Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (875)

Search Parameters:
Keywords = vehicle simulation software

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 8765 KB  
Article
Dynamic Load Analysis of Vertical, Pitching, and Lateral Tilt Vibrations of Multi-Axle Vehicles
by Jun Xie, Sibin Yan and Chenglin Feng
Appl. Sci. 2025, 15(18), 9906; https://doi.org/10.3390/app15189906 - 10 Sep 2025
Abstract
The dynamic load caused by vehicle vibration due to an uneven pavement surface is a primary factor affecting the structural performance and service life of asphalt pavement. As the principles of vibration mechanics, in conjunction with the coherence function of the vehicle’s left [...] Read more.
The dynamic load caused by vehicle vibration due to an uneven pavement surface is a primary factor affecting the structural performance and service life of asphalt pavement. As the principles of vibration mechanics, in conjunction with the coherence function of the vehicle’s left and right wheels, along with the lag between front and rear wheels, the entire vehicle vibration model for three-axle and four-axle heavy-load vehicles was developed using Simulink software. Through simulation, the root-mean-square value of the dynamic load and the dynamic load coefficient of the vehicle with different pavement roughness grades, speeds, loads, and cornering radii were analyzed. The outcomes demonstrate that a nonlinear rise in the wheel dynamic load occurs when pavement roughness increases. The greater the speed, the greater the impact of pavement roughness on the dynamic load. An increase in vehicle load tends to reduce vehicle vibrations. The interaction between vehicle vibration frequency and road excitation frequency is essential in figuring out the loads, and a negative influence on the pavement structure should be given more attention when the vehicle is driving at low speed. The dynamic load coefficient of the left and right wheels is greatly affected when the vehicle is in a lateral tilt. The findings offer valuable insights for selecting appropriate loads in pavement structure design. By constructing 11 degrees of freedom for a three-axle vehicle and 16 degrees of freedom for a four-axle heavy-duty vehicle model, the dynamic load variation law under different roughness excitation conditions is systematically analyzed. The results can be applied to the selection of vehicle load in asphalt pavement design to make it closer to the actual driving state, which will be helpful for improving accuracy in the design of pavement structure and avoiding early damage to the pavement. Full article
Show Figures

Figure 1

26 pages, 1299 KB  
Article
Integrated Information System for Parking Facilities Operations and Management
by Vasile Dragu, Eugenia Alina Roman, Mircea Augustin Roşca, Floriana Cristina Oprea, Andrei-Bogdan Mironescu and Oana Maria Dinu
Systems 2025, 13(9), 769; https://doi.org/10.3390/systems13090769 - 2 Sep 2025
Viewed by 412
Abstract
Parking management and operation represent a major challenge for both users and administrators, who seek to ensure efficient utilization, accommodate as many demands as possible, and reduce maintenance costs. This paper presents a theoretical model for an integrated IT system designed for parking [...] Read more.
Parking management and operation represent a major challenge for both users and administrators, who seek to ensure efficient utilization, accommodate as many demands as possible, and reduce maintenance costs. This paper presents a theoretical model for an integrated IT system designed for parking management and administration. The modeling process involved designing a parking facility using the AutoCAD Vehicle Tracking v25.00.2775 software package, in accordance with current design standards. To simulate system operation, a dedicated Python v2025.12.0 program was developed to assign parking spaces to arriving vehicles based on specific allocation criteria. Three allocation strategies were applied: random allocation, allocation aimed at minimizing the driving distance within the parking lot, and allocation aimed at reducing the walking distance from the assigned space to the destination. The simulation results show that, in the absence of allocation criteria, parking spaces are utilized in a quasi-uniform manner. The calculated values of variance and standard deviation are significantly lower in this case, increasing as allocation restrictions are introduced, but then returning to reduced values as the occupancy rate grows, since under intensive use the potential for controlled allocation decreases. The relationship between the number of allocations of each parking space and the applied allocation strategies was examined using Pearson and Spearman correlation coefficients. The results reveal a direct linear dependence under moderate demand and an inverse dependence under high demand—patterns consistent with situations observed in practice. The proposed software application provides a practical tool for effective parking management, contributing to the rational use of parking spaces, reduced travel distances within the facility, lower fuel consumption, and consequently, reduced pollution. Full article
(This article belongs to the Special Issue Modelling and Simulation of Transportation Systems)
Show Figures

