PEMFC) as the primary energy source and a lithium-ion battery as the secondary source. A comprehensive model of the hybrid powertrain is developed to evaluate energy distribution and system behaviour. The control system includes a model predictive control (MPC) method for fuel cell current regulation and a PI controller to maintain DC bus voltage stability. The proposed strategies are evaluated under standard driving cycles (UDDS and NEDC) using a simulation in MATLAB/Simulink. Key performance indicators such as fuel efficiency, hydrogen consumption, battery state-of-charge, and voltage stability are examined to assess the effectiveness of each approach. Simulation results demonstrate that the deterministic strategy offers a structured and computationally efficient solution, while the fuzzy logic approach provides greater adaptability to dynamic driving conditions, leading to improved overall energy efficiency. These findings highlight the critical role of advanced control strategies in improving FCHEV performance and offer valuable insights for future developments in hybrid-vehicle energy management. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-Mobility, 2nd Edition)
Show Figures

Figure 1

14 pages, 24112 KiB  
Article
ImpactAlert: Pedestrian-Carried Vehicle Collision Alert System
by Raghav Rawat, Caspar Lant, Haowen Yuan and Dennis Shasha
Electronics 2025, 14(15), 3133; https://doi.org/10.3390/electronics14153133 - 6 Aug 2025
Abstract
The ImpactAlert system is a chest-mounted system that detects objects that are likely to hit a pedestrian and alerts that pedestrian. The primary use cases are visually impaired pedestrians or pedestrians who need to be warned about vehicles or other pedestrians coming from [...] Read more.
The ImpactAlert system is a chest-mounted system that detects objects that are likely to hit a pedestrian and alerts that pedestrian. The primary use cases are visually impaired pedestrians or pedestrians who need to be warned about vehicles or other pedestrians coming from unseen directions. This paper argues for the need for such a system, the design and algorithms of ImpactAlert, and experiments carried out in varied urban environments, ranging from densely crowded to semi-urban in the United States, India and China. ImpactAlert makes use of a LiDAR camera found on a commercial wireless phone, processes the data over several frames to evaluate the time to impact and speed of potential threats. When ImpactAlert determines a threat meets the criteria set by the user, it sends warning signals through an output device to warn a pedestrian. The output device can be an audible warning and/or a low-cost smart cane that vibrates when danger approaches. Our experiments in urban and semi-urban environments show that (i) ImpactAlert can avoid nearly all false negatives (when an alarm should be sent and it isn’t) and (ii) enjoys a low false positive rate. The net result is an effective low cost system to alert pedestrians in an urban environment. Full article
Show Figures

Figure 1

22 pages, 2053 KiB  
Article
Enhanced Real-Time Method Traffic Light Signal Color Recognition Using Advanced Convolutional Neural Network Techniques
by Fakhri Yagob and Jurek Z. Sasiadek
World Electr. Veh. J. 2025, 16(8), 441; https://doi.org/10.3390/wevj16080441 - 5 Aug 2025
Abstract
Real-time traffic light detection is essential for the safe navigation of autonomous vehicles, where timely and accurate recognition of signal states is critical. YOLOv8, a state-of-the-art object detection model, offers enhanced speed and precision, making it well-suited for real-time applications in complex driving [...] Read more.
Real-time traffic light detection is essential for the safe navigation of autonomous vehicles, where timely and accurate recognition of signal states is critical. YOLOv8, a state-of-the-art object detection model, offers enhanced speed and precision, making it well-suited for real-time applications in complex driving environments. This study presents a modified YOLOv8 architecture optimized for traffic light detection by integrating Depth-Wise Separable Convolutions (DWSCs) throughout the backbone and head. The model was first pretrained on a public traffic light dataset to establish a strong baseline and then fine-tuned on a custom real-time dataset consisting of 480 images collected from video recordings under diverse road conditions. Experimental results demonstrate high detection performance, with precision scores of 0.992 for red, 0.995 for yellow, and 0.853 for green lights. The model achieved an average mAP@0.5 of 0.947, with stable F1 scores and low validation losses over 80 epochs, confirming effective learning and generalization. Compared to existing YOLO variants, the modified architecture showed superior performance, especially for red and yellow lights. Full article
Show Figures