Figure 1

42 pages, 9118 KB  
Article
ProVANT Simulator: A Virtual Unmanned Aerial Vehicle Platform for Control System Development
by Junio E. Morais, Daniel N. Cardoso, Brenner S. Rego, Richard Andrade, Iuro B. P. Nascimento, Jean C. Pereira, Jonatan M. Campos, Davi F. Santiago, Marcelo A. Santos, Leandro B. Becker, Sergio Esteban and Guilherme V. Raffo
Aerospace 2025, 12(9), 762; https://doi.org/10.3390/aerospace12090762 - 25 Aug 2025
Viewed by 489
Abstract
This paper introduces the ProVANT Simulator, a comprehensive environment for developing and validating control algorithms for Unmanned Aerial Vehicles (UAVs). Built on the Gazebo physics engine and integrated with the Robot Operating System (ROS), it enables reliable Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) testing. [...] Read more.
This paper introduces the ProVANT Simulator, a comprehensive environment for developing and validating control algorithms for Unmanned Aerial Vehicles (UAVs). Built on the Gazebo physics engine and integrated with the Robot Operating System (ROS), it enables reliable Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) testing. Addressing key challenges such as modeling complex multi-body dynamics, simulating disturbances, and supporting real-time implementation, the framework features a modular architecture, an intuitive graphical interface, and versatile capabilities for modeling, control, and hardware validation. Case studies demonstrate its effectiveness across various UAV configurations, including quadrotors, tilt-rotors, and unmanned aerial manipulators, highlighting its applications in aggressive maneuvers, load transportation, and trajectory tracking under disturbances. Serving both academic research and industrial development, the ProVANT Simulator reduces prototyping costs, development time, and associated risks. Full article
Show Figures

Figure 1

29 pages, 12889 KB  
Article
Development of a Multi-Robot System for Autonomous Inspection of Nuclear Waste Tank Pits
by Pengcheng Cao, Edward Kaleb Houck, Anthony D'Andrea, Robert Kinoshita, Kristan B. Egan, Porter J. Zohner and Yidong Xia
Appl. Sci. 2025, 15(17), 9307; https://doi.org/10.3390/app15179307 - 24 Aug 2025
Viewed by 882
Abstract
This paper introduces the overall design plan, development timeline, and preliminary progress of the Autonomous Pit Exploration System project. This project aims to develop an advanced multi-robot system for the efficient inspection of nuclear waste-storage tank pits. The project is structured into three [...] Read more.
This paper introduces the overall design plan, development timeline, and preliminary progress of the Autonomous Pit Exploration System project. This project aims to develop an advanced multi-robot system for the efficient inspection of nuclear waste-storage tank pits. The project is structured into three phases: Phase 1 involves data collection and interface definition in collaboration with Hanford Site experts and university partners, focusing on tank riser geometry and hardware solutions. Phase 2 includes the selection of sensors and robot components, detailed mechanical design, and prototyping. Phase 3 integrates all components into a cohesive system managed by a master control package which also incorporates digital twin and surrogate models, and culminates in comprehensive testing and validation at a simulated tank pit at the Idaho National Laboratory. Additionally, the system’s communication design ensures coordinated operation through shared data, power, and control signals. For transportation and deployment, an electric vehicle (EV) is chosen to support the system for a full 10 h shift with better regulatory compliance for field deployment. A telescopic arm design is selected for its simple configuration and superior reach capability and controllability. Preliminary testing utilizes an educational robot to demonstrate the feasibility of splitting computational tasks between edge and cloud computers. Successful simultaneous localization and mapping (SLAM) tasks validate our distributed computing approach. More design considerations are also discussed, including radiation hardness assurance, SLAM performance, software transferability, and digital twinning strategies. Full article
(This article belongs to the Special Issue Mechatronic Systems Design and Optimization)
Show Figures