Figure 1

16 pages, 825 KiB  
Article
Geographic Scale Matters in Analyzing the Effects of the Built Environment on Choice of Travel Modes: A Case Study of Grocery Shopping Trips in Salt Lake County, USA
by Ensheng Dong, Felix Haifeng Liao and Hejun Kang
Urban Sci. 2025, 9(8), 307; https://doi.org/10.3390/urbansci9080307 - 5 Aug 2025
Abstract
Compared to commuting, grocery shopping trips, despite their profound implications for mixed land use and transportation planning, have received limited attention in travel behavior research. Drawing upon a travel diary survey conducted in a fast-growing metropolitan region of the United States, i.e., Salt [...] Read more.
Compared to commuting, grocery shopping trips, despite their profound implications for mixed land use and transportation planning, have received limited attention in travel behavior research. Drawing upon a travel diary survey conducted in a fast-growing metropolitan region of the United States, i.e., Salt Lake County, UT, this research investigated a variety of influential factors affecting mode choices associated with grocery shopping. We analyze how built environment (BE) characteristics, measured at seven spatial scales or different ways of aggregating spatial data—including straight-line buffers, network buffers, and census units—affect travel mode decisions. Key predictors of choosing walking, biking, or transit over driving include age, household size, vehicle ownership, income, land use mix, street density, and distance to the central business district (CBD). Notably, the influence of BE factors on mode choice is sensitive to different spatial aggregation methods and locations of origins and destinations. The straight-line buffer was a good indicator for the influence of store sales amount on mode choices; the network buffer was more suitable for the household built environment factors, whereas the measurement at the census block and block group levels was more effective for store-area characteristics. These findings underscore the importance of considering both the spatial analysis method and the location (home vs. store) when modeling non-work travel. A multi-scalar approach can enhance the accuracy of travel demand models and inform more effective land use and transportation planning strategies. Full article
Show Figures

Figure 1

51 pages, 4099 KiB  
Review
Artificial Intelligence and Digital Twin Technologies for Intelligent Lithium-Ion Battery Management Systems: A Comprehensive Review of State Estimation, Lifecycle Optimization, and Cloud-Edge Integration
by Seyed Saeed Madani, Yasmin Shabeer, Michael Fowler, Satyam Panchal, Hicham Chaoui, Saad Mekhilef, Shi Xue Dou and Khay See
Batteries 2025, 11(8), 298; https://doi.org/10.3390/batteries11080298 - 5 Aug 2025
Abstract
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery [...] Read more.
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery Management Systems (BMS). This review paper explores how artificial intelligence (AI) and digital twin (DT) technologies can be integrated to enable the intelligent BMS of the future. It investigates how powerful data approaches such as deep learning, ensembles, and models that rely on physics improve the accuracy of predicting state of charge (SOC), state of health (SOH), and remaining useful life (RUL). Additionally, the paper reviews progress in AI features for cooling, fast charging, fault detection, and intelligible AI models. Working together, cloud and edge computing technology with DTs means better diagnostics, predictive support, and improved management for any use of EVs, stored energy, and recycling. The review underlines recent successes in AI-driven material research, renewable battery production, and plans for used systems, along with new problems in cybersecurity, combining data and mass rollout. We spotlight important research themes, existing problems, and future drawbacks following careful analysis of different up-to-date approaches and systems. Uniting physical modeling with AI-based analytics on cloud-edge-DT platforms supports the development of tough, intelligent, and ecologically responsible batteries that line up with future mobility and wider use of renewable energy. Full article
Show Figures

Figure 1

23 pages, 4260 KiB  
Article
Priority Control of Intelligent Connected Dedicated Bus Corridor Based on Deep Deterministic Policy Gradient
by Chunlin Shang, Fenghua Zhu, Yancai Xu, Guiqing Zhu and Xin Tong
Sensors 2025, 25(15), 4802; https://doi.org/10.3390/s25154802 - 4 Aug 2025
Abstract
To address the substantial disparities in operational characteristics between social vehicles and dedicated bus lanes, as well as the sub-optimal coordination control effects, a comprehensive approach is proposed. This approach integrates social vehicle arterial coordination with bus priority control in dedicated bus lanes. [...] Read more.
To address the substantial disparities in operational characteristics between social vehicles and dedicated bus lanes, as well as the sub-optimal coordination control effects, a comprehensive approach is proposed. This approach integrates social vehicle arterial coordination with bus priority control in dedicated bus lanes. Initially, an analysis of the differences in travel time distribution on both types of roads is conducted. The likelihood of buses passing through upstream and downstream intersections without stopping is also assessed. This analysis aids in determining the correlated traffic states and the corresponding signal adjustment strategies for arterial coordination. Subsequently, an incentive mechanism is established by quantitatively analyzing vehicle delay losses and bus priority benefits based on the signal adjustment strategy. Finally, a deep reinforcement learning framework is proposed to solve, in real-time, the optimal signal adjustment strategy. Simulation experiments indicate that, in comparison to the arterial coordination of social vehicles and dedicated bus arterial coordination control, this method significantly reduces the average per capita delay by 38.63% and 27.43%, respectively, under conventional traffic flow scenarios. This is in contrast to the separate arterial coordination for social vehicles and dedicated bus lanes. Furthermore, it leads to a reduction of 52.17% in the number of bus stops at intersections when compared solely with the arterial coordination of social vehicles. In saturated traffic flow scenarios, this method achieves a reduction in average per capita delay by 29.7% and 9.6%, respectively, while also decreasing the number of bus stops at intersections by 39.5% and 8.7%, respectively. Full article
Show Figures

Figure 1

26 pages, 2933 KiB  
Article
Comparative Analysis of Object Detection Models for Edge Devices in UAV Swarms
by Dimitrios Meimetis, Ioannis Daramouskas, Niki Patrinopoulou, Vaios Lappas and Vassilis Kostopoulos
Machines 2025, 13(8), 684; https://doi.org/10.3390/machines13080684 - 4 Aug 2025
Abstract
This study presented a comprehensive investigation into the performance of object detection models tailored for edge devices, particularly in the context of Unmanned Aerial Vehicle swarms. Object detection plays a pivotal role in enhancing autonomous navigation, situational awareness, and target tracking capabilities within [...] Read more.
This study presented a comprehensive investigation into the performance of object detection models tailored for edge devices, particularly in the context of Unmanned Aerial Vehicle swarms. Object detection plays a pivotal role in enhancing autonomous navigation, situational awareness, and target tracking capabilities within UAV swarms, where computing resources are constrained by the onboard low-cost computers. Initially, a thorough review of the existing literature was conducted to identify state-of-the-art object detection models suitable for deployment on edge devices. These models are evaluated based on their speed, accuracy, and efficiency, with a focus on real-time inference capabilities crucial for Unmanned Aerial Vehicle applications. Following the literature review, selected models undergo empirical validation through custom training using the Vision Meets Drone dataset, a widely recognized dataset for Unmanned Aerial Vehicle-based object detection tasks. Performance metrics such as mean average precision, inference speed, and resource utilization were measured and compared across different models. Lastly, the study extended its analysis beyond traditional object detection to explore the efficacy of instance segmentation and proposed an optimization to an object tracking technique within the context of unmanned Aerial Vehicles. Instance segmentation offers finer-grained object delineation, enabling more precise target or landmark identification and tracking, albeit at higher resource usage and higher inference time. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

22 pages, 4426 KiB  
Article
A Digital Twin Platform for Real-Time Intersection Traffic Monitoring, Performance Evaluation, and Calibration
by Abolfazl Afshari, Joyoung Lee and Dejan Besenski
Infrastructures 2025, 10(8), 204; https://doi.org/10.3390/infrastructures10080204 - 4 Aug 2025
Abstract
Emerging transportation challenges necessitate cutting-edge technologies for real-time infrastructure and traffic monitoring. To create a dynamic digital twin for intersection monitoring, data gathering, performance assessment, and calibration of microsimulation software, this study presents a state-of-the-art platform that combines high-resolution LiDAR sensor data with [...] Read more.
Emerging transportation challenges necessitate cutting-edge technologies for real-time infrastructure and traffic monitoring. To create a dynamic digital twin for intersection monitoring, data gathering, performance assessment, and calibration of microsimulation software, this study presents a state-of-the-art platform that combines high-resolution LiDAR sensor data with VISSIM simulation software. Intending to track traffic flow and evaluate important factors, including congestion, delays, and lane configurations, the platform gathers and analyzes real-time data. The technology allows proactive actions to improve safety and reduce interruptions by utilizing the comprehensive information that LiDAR provides, such as vehicle trajectories, speed profiles, and lane changes. The digital twin technique offers unparalleled precision in traffic and infrastructure state monitoring by fusing real data streams with simulation-based performance analysis. The results show how the platform can transform real-time monitoring and open the door to data-driven decision-making, safer intersections, and more intelligent traffic data collection methods. Using the proposed platform, this study calibrated a VISSIM simulation network to optimize the driving behavior parameters in the software. This study addresses current issues in urban traffic management with real-time solutions, demonstrating the revolutionary impact of emerging technology in intelligent infrastructure monitoring. Full article
Show Figures