Figure 1

18 pages, 9405 KB  
Article
Design and Optimization of a Connecting Joint for Underwater Autonomous Docking and Separation
by Yan Zhang, Yi Yang, Zhiqiang Hu, Zhichao Wang, Quan Zheng and Chuanzhi Fan
J. Mar. Sci. Eng. 2025, 13(9), 1604; https://doi.org/10.3390/jmse13091604 - 22 Aug 2025
Viewed by 365
Abstract
In this paper, a connecting joint capable of underwater autonomous docking and separation is proposed, which can be used for a reconfigurable articulated underwater robot (RAU robot). The structural design, optimization, and experimental validation of the connecting joint are presented in detail. First, [...] Read more.
In this paper, a connecting joint capable of underwater autonomous docking and separation is proposed, which can be used for a reconfigurable articulated underwater robot (RAU robot). The structural design, optimization, and experimental validation of the connecting joint are presented in detail. First, the concept of the RAU robot is introduced, along with its different operational modes and the application scenarios. Second, the specific structural design and basic functions of the connecting joint are described. Third, a dynamic model of the docking process between different vehicles is established and simulated by kinematic simulation software. Through discretely sampling the parameter space, the optimal parameter combination is obtained. Finally, a prototype of the connecting joint is fabricated and functional tests are conducted. The impact forces on the docking rods before and after optimization are compared. The results show that the designed connecting joint can fulfill the functional requirements for autonomous docking of the underwater robot, and the maximum impact force is reduced by 27.08% compared to the one before optimization. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

32 pages, 3669 KB  
Article
A Quantifiable Comprehensive Evaluation Method Combining Optical Motion Capture and Simulation—Assessing the Layout Design of Special Vehicle Cabins
by Sen Gu, Tianyi Zhang, Hanyu Wang and Qingbin Wang
Sensors 2025, 25(16), 5053; https://doi.org/10.3390/s25165053 - 14 Aug 2025
Viewed by 449
Abstract
Ergonomic assessments for specialized vehicle cockpits are often costly, subjective, or fragmented. To address these issues, this study proposes and validates a quantifiable comprehensive evaluation method combining optical motion capture with simulation. The methodology uses motion capture to acquire accurate, dynamic operator posture [...] Read more.
Ergonomic assessments for specialized vehicle cockpits are often costly, subjective, or fragmented. To address these issues, this study proposes and validates a quantifiable comprehensive evaluation method combining optical motion capture with simulation. The methodology uses motion capture to acquire accurate, dynamic operator posture data, which drives a digital human model in a virtual environment. A novel assessment framework then integrates the results from six ergonomic tools into a single, comprehensive score using a multi-criteria weighting model, overcoming the ‘information silo’ problem of traditional software. In a case study optimizing a flatbed transporter cockpit, the method guided a redesign that significantly improved the overall ergonomic score from 0.422 to 0.277. The effectiveness of the optimization was validated by a 40% increase in key control accessibility and a significant reduction in electromyography (EMG) signals in the neck, shoulder, and lumbar regions. This study provides an innovative, data-driven methodology for the objective design and evaluation of customized human–machine systems, demonstrating its utility in reducing physical strain and enhancing operator comfort, with broad applicability to other complex industrial environments. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

17 pages, 1774 KB  
Article
Situation-Aware Causal Inference-Driven Vehicle Lane-Changing Decision-Making
by Wei Li, Changhao Yang, Xu Zhou, Weiyu Liu and Guorong Zheng
Appl. Sci. 2025, 15(16), 8864; https://doi.org/10.3390/app15168864 - 11 Aug 2025
Viewed by 410
Abstract
For the decision-making challenge of ensuring vehicle lane-changing safety, this study proposes a context-dependent causal inference-based model for safe lane changes. Emphasizing multi-vehicle interactions within dynamic traffic scenarios, we construct a three-layer decision-making framework that relies on real-time data collection of speed, acceleration, [...] Read more.
For the decision-making challenge of ensuring vehicle lane-changing safety, this study proposes a context-dependent causal inference-based model for safe lane changes. Emphasizing multi-vehicle interactions within dynamic traffic scenarios, we construct a three-layer decision-making framework that relies on real-time data collection of speed, acceleration, and spacing information from both the target vehicle and adjacent-lane vehicles. The framework consists of (1) a context-aware layer that extracts standardized dynamic features; (2) an attention mechanism layer that dynamically assigns weights to critical risk factors; and (3) a counterfactual causal reasoning layer where lane-changing risks are quantified through virtual interventions, with multi-objective safety strategies optimized via particle swarm algorithms. The simulation results indicate significant enhancements in high-density traffic conditions. When compared to traditional safety distance models and built-in models from simulation software (SUMO v1.18.0), the proposed model achieves reductions in average conflict counts by 63.0% (from 12.7 to 4.7 instances) and by 37.3% (from 7.5 to 4.7 instances), respectively. Additionally, lane-changing durations are reduced by 10.9% (from 5.5 to 4.9 s) and by 31.9% (from 7.2 to 4.9 s), while fluctuations in risk values decrease by 53.3% (from 0.75 to 0.35) and by 36.4% (from 0.55 to 0.35), respectively. The experimental validation confirms that the integration of dynamic safety distance computation with causal reasoning significantly enhances decision-making robustness in complex scenarios through coordinated risk quantification and multi-objective optimization Full article
Show Figures