Figure 1

27 pages, 14083 KiB  
Article
Numerical Investigations and Hydrodynamic Analysis of a Screw Propulsor for Underwater Benthic Vehicles
by Yan Kai, Pengfei Xu, Meijie Cao and Lei Yang
J. Mar. Sci. Eng. 2025, 13(8), 1500; https://doi.org/10.3390/jmse13081500 - 4 Aug 2025
Abstract
Screw propulsors have attracted increasing attention for their potential applications in amphibious vehicles and benthic robots, owing to their ability to perform both terrestrial and underwater locomotion. To investigate their hydrodynamic characteristics, a two-stage numerical analysis was carried out. In the first stage, [...] Read more.
Screw propulsors have attracted increasing attention for their potential applications in amphibious vehicles and benthic robots, owing to their ability to perform both terrestrial and underwater locomotion. To investigate their hydrodynamic characteristics, a two-stage numerical analysis was carried out. In the first stage, steady-state simulations under various advance coefficients were conducted to evaluate the influence of key geometric parameters on propulsion performance. Based on these results, a representative configuration was then selected for transient analysis to capture unsteady flow features. In the second stage, a Detached Eddy Simulation approach was employed to capture unsteady flow features under three rotational speeds. The flow field information was analyzed, and the mechanisms of vortex generation, instability, and dissipation were comprehensively studied. The results reveal that the propulsion process is dominated by the formation and evolution of tip vortices, root vortices, and cylindrical wake vortices. As rotation speed increases, vortex structures exhibit a transition from ordered spiral wakes to chaotic turbulence, primarily driven by centrifugal instability and nonlinear vortex interactions. Vortex breakdown and energy dissipation are intensified downstream, especially under high-speed conditions, where vortex integrity is rapidly lost due to strong shear and radial expansion. This hydrodynamic behavior highlights the fundamental difference from conventional propellers, and these findings provide theoretical insight into the flow mechanisms of screw propulsion. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 1435 KiB  
Article
Spatiotemporal Context for Daylight Saving Time-Safety Interactions in the Contiguous United States
by Edmund Zolnik and Patrick Baxter
Future Transp. 2025, 5(3), 102; https://doi.org/10.3390/futuretransp5030102 - 4 Aug 2025
Viewed by 30
Abstract
Motor vehicle crashes are a persistent cause of unintentional deaths in the United States. Scholarship on how manmade interventions and natural phenomena interact to effectuate such calamitous outcomes is longstanding. One manmade intervention of interest in the literature is daylight saving time (DST). [...] Read more.
Motor vehicle crashes are a persistent cause of unintentional deaths in the United States. Scholarship on how manmade interventions and natural phenomena interact to effectuate such calamitous outcomes is longstanding. One manmade intervention of interest in the literature is daylight saving time (DST). Unfortunately, results on how the natural phenomena attributable to DST interact with driver behavior are inconsistent. To advance knowledge on DST-safety interactions, this study adopts a multilevel model approach to fatal motor vehicle crash outcomes in the contiguous United States. Results from a national analysis contextualize results from zonal analyses to unmask within- and between-time zone differences in DST-safety interactions. In the national analysis, motor vehicle crash fatalities decrease somewhat during DST (−0.10%). In the zonal analyses, motor vehicle crash fatalities decrease more so in the Central and Eastern time zones (−2.00% and −2.00%, respectively), but increase somewhat in the Pacific and Mountain time zones (+0.30%) during DST. The spatiotemporal context of the national analysis highlights specific policy implications from the zonal analyses to decrease the lethality of motor vehicle crashes. Specifically, interdictions to target alcohol and/or drug involvement in the northern latitudes of the Pacific and Mountain time zones during DST, the Central time zone at dawn or dusk before or after DST, and the northern latitudes in the Eastern time zone before or after DST are important. Generally, national DST-safety benefits mask zonal DST-safety costs in the Pacific and Mountain time zones. Full article
Show Figures