Figure 1

22 pages, 4426 KB  
Article
A Digital Twin Platform for Real-Time Intersection Traffic Monitoring, Performance Evaluation, and Calibration
by Abolfazl Afshari, Joyoung Lee and Dejan Besenski
Infrastructures 2025, 10(8), 204; https://doi.org/10.3390/infrastructures10080204 - 4 Aug 2025
Viewed by 963
Abstract
Emerging transportation challenges necessitate cutting-edge technologies for real-time infrastructure and traffic monitoring. To create a dynamic digital twin for intersection monitoring, data gathering, performance assessment, and calibration of microsimulation software, this study presents a state-of-the-art platform that combines high-resolution LiDAR sensor data with [...] Read more.
Emerging transportation challenges necessitate cutting-edge technologies for real-time infrastructure and traffic monitoring. To create a dynamic digital twin for intersection monitoring, data gathering, performance assessment, and calibration of microsimulation software, this study presents a state-of-the-art platform that combines high-resolution LiDAR sensor data with VISSIM simulation software. Intending to track traffic flow and evaluate important factors, including congestion, delays, and lane configurations, the platform gathers and analyzes real-time data. The technology allows proactive actions to improve safety and reduce interruptions by utilizing the comprehensive information that LiDAR provides, such as vehicle trajectories, speed profiles, and lane changes. The digital twin technique offers unparalleled precision in traffic and infrastructure state monitoring by fusing real data streams with simulation-based performance analysis. The results show how the platform can transform real-time monitoring and open the door to data-driven decision-making, safer intersections, and more intelligent traffic data collection methods. Using the proposed platform, this study calibrated a VISSIM simulation network to optimize the driving behavior parameters in the software. This study addresses current issues in urban traffic management with real-time solutions, demonstrating the revolutionary impact of emerging technology in intelligent infrastructure monitoring. Full article
Show Figures

Figure 1

18 pages, 10032 KB  
Article
Design and Efficiency Analysis of High Maneuvering Underwater Gliders for Kuroshio Observation
by Zhihao Tian, Bing He, Heng Zhang, Cunzhe Zhang, Tongrui Zhang and Runfeng Zhang
Oceans 2025, 6(3), 48; https://doi.org/10.3390/oceans6030048 - 1 Aug 2025
Viewed by 444
Abstract
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier [...] Read more.
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier in marine innovation. In recent years, the global research community has increased its efforts towards the development of high-maneuverability underwater vehicles. However, propeller design optimization ignores the key balance between acoustic performance and hydrodynamic efficiency, as well as the appropriate speed threshold for blade rotation. In order to solve this problem, the propeller design of the NACA 65A010 airfoil is optimized by using OpenProp v3.3.4 and XFlow 2022 software, aiming at innovating the propulsion system of shallow water agile submersibles. The study presents an integrated design framework combining lattice Boltzmann method (LBM) simulations synergized with fully Lagrangian-LES modeling, implementing rotational speed thresholds to detect cavitation inception, followed by advanced acoustic propagation analysis. Through rigorous comparative assessment of hydrodynamic metrics, we establish an optimization protocol for propeller selection tailored to littoral zone operational demands. Studies have shown that increasing the number of propeller blades can reduce the single-blade load and delay cavitation, but too many blades will aggravate the complexity of the flow field, resulting in reduced efficiency and noise rebound. It is concluded that the propeller with five blades, a diameter of 234 mm, and a speed of 500 RPM exhibits the best performance. Under these conditions, the water efficiency is 69.01%, and the noise is the lowest, which basically realizes the balance between hydrodynamic efficiency and acoustic performance. This paradigm-shifting research carries substantial implications for next-generation marine vehicles, particularly in optimizing operational stealth and energy efficiency through intelligent propulsion architecture. Full article
Show Figures

Figure 1

18 pages, 2599 KB  
Article
Construction of Motion/Force Transmission Performance Index of a Single-Drive Serial Loop Mechanism and Application to the Vehicle Door Latch Mechanism
by Ziyang Zhang, Lubin Hang and Xiaobo Huang
Appl. Sci. 2025, 15(15), 8475; https://doi.org/10.3390/app15158475 - 30 Jul 2025
Viewed by 232
Abstract
Aiming at the multifunctional requirements of the limited space in high-end vehicle side-door latches, a double single-loop RRUPRR mechanism driven by a single motor for both electric releasing and cinching is proposed based on the POC set. The kinematical equations of the RRURR [...] Read more.
Aiming at the multifunctional requirements of the limited space in high-end vehicle side-door latches, a double single-loop RRUPRR mechanism driven by a single motor for both electric releasing and cinching is proposed based on the POC set. The kinematical equations of the RRURR mechanism possess 2 × 2 analytical solutions. In order to apply the current motion/force transmission performance index of the parallel mechanisms to the transmission performance analysis of the serial mechanisms, matching methods for chain-driving transference and the moving/fixed platform inversion are proposed. The solution of the performance index of a single-degree-of-freedom single-loop mechanism is equivalent to the solution of the input motion/force transmission performance index of a parallel mechanism. The overall motion/force transmission performance index of a single-loop mechanism is constructed, and the corresponding calculation procedure is defined. Chain-driving transference can be obtained through forward and inverse solutions of the RRURR mechanism. In response to the extremely high requirements for motion/force transmission performance of electric release mechanisms, the proposed overall motion/force transmission performance index is used to calculate for the input motion screw and corresponding transmission-force screw of the single-loop RRURR mechanism and obtain the overall motion/force transmission performance of the mechanism. The performance atlas of the mechanism shows that it has excellent motion/force transmission characteristics within the workspace. Using ADAMS simulation software, the driving torque required for electric releasing and cinching of a vehicle side-door latch mechanism with a single motor is analyzed. The overall motion/force transmission performance index of a single-loop mechanism can be applied to single-loop overconstrained mechanisms and non-overconstrained mechanisms. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

13 pages, 2826 KB  
Article
Design and Application of p-AlGaN Short Period Superlattice
by Yang Liu, Changhao Chen, Xiaowei Zhou, Peixian Li, Bo Yang, Yongfeng Zhang and Junchun Bai
Micromachines 2025, 16(8), 877; https://doi.org/10.3390/mi16080877 - 29 Jul 2025
Viewed by 471
Abstract
AlGaN-based high-electron-mobility transistors are critical for next-generation power electronics and radio-frequency applications, yet achieving stable enhancement-mode operation with a high threshold voltage remains a key challenge. In this work, we designed p-AlGaN superlattices with different structures and performed energy band structure simulations using [...] Read more.
AlGaN-based high-electron-mobility transistors are critical for next-generation power electronics and radio-frequency applications, yet achieving stable enhancement-mode operation with a high threshold voltage remains a key challenge. In this work, we designed p-AlGaN superlattices with different structures and performed energy band structure simulations using the device simulation software Silvaco. The results demonstrate that thin barrier structures lead to reduced acceptor incorporation, thereby decreasing the number of ionized acceptors, while facilitating vertical hole transport. Superlattice samples with varying periodic thicknesses were grown via metal-organic chemical vapor deposition, and their crystalline quality and electrical properties were characterized. The findings reveal that although gradient-thickness barriers contribute to enhancing hole concentration, the presence of thick barrier layers restricts hole tunneling and induces stronger scattering, ultimately increasing resistivity. In addition, we simulated the structure of the enhancement-mode HEMT with p-AlGaN as the under-gate material. Analysis of its energy band structure and channel carrier concentration indicates that adopting p-AlGaN superlattices as the under-gate material facilitates achieving a higher threshold voltage in enhancement-mode HEMT devices, which is crucial for improving device reliability and reducing power loss in practical applications such as electric vehicles. Full article
(This article belongs to the Special Issue III–V Compound Semiconductors and Devices, 2nd Edition)
Show Figures

Figure 1

20 pages, 7127 KB  
Article
Design Method of Array-Type Coupler for UAV Wireless Power Transmission System Based on the Deep Neural Network
by Mingyang Li, Jiacheng Li, Wei Xiao, Jingyi Li and Chenyue Zhou
Drones 2025, 9(8), 532; https://doi.org/10.3390/drones9080532 - 29 Jul 2025
Viewed by 467
Abstract
Unmanned aerial vehicles (UAVs) are commonly used in various fields and industries, but their limited battery life has become a key constraint for their development. Wireless Power Transmission (WPT) technology, with its convenience, durability, intelligence, and unmanned features, significantly enhances UAVs’ battery life [...] Read more.
Unmanned aerial vehicles (UAVs) are commonly used in various fields and industries, but their limited battery life has become a key constraint for their development. Wireless Power Transmission (WPT) technology, with its convenience, durability, intelligence, and unmanned features, significantly enhances UAVs’ battery life and operational range. However, the variety of UAV models and different sizes pose challenges for designing couplers in the WPT system. This paper presents a design method for an array-type coupler in a UAV WPT system that uses a deep neural network. By establishing an electromagnetic 3D structure of the array-type coupler using electromagnetic simulation software, the dimensions of the transmitting and receiving coils are modified to assess how changes in the aperture of the transmitting coil and the length of the receiving coil affect the mutual inductance of the coupler. Furthermore, deep learning methods are utilized to train a high-precision model using the calculated data as the training and testing sets. Finally, taking the FAIRSER-X model UAV as an example, the transmitting and receiving coils are wound, and the feasibility and accuracy of the proposed method are verified through an LCR meter, which notably enhances the design efficiency of UAV WPT systems. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

19 pages, 3658 KB  
Article
Optimal Design of Linear Quadratic Regulator for Vehicle Suspension System Based on Bacterial Memetic Algorithm
by Bala Abdullahi Magaji, Aminu Babangida, Abdullahi Bala Kunya and Péter Tamás Szemes
Mathematics 2025, 13(15), 2418; https://doi.org/10.3390/math13152418 - 27 Jul 2025
Viewed by 532
Abstract
The automotive suspension must perform competently to support comfort and safety when driving. Traditionally, car suspension control tuning is performed through trial and error or with classical techniques that cannot guarantee optimal performance under varying road conditions. The study aims at designing a [...] Read more.
The automotive suspension must perform competently to support comfort and safety when driving. Traditionally, car suspension control tuning is performed through trial and error or with classical techniques that cannot guarantee optimal performance under varying road conditions. The study aims at designing a Linear Quadratic Regulator-based Bacterial Memetic Algorithm (LQR-BMA) for suspension systems of automobiles. BMA combines the bacterial foraging optimization algorithm (BFOA) and the memetic algorithm (MA) to enhance the effectiveness of its search process. An LQR control system adjusts the suspension’s behavior by determining the optimal feedback gains using BMA. The control objective is to significantly reduce the random vibration and oscillation of both the vehicle and the suspension system while driving, thereby making the ride smoother and enhancing road handling. The BMA adopts control parameters that support biological attraction, reproduction, and elimination-dispersal processes to accelerate the search and enhance the program’s stability. By using an algorithm, it explores several parts of space and improves its value to determine the optimal setting for the control gains. MATLAB 2024b software is used to run simulations with a randomly generated road profile that has a power spectral density (PSD) value obtained using the Fast Fourier Transform (FFT) method. The results of the LQR-BMA are compared with those of the optimized LQR based on the genetic algorithm (LQR-GA) and the Virus Evolutionary Genetic Algorithm (LQR-VEGA) to substantiate the potency of the proposed model. The outcomes reveal that the LQR-BMA effectuates efficient and highly stable control system performance compared to the LQR-GA and LQR-VEGA methods. From the results, the BMA-optimized model achieves reductions of 77.78%, 60.96%, 70.37%, and 73.81% in the sprung mass displacement, unsprung mass displacement, sprung mass velocity, and unsprung mass velocity responses, respectively, compared to the GA-optimized model. Moreover, the BMA-optimized model achieved a −59.57%, 38.76%, 94.67%, and 95.49% reduction in the sprung mass displacement, unsprung mass displacement, sprung mass velocity, and unsprung mass velocity responses, respectively, compared to the VEGA-optimized model. Full article
(This article belongs to the Special Issue Advanced Control Systems and Engineering Cybernetics)
Show Figures

Figure 1

18 pages, 500 KB  
Article
Hybrid Model-Based Traffic Network Control Using Population Games
by Sindy Paola Amaya, Pablo Andrés Ñañez, David Alejandro Martínez Vásquez, Juan Manuel Calderón Chávez and Armando Mateus Rojas
Appl. Syst. Innov. 2025, 8(4), 102; https://doi.org/10.3390/asi8040102 - 25 Jul 2025
Viewed by 498
Abstract
Modern traffic management requires sophisticated approaches to address the complexities of urban road networks, which continue to grow in complexity due to increasing urbanization and vehicle usage. Traditional methods often fall short in mitigating congestion and optimizing traffic flow, inducing the exploration of [...] Read more.
Modern traffic management requires sophisticated approaches to address the complexities of urban road networks, which continue to grow in complexity due to increasing urbanization and vehicle usage. Traditional methods often fall short in mitigating congestion and optimizing traffic flow, inducing the exploration of innovative traffic control strategies based on advanced theoretical frameworks. In this sense, we explore different game theory-based control strategies in an eight-intersection traffic network modeled by means of hybrid systems and graph theory, using a software simulator that combines the multi-modal traffic simulation software VISSIM and MATLAB to integrate traffic network parameters and population game criteria. Across five distinct network scenarios with varying saturation conditions, we explore a fixed-time scheme of signaling by means of fictitious play dynamics and adaptive schemes, using dynamics such as Smith, replicator, Logit and Brown–Von Neumann–Nash (BNN). Results show better performance for Smith and replicator dynamics in terms of traffic parameters both for fixed and variable signaling times, with an interesting outcome of fictitious play over BNN and Logit. Full article
Show Figures

Figure 1

20 pages, 28281 KB  
Article
Infrared-Guided Thermal Cycles in FEM Simulation of Laser Welding of Thin Aluminium Alloy Sheets
by Pasquale Russo Spena, Manuela De Maddis, Valentino Razza, Luca Santoro, Husniddin Mamarayimov and Dario Basile
Metals 2025, 15(8), 830; https://doi.org/10.3390/met15080830 - 24 Jul 2025
Viewed by 560
Abstract
Climate concerns are driving the automotive industry to adopt advanced manufacturing technologies that aim to improve energy efficiency and reduce vehicle weight. In this context, lightweight structural materials such as aluminium alloys have gained significant attention due to their favorable strength-to-weight ratio. Laser [...] Read more.
Climate concerns are driving the automotive industry to adopt advanced manufacturing technologies that aim to improve energy efficiency and reduce vehicle weight. In this context, lightweight structural materials such as aluminium alloys have gained significant attention due to their favorable strength-to-weight ratio. Laser welding plays a crucial role in assembling such materials, offering high flexibility and fast joining capabilities for thin aluminium sheets. However, welding these materials presents specific challenges, particularly in controlling heat input to minimize distortions and ensure consistent weld quality. As a result, numerical simulations based on the Finite Element Method (FEM) are essential for predicting weld-induced phenomena and optimizing process performance. This study investigates welding-induced distortions in laser butt welding of 1.5 mm-thick Al 6061 samples through FEM simulations performed in the SYSWELD 2024.0 environment. The methodology provided by the software is based on the Moving Heat Source (MHS) model, which simulates the physical movement of the heat source and typically requires extensive calibration through destructive metallographic testing. This transient approach enables the detailed prediction of thermal, metallurgical, and mechanical behavior, but it is computationally demanding. To improve efficiency, the Imposed Thermal Cycle (ITC) model is often used. In this technique, a thermal cycle, extracted from an MHS simulation or experimental data, is imposed on predefined subregions of the model, allowing only mechanical behavior to be simulated while reducing computation time. To avoid MHS-based calibration, this work proposes using thermal cycles acquired in-line during welding via infrared thermography as direct input for the ITC model. The method was validated experimentally and numerically, showing good agreement in the prediction of distortions and a significant reduction in workflow time. The distortion values from simulations differ from the real experiment by less than 0.3%. Our method exhibits a slight decrease in performance, resulting in an increase in estimation error of 0.03% compared to classic approaches, but more than 85% saving in computation time. The integration of real process data into the simulation enables a virtual representation of the process, supporting future developments toward Digital Twin applications. Full article
(This article belongs to the Special Issue Manufacturing Processes of Metallic Materials)
Show Figures

Figure 1

Back to TopTop