Figure 1

31 pages, 1737 KiB  
Article
Trajectory Optimization for Autonomous Highway Driving Using Quintic Splines
by Wael A. Farag and Morsi M. Mahmoud
World Electr. Veh. J. 2025, 16(8), 434; https://doi.org/10.3390/wevj16080434 - 3 Aug 2025
Viewed by 156
Abstract
This paper introduces a robust and efficient Localized Spline-based Path-Planning (LSPP) algorithm designed to enhance autonomous vehicle navigation on highways. The LSPP approach prioritizes smooth maneuvering, obstacle avoidance, passenger comfort, and adherence to road constraints, including lane boundaries, through optimized trajectory generation using [...] Read more.
This paper introduces a robust and efficient Localized Spline-based Path-Planning (LSPP) algorithm designed to enhance autonomous vehicle navigation on highways. The LSPP approach prioritizes smooth maneuvering, obstacle avoidance, passenger comfort, and adherence to road constraints, including lane boundaries, through optimized trajectory generation using quintic spline functions and a dynamic speed profile. Leveraging real-time data from the vehicle’s sensor fusion module, the LSPP algorithm accurately interprets the positions of surrounding vehicles and obstacles, creating a safe, dynamically feasible path that is relayed to the Model Predictive Control (MPC) track-following module for precise execution. The theoretical distinction of LSPP lies in its modular integration of: (1) a finite state machine (FSM)-based decision-making layer that selects maneuver-specific goal states (e.g., keep lane, change lane left/right); (2) quintic spline optimization to generate smooth, jerk-minimized, and kinematically consistent trajectories; (3) a multi-objective cost evaluation framework that ranks competing paths according to safety, comfort, and efficiency; and (4) a closed-loop MPC controller to ensure real-time trajectory execution with robustness. Extensive simulations conducted in diverse highway scenarios and traffic conditions demonstrate LSPP’s effectiveness in delivering smooth, safe, and computationally efficient trajectories. Results show consistent improvements in lane-keeping accuracy, collision avoidance, enhanced materials wear performance, and planning responsiveness compared to traditional path-planning methods. These findings confirm LSPP’s potential as a practical and high-performance solution for autonomous highway driving. Full article
(This article belongs to the Special Issue Motion Planning and Control of Autonomous Vehicles)
Show Figures

Figure 1

33 pages, 1698 KiB  
Article
Green Energy Fuelling Stations in Road Transport: Poland in the European and Global Context
by Tomasz Neumann
Energies 2025, 18(15), 4110; https://doi.org/10.3390/en18154110 - 2 Aug 2025
Viewed by 145
Abstract
The transition to green energy in the transport sector is becoming a priority in the context of global climate challenges and the European Green Deal. This paper investigates the development of alternative fuelling stations, particularly electric vehicle (EV) charging infrastructure and hydrogen stations, [...] Read more.
The transition to green energy in the transport sector is becoming a priority in the context of global climate challenges and the European Green Deal. This paper investigates the development of alternative fuelling stations, particularly electric vehicle (EV) charging infrastructure and hydrogen stations, across EU countries with a focus on Poland. It combines a policy and technology overview with a quantitative scientific analysis, offering a multidimensional perspective on green infrastructure deployment. A Pearson correlation analysis reveals significant links between charging station density and both GDP per capita and the share of renewable energy. The study introduces an original Infrastructure Accessibility Index (IAI) to compare infrastructure availability across EU member states and models Poland’s EV charging station demand up to 2030 under multiple growth scenarios. Furthermore, the article provides a comprehensive overview of biofuels, including first-, second-, and third-generation technologies, and highlights recent advances in hydrogen and renewable electricity integration. Emphasis is placed on life cycle considerations, energy source sustainability, and economic implications. The findings support policy development toward zero-emission mobility and the decarbonisation of transport systems, offering recommendations for infrastructure expansion and energy diversification strategies. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

19 pages, 1159 KiB  
Article
A Biased–Randomized Iterated Local Search with Round-Robin for the Periodic Vehicle Routing Problem
by Juan F. Gomez, Antonio R. Uguina, Javier Panadero and Angel A. Juan
Mathematics 2025, 13(15), 2488; https://doi.org/10.3390/math13152488 - 2 Aug 2025
Viewed by 185
Abstract
The periodic vehicle routing problem (PVRP) is a well-known challenge in real-life logistics, requiring the planning of vehicle routes over multiple days while enforcing visitation frequency constraints. Although numerous metaheuristic and exact methods have tackled various PVRP extensions, real-world settings call for additional [...] Read more.
The periodic vehicle routing problem (PVRP) is a well-known challenge in real-life logistics, requiring the planning of vehicle routes over multiple days while enforcing visitation frequency constraints. Although numerous metaheuristic and exact methods have tackled various PVRP extensions, real-world settings call for additional features such as depot configurations, tight visitation frequency constraints, and heterogeneous fleets. In this paper, we present a two-phase biased–randomized algorithm that addresses these complexities. In the first phase, a round-robin assignment quickly generates feasible and promising solutions, ensuring each customer’s frequency requirement is met across the multi-day horizon. The second phase refines these assignments via an iterative search procedure, improving route efficiency and reducing total operational costs. Extensive experimentation on standard PVRP benchmarks shows that our approach is able to generate solutions of comparable quality to established state-of-the-art algorithms in relatively low computational times and stands out in many instances, making it a practical choice for real life multi-day vehicle routing applications. Full article
Show Figures

Figure 1

20 pages, 1907 KiB  
Article
Multi-Innovation-Based Parameter Identification for Vertical Dynamic Modeling of AUV Under High Maneuverability and Large Attitude Variations
by Jianping Yuan, Zhixun Luo, Lei Wan, Cenan Wang, Chi Zhang and Qingdong Chen
J. Mar. Sci. Eng. 2025, 13(8), 1489; https://doi.org/10.3390/jmse13081489 - 1 Aug 2025
Viewed by 215
Abstract
The parameter identification of Autonomous Underwater Vehicles (AUVs) serves as a fundamental basis for achieving high-precision motion control, state monitoring, and system development. Currently, AUV parameter identification typically relies on the complete motion information obtained from onboard sensors. However, in practical applications, it [...] Read more.
The parameter identification of Autonomous Underwater Vehicles (AUVs) serves as a fundamental basis for achieving high-precision motion control, state monitoring, and system development. Currently, AUV parameter identification typically relies on the complete motion information obtained from onboard sensors. However, in practical applications, it is often challenging to accurately measure key state variables such as velocity and angular velocity, resulting in incomplete measurement data that compromises identification accuracy and model reliability. This issue is particularly pronounced in vertical motion tasks involving low-speed, large pitch angles, and highly maneuverable conditions, where the strong coupling and nonlinear characteristics of underwater vehicles become more significant. Traditional hydrodynamic models based on full-state measurements often suffer from limited descriptive capability and difficulties in parameter estimation under such conditions. To address these challenges, this study investigates a parameter identification method for AUVs operating under vertical, large-amplitude maneuvers with constrained measurement information. A control autoregressive (CAR) model-based identification approach is derived, which requires only pitch angle, vertical velocity, and vertical position data, thereby reducing the dependence on complete state observations. To overcome the limitations of the conventional Recursive Least Squares (RLS) algorithm—namely, its slow convergence and low accuracy under rapidly changing conditions—a Multi-Innovation Least Squares (MILS) algorithm is proposed to enable the efficient estimation of nonlinear hydrodynamic characteristics in complex dynamic environments. The simulation and experimental results validate the effectiveness of the proposed method, demonstrating high identification accuracy and robustness in scenarios involving large pitch angles and rapid maneuvering. The results confirm that the combined use of the CAR model and MILS algorithm significantly enhances model adaptability and accuracy, providing a solid data foundation and theoretical support for the design of AUV control systems in complex operational environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop