Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,976)

Search Parameters:
Keywords = vegetation roots

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4884 KiB  
Article
Multiplication of Axillary Shoots of Adult Quercus robur L. Trees in RITA® Bioreactors
by Paweł Chmielarz, Conchi Sánchez, João Paulo Rodrigues Martins, Juan Manuel Ley-López, Purificación Covelo, María José Cernadas, Anxela Aldrey, Saleta Rico, Jesús María Vielba, Bruce Christie and Nieves Vidal
Forests 2025, 16(8), 1285; https://doi.org/10.3390/f16081285 - 6 Aug 2025
Abstract
Adult trees of pedunculate oak (Quercus robur L.) are recalcitrant to vegetative propagation. In this study, we investigated the micropropagation of five oak genotypes corresponding to trees aged 60–800 years in a liquid medium. We used commercial RITA bioreactors to study the [...] Read more.
Adult trees of pedunculate oak (Quercus robur L.) are recalcitrant to vegetative propagation. In this study, we investigated the micropropagation of five oak genotypes corresponding to trees aged 60–800 years in a liquid medium. We used commercial RITA bioreactors to study the influence of the explant type, the culture medium, shoot support and number of immersions. Variables evaluated included the number of normal and hyperhydric shoots, shoot length, multiplication coefficient and number of rootable shoots per explant. All genotypes could be cultured in temporary immersion. Basal stem sections attached to callus grew better than apical sections and developed less hyperhydricity. For long-term cultivation, Gresshoff and Doy medium was the best of the three media evaluated. All genotypes produced vigorous shoots suitable for rooting and acclimation. This is the first protocol to proliferate adult oak trees in bioreactors, representing significant progress towards large-scale propagation of this and other related species. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

21 pages, 1488 KiB  
Article
Comparative Evaluation and Optimization of Auxin Type and Concentration on Rooting Efficiency of Photinia × fraseri Dress: Stem Cuttings Using Response Surface Methodology
by Gülcay Ercan Oğuztürk, Müberra Pulatkan, Cem Alparslan and Türker Oğuztürk
Plants 2025, 14(15), 2420; https://doi.org/10.3390/plants14152420 - 4 Aug 2025
Abstract
This study aimed to evaluate and optimize the effects of three auxin types—indole-3-butyric acid (IBA), naphthaleneacetic acid (NAA), and indole-3-acetic acid (IAA)—applied at four concentrations (1000, 3000, 5000, and 8000 ppm) on the rooting performance of Photinia × fraseri Dress. stem cuttings. The [...] Read more.
This study aimed to evaluate and optimize the effects of three auxin types—indole-3-butyric acid (IBA), naphthaleneacetic acid (NAA), and indole-3-acetic acid (IAA)—applied at four concentrations (1000, 3000, 5000, and 8000 ppm) on the rooting performance of Photinia × fraseri Dress. stem cuttings. The experiment was conducted under controlled greenhouse conditions using a sterile perlite medium. Rooting trays were placed on bottom-heated propagation benches maintained at a set temperature of 25 ± 2 °C to stimulate root formation. However, the actual rooting medium temperature—measured manually every four days from the perlite zone using a calibrated thermometer—ranged between 18 °C and 22 °C, with an overall average of approximately 20 ± 2 °C. The average values of these root-zone temperatures were used in the statistical analyses. Rooting percentage, root number, root length, callus formation, and mortality rate were recorded after 120 days. In addition to classical one-way ANOVA, response surface methodology (RSM) was employed to model and optimize the interactions between auxin type, concentration, and temperature. The results revealed that 5000 ppm IBA significantly enhanced rooting performance, yielding the highest rooting percentage (85%), average root number (5.80), and root length (6.30 cm). RSM-based regression models demonstrated strong predictive power, with the model for rooting percentage explaining up to 92.79% of the total variance. Temperature and auxin concentration were identified as the most influential linear factors, while second-order and interaction terms—particularly T·ppm—contributed substantially to root length variation. These findings validate IBA as the most effective exogenous auxin for the vegetative propagation of Photinia × fraseri Dress. and provide practical recommendations for optimizing hormone treatments. Moreover, the study offers a robust statistical modeling framework that can be applied to similar propagation systems in woody ornamental plants. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

23 pages, 1730 KiB  
Article
Prioritization and Sensitivity of Pesticide Risks from Root and Tuber Vegetables
by Milica Lučić and Antonije Onjia
J. Xenobiot. 2025, 15(4), 125; https://doi.org/10.3390/jox15040125 - 3 Aug 2025
Viewed by 378
Abstract
This study investigated pesticide residues in 580 vegetable samples collected from markets in Serbia, encompassing potatoes, carrots, celery, radishes, horseradish, ginger, onions, and leeks. In total, 33 distinct pesticides were detected using validated HPLC-MS/MS and GC-MS/MS analytical methods. Multiple residues were identified in [...] Read more.
This study investigated pesticide residues in 580 vegetable samples collected from markets in Serbia, encompassing potatoes, carrots, celery, radishes, horseradish, ginger, onions, and leeks. In total, 33 distinct pesticides were detected using validated HPLC-MS/MS and GC-MS/MS analytical methods. Multiple residues were identified in 19 samples, while 29 samples exceeded established maximum residue levels (MRLs). Acute and chronic dietary risks were assessed for both adults and children. Although individual hazard quotients (HQs) for adults and children remained below the threshold of concern (HQ < 1), the cumulative acute risk reached up to 63.1% of the Acute Reference Dose (ARfD) for children and 51.1% ARfD for adults, with ginger and celery posing the highest risks. Similarly, cumulative chronic risks remained below the safety threshold, with the Acceptable Daily Intake (ADI) percentages reaching a maximum of 5.9% ADI for adults and increased vulnerability of 11.0% ADI among children. Monte Carlo simulations were applied to account for variability and uncertainty in chronic exposure estimates. The hazard index (HI) results showed that adverse health effects for both population groups remained within acceptable safety limits (HI < 1), although higher susceptibility was observed in children. Sensitivity analysis identified body weight and vegetable consumption rates as the most influential factors affecting chronic risk variability. Full article
Show Figures

Figure 1

23 pages, 5566 KiB  
Article
Response Mechanisms of Vegetation Productivity to Water Variability in Arid and Semi-Arid Areas of China: A Decoupling Analysis of Soil Moisture and Precipitation
by Zijian Liu, Hao Lin, Hongrui Li, Mengyang Li, Peng Zhou, Ziyu Wang and Jiqiang Niu
Atmosphere 2025, 16(8), 933; https://doi.org/10.3390/atmos16080933 (registering DOI) - 3 Aug 2025
Viewed by 121
Abstract
Arid and semi-arid areas serve a critical regulatory function within the global carbon cycle. Understanding the response mechanisms of vegetation productivity to variations in moisture availability represents a fundamental scientific challenge in elucidating terrestrial carbon dynamics. This study systematically disentangled the respective influences [...] Read more.
Arid and semi-arid areas serve a critical regulatory function within the global carbon cycle. Understanding the response mechanisms of vegetation productivity to variations in moisture availability represents a fundamental scientific challenge in elucidating terrestrial carbon dynamics. This study systematically disentangled the respective influences of summer surface soil moisture (RSM) and precipitation (PRE) on gross primary productivity (GPP) across arid and semi-arid regions of China from 2000 to 2022. Utilizing GPP datasets alongside correlation analysis, ridge regression, and data binning techniques, the investigation yielded several key findings: (1) Both GPP and RSM exhibited significant upward trends within the study area, whereas precipitation showed no statistically significant trend; notably, GPP demonstrated the highest rate of increase at 0.455 Cg m−2 a−1. (2) Decoupling analysis indicated a coupled relationship between RSM and PRE; however, their individual effects on GPP were not merely a consequence of this coupling. Controlling for evapotranspiration and root-zone soil moisture interference, the analysis revealed that under conditions of elevated RSM, the average increase in summer–autumn GPP (SAGPP) was 0.249, significantly surpassing the increase observed under high-PRE conditions (−0.088). Areas dominated by RSM accounted for 62.13% of the total study region. Furthermore, examination of the aridity gradient demonstrated that the predominance of RSM intensified with increasing aridity, reaching its peak influence in extremely arid zones. This research provides a quantitative assessment of the differential impacts of RSM and PRE on vegetation productivity in China’s arid and semi-arid areas, thereby offering a vital theoretical foundation for improving predictions of terrestrial carbon sink dynamics under future climate change scenarios. Full article
Show Figures

Figure 1

16 pages, 3183 KiB  
Case Report
A Multidisciplinary Approach to Crime Scene Investigation: A Cold Case Study and Proposal for Standardized Procedures in Buried Cadaver Searches over Large Areas
by Pier Matteo Barone and Enrico Di Luise
Forensic Sci. 2025, 5(3), 34; https://doi.org/10.3390/forensicsci5030034 - 1 Aug 2025
Viewed by 434
Abstract
This case report presents a multidisciplinary forensic investigation into a cold case involving a missing person in Italy, likely linked to a homicide that occurred in 2008. The investigation applied a standardized protocol integrating satellite imagery analysis, site reconnaissance, vegetation clearance, ground-penetrating radar [...] Read more.
This case report presents a multidisciplinary forensic investigation into a cold case involving a missing person in Italy, likely linked to a homicide that occurred in 2008. The investigation applied a standardized protocol integrating satellite imagery analysis, site reconnaissance, vegetation clearance, ground-penetrating radar (GPR), and cadaver dog (K9) deployment. A dedicated decision tree guided each phase, allowing for efficient allocation of resources and minimizing investigative delays. Although no human remains were recovered, the case demonstrates the practical utility and operational robustness of a structured, evidence-based model that supports decision-making even in the absence of positive findings. The approach highlights the relevance of “negative” results, which, when derived through scientifically validated procedures, offer substantial value by excluding burial scenarios with a high degree of reliability. This case is particularly significant in the Italian forensic context, where the adoption of standardized search protocols remains limited, especially in complex outdoor environments. The integration of geophysical, remote sensing, and canine methodologies—rooted in forensic geoarchaeology—provides a replicable framework that enhances both investigative effectiveness and the evidentiary admissibility of findings in court. The protocol illustrated in this study supports the consistent evaluation of large and morphologically complex areas, reduces the risk of interpretive error, and reinforces the transparency and scientific rigor expected in judicial settings. As such, it offers a model for improving forensic search strategies in both national and international contexts, particularly in long-standing or high-profile missing persons cases. Full article
Show Figures

Figure 1

16 pages, 1219 KiB  
Article
Salicylic Acid with NaCl Acts as a Stressor and Alters Root Traits and the Estimated Root Surface Area of Rapeseed (Brassica napus L.) Genotypes in Hydroponic Culture
by Jannatul Afrin, Nikunjo Chakroborty, Rebeka Sultana, Jobadatun Naher and Arif Hasan Khan Robin
Stresses 2025, 5(3), 48; https://doi.org/10.3390/stresses5030048 - 1 Aug 2025
Viewed by 103
Abstract
Understanding the alterations to the shoot and root traits of rapeseed (Brassica napus) in response to salt stress is vital for improving its ability to thrive in saline-prone regions. This research aims to evaluate the responses of shoot and root traits [...] Read more.
Understanding the alterations to the shoot and root traits of rapeseed (Brassica napus) in response to salt stress is vital for improving its ability to thrive in saline-prone regions. This research aims to evaluate the responses of shoot and root traits of rapeseed at the vegetative stage under salt- and salicylic acid-induced stress in hydroponic culture. Five parents and ten F3 segregants of rapeseed were subjected to three treatments: T1: control, T2: 8 dSm−1 salt, and T3: 8 dSm−1 salt + 0.1 mM salicylic acid at 21 days of age. Salinity stress significantly reduced the estimated root surface area by 54% compared to control, highlighting the plasticity of roots under stress. The simultaneous application of salt and SA did not alleviate the salinity stress, but rather reinforced the degree of stress and decreased the number of leaves, diameter of the main axis, chlorophyll content, and estimated root surface area by 18.5%, 15.4%, 38.8%, and 23%, respectively, compared to T2. The parental genotype M-245 followed by F3 genotype M-232×M-223 accounted for the higher overall estimated root surface area. These results provide novel insights into the responses of root traits in rapeseed breeding lines under dual treatment, which hold promising implications for future rapeseed breeding efforts focused on sustainable rapeseed production. Full article
(This article belongs to the Section Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

21 pages, 23129 KiB  
Article
Validation of Global Moderate-Resolution FAPAR Products over Boreal Forests in North America Using Harmonized Landsat and Sentinel-2 Data
by Yinghui Zhang, Hongliang Fang, Zhongwen Hu, Yao Wang, Sijia Li and Guofeng Wu
Remote Sens. 2025, 17(15), 2658; https://doi.org/10.3390/rs17152658 - 1 Aug 2025
Viewed by 107
Abstract
The fraction of absorbed photosynthetically active radiation (FAPAR) stands as a pivotal parameter within the Earth system, quantifying the energy exchange between vegetation and solar radiation. Accordingly, there is an urgent need for comprehensive validation studies to accurately quantify uncertainties and improve the [...] Read more.
The fraction of absorbed photosynthetically active radiation (FAPAR) stands as a pivotal parameter within the Earth system, quantifying the energy exchange between vegetation and solar radiation. Accordingly, there is an urgent need for comprehensive validation studies to accurately quantify uncertainties and improve the reliability of FAPAR-based applications. This study validated five global FAPAR products, MOD15A2H, MYD15A2H, VNP15A2H, GEOV2, and GEOV3, over four boreal forest sites in North America. Qualitative quality flags (QQFs) and quantitative quality indicators (QQIs) of each product were analyzed. Time series high-resolution reference FAPAR maps were developed using the Harmonized Landsat and Sentinel-2 dataset. The reference FAPAR maps revealed a strong agreement with the in situ FAPAR from AmeriFlux (correlation coefficient (R) = 0.91; root mean square error (RMSE) = 0.06). The results revealed that global FAPAR products show similar uncertainties (RMSE: 0.16 ± 0.04) and moderate agreement with the reference FAPAR (R = 0.75 ± 0.10). On average, 34.47 ± 6.91% of the FAPAR data met the goal requirements of the Global Climate Observing System (GCOS), while 54.41 ± 6.89% met the threshold requirements of the GCOS. Deciduous forests perform better than evergreen forests, and the products tend to underestimate the reference data, especially for the beginning and end of growing seasons in evergreen forests. There are no obvious quality differences at different QQFs, and the relative QQI can be used to filter high-quality values. To enhance the regional applicability of global FAPAR products, further algorithm improvements and expanded validation efforts are essential. Full article
Show Figures

Figure 1

16 pages, 2055 KiB  
Article
The Transcription Factor Basic Pentacysteine 5, RsBPC5, Enhances Lead Stress Tolerance in Raphanus sativus
by Jian Xiao, Yongli Wen, Wenjing Kang, Fangzhou Yu, Chuan Liu, Zhenyu Peng and Dianheng Xu
Plants 2025, 14(15), 2362; https://doi.org/10.3390/plants14152362 - 1 Aug 2025
Viewed by 200
Abstract
Radish (Raphanus sativus), a commonly grown root vegetable prized for its nutrition and culinary use, is particularly vulnerable to lead (Pb) stress, which mainly results in Pb accumulation in the roots. However, the molecular mechanisms underlying Pb accumulation in radish remain [...] Read more.
Radish (Raphanus sativus), a commonly grown root vegetable prized for its nutrition and culinary use, is particularly vulnerable to lead (Pb) stress, which mainly results in Pb accumulation in the roots. However, the molecular mechanisms underlying Pb accumulation in radish remain largely unknown. In this study, we investigated the role of BASIC PENTACYSTEINE (BPC) genes in radish’s response to Pb stress. Phylogenetic analysis revealed that radish contains 10 BPC genes, which are distinctly clustered in Cluster III. Expression analysis revealed that, except for RsBPC2, RsBPC4, and RsBPC7, the expression of most RsBPC genes was significantly altered under Pb stress. Notably, the expression of RsBPC5 gradually decreased with prolonged Pb exposure. Subcellular localization analysis confirmed that RsBPC5 is localized in the nucleus and acts as a transcriptional repressor. Functional assays demonstrated that transient overexpression of RsBPC5 enhanced the tolerance of radish plants to Pb stress via reducing Pb accumulation and activating the antioxidant defense system. Collectively, our findings suggest that RsBPC5 plays a key role in radish’s response to Pb stress, potentially improving Pb tolerance by modulating Pb uptake and strengthening antioxidant defense mechanisms. Full article
(This article belongs to the Special Issue The Physiology of Abiotic Stress in Plants)
Show Figures

Figure 1

15 pages, 4340 KiB  
Article
Variations in Fine-Root Traits of Pseudotsuga sinensis Across Different Rocky-Desertification Gradients
by Wangjun Li, Shun Zou, Dongpeng Lv, Bin He and Xiaolong Bai
Diversity 2025, 17(8), 533; https://doi.org/10.3390/d17080533 - 29 Jul 2025
Viewed by 150
Abstract
Plant functional traits serve as vital tools for understanding vegetation adaptation mechanisms in changing environments. As the primary organs for nutrient acquisition from soil, fine roots are highly sensitive to environmental variations. However, current research on fine-root adaptation strategies predominantly focuses on tropical, [...] Read more.
Plant functional traits serve as vital tools for understanding vegetation adaptation mechanisms in changing environments. As the primary organs for nutrient acquisition from soil, fine roots are highly sensitive to environmental variations. However, current research on fine-root adaptation strategies predominantly focuses on tropical, subtropical, and temperate forests, leaving a significant gap in comprehensive knowledge regarding fine-root responses in rocky-desertification habitats. This study investigates the fine roots of Pseudotsuga sinensis across varying degrees of rocky desertification (mild, moderate, severe, and extremely severe). By analyzing fine-root morphological and nutrient traits, we aim to elucidate the trait differences and correlations under different desertification intensities. The results indicate that root dry matter content increases significantly with escalating desertification severity. Fine roots in mild and extremely severe desertification exhibit notably higher root C, K, and Mg concentrations compared to those in moderate and severe desertification, while root Ca concentration shows an inverse trend. Our correlation analyses reveal a highly significant positive relationship between specific root length and specific root area, whereas root dry matter content demonstrates a significant negative correlation with elemental concentrations. The principal component analysis (PCA) further indicates that the trait associations adopted by the forest in mild- and extremely severe-desertification environments are different from those in moderate- and severe-desertification environments. This study did not account for soil nutrient dynamics, microbial diversity, or enzymatic activity—key factors influencing fine-root adaptation. Future research should integrate root traits with soil properties to holistically assess resource strategies in rocky-desertification ecosystems. This study can serve as a theoretical reference for research on root characteristics and adaptation strategies of plants in rocky-desertification habitats. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

20 pages, 8154 KiB  
Article
Strategies for Soil Salinity Mapping Using Remote Sensing and Machine Learning in the Yellow River Delta
by Junyong Zhang, Xianghe Ge, Xuehui Hou, Lijing Han, Zhuoran Zhang, Wenjie Feng, Zihan Zhou and Xiubin Luo
Remote Sens. 2025, 17(15), 2619; https://doi.org/10.3390/rs17152619 - 28 Jul 2025
Viewed by 374
Abstract
In response to the global ecological and agricultural challenges posed by coastal saline-alkali areas, this study focuses on Dongying City as a representative region, aiming to develop a high-precision soil salinity prediction mapping method that integrates multi-source remote sensing data with machine learning [...] Read more.
In response to the global ecological and agricultural challenges posed by coastal saline-alkali areas, this study focuses on Dongying City as a representative region, aiming to develop a high-precision soil salinity prediction mapping method that integrates multi-source remote sensing data with machine learning techniques. Utilizing the SCORPAN model framework, we systematically combined diverse remote sensing datasets and innovatively established nine distinct strategies for soil salinity prediction. We employed four machine learning models—Support Vector Regression (SVR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Geographical Gaussian Process Regression (GGPR) for modeling, prediction, and accuracy comparison, with the objective of achieving high-precision salinity mapping under complex vegetation cover conditions. The results reveal that among the models evaluated across the nine strategies, the SVR model demonstrated the highest accuracy, followed by RF. Notably, under Strategy IX, the SVR model achieved the best predictive performance, with a coefficient of determination (R2) of 0.62 and a root mean square error (RMSE) of 0.38 g/kg. Analysis based on SHapley Additive exPlanations (SHAP) values and feature importance indicated that Vegetation Type Factors contributed significantly and consistently to the model’s performance, maintaining higher importance than traditional salinity indices and playing a dominant role. In summary, this research successfully developed a comprehensive, high-resolution soil salinity mapping framework for the Dongying region by integrating multi-source remote sensing data and employing diverse predictive strategies alongside machine learning models. The findings highlight the potential of Vegetation Type Factors to enhance large-scale soil salinity monitoring, providing robust scientific evidence and technical support for sustainable land resource management, agricultural optimization, ecological protection, efficient water resource utilization, and policy formulation. Full article
Show Figures

Figure 1

12 pages, 432 KiB  
Review
Adventitious Root Formation in Cuttings: Insights from Arabidopsis and Prospects for Woody Plants
by Peipei Liu, Shili Zhang, Xinying Wang, Yuxuan Du, Qizhouhong He, Yingying Zhang, Lisha Shen, Hongfei Hu, Guifang Zhang and Xiaojuan Li
Biomolecules 2025, 15(8), 1089; https://doi.org/10.3390/biom15081089 - 28 Jul 2025
Viewed by 358
Abstract
Cutting propagation is a commonly employed technology for vegetative reproduction in agricultural, forestry, and horticultural practice. The success of cutting propagation depends on adventitious root (AR) formation—a process whereby roots regenerate from stem cuttings or leaf cuttings. In this review, we summarize the [...] Read more.
Cutting propagation is a commonly employed technology for vegetative reproduction in agricultural, forestry, and horticultural practice. The success of cutting propagation depends on adventitious root (AR) formation—a process whereby roots regenerate from stem cuttings or leaf cuttings. In this review, we summarize the distinct stages of cutting-induced AR formation and highlight the pivotal roles of plant hormones and age in this process. Jasmonic acid (JA) acts as a master trigger for promoting AR formation, while auxin serves as the core regulator, driving AR formation. Furthermore, plant age is a crucial factor determining the regenerative competence of cuttings. Notably, age and JA collaboratively modulate auxin synthesis in cutting-induced AR formation. Overall, this review not only elucidates the molecular mechanisms underlying AR formation but also provides valuable insights for improving efficiency of cutting propagation in various plant species. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

14 pages, 3077 KiB  
Article
Effects of LED Applications on Dahlia (Dahlia sp.) Seedling Quality
by Gamze Gündoğdu, Murat Zencirkıran and Ümran Ertürk
Plants 2025, 14(15), 2319; https://doi.org/10.3390/plants14152319 - 27 Jul 2025
Viewed by 247
Abstract
This study aimed to determine the effects of LED applications and application periods on seedling development. To this end, four different LED applications (blue 100%, red 100%, green 100%, and full-spectrum 100% (control)) were applied to different star flower varieties (Figaro Violet shades—flower [...] Read more.
This study aimed to determine the effects of LED applications and application periods on seedling development. To this end, four different LED applications (blue 100%, red 100%, green 100%, and full-spectrum 100% (control)) were applied to different star flower varieties (Figaro Violet shades—flower color: purple, Figaro Orange shades—flower color: orange, Figaro White shades—flower color: white, and Figaro Red shades—flower color: red) for 15 and 30 days. These applications were repeated over two years (two vegetation periods). The results revealed that the red-flowered and white-flowered varieties exhibited higher values in terms of root length, root number, stem diameter, 2nd and 4th leaf petiole length, 2nd and 4th leaf width, and leaf number under full-spectrum and red LED applications. We also observed that red LED application for 30 days is suitable for seedling height development in the Figaro Orange shades variety. Conversely, the results showed that the effects of LED application durations on root length and stem diameter did not show a statistically significant difference, while the 15-day application yielded the best results for root number. In the Figaro Red shades and Figaro White shades varieties, the use of red LED applications for 30 days yielded results similar to those of full-spectrum applications, indicating that both applications can be used for seedling cultivation. Full article
(This article belongs to the Special Issue Growth, Development, and Stress Response of Horticulture Plants)
Show Figures

Figure 1

16 pages, 2713 KiB  
Article
Change in C, N, and P Characteristics of Hypericum kouytchense Organs in Response to Altitude Gradients in Karst Regions of SW China
by Yage Li, Chunyan Zhao, Jiajun Wu, Suyan Ba, Shuo Liu and Panfeng Dai
Plants 2025, 14(15), 2307; https://doi.org/10.3390/plants14152307 - 26 Jul 2025
Viewed by 170
Abstract
The environmental heterogeneity caused by altitude can lead to trade-offs in nutrient utilization and allocation strategies among plant organs; however, there is still a lack of research on the nutrient variation in the “flower–leaf–branch–fine root–soil” systems of native shrubs along altitude gradients in [...] Read more.
The environmental heterogeneity caused by altitude can lead to trade-offs in nutrient utilization and allocation strategies among plant organs; however, there is still a lack of research on the nutrient variation in the “flower–leaf–branch–fine root–soil” systems of native shrubs along altitude gradients in China’s unique karst regions. Therefore, we analyzed the carbon (C), nitrogen (N), and phosphorus (P) contents and their ratios in flowers, leaves, branches, fine roots, and surface soil of Hypericum kouytchense shrubs across 2200–2700 m altitudinal range in southwestern China’s karst areas, where this species is widely distributed and grows well. The results show that H. kouytchense organs had higher N content than both global and Chinese plant averages. The order of C:N:P value across plant organs was branches > fine roots > flowers > leaves. Altitude significantly affected the nutrient dynamics in plant organs and soil. With increasing altitude, P content in plant organs exhibited a significant concave pattern, leading to unimodal trends in the C:P of plant organs, as well as the N:P of leaves and fine roots. Meanwhile, plant organs except branches displayed significant homeostasis coefficients in C:P and fine root P, indicating a shift in H. kouytchense’s P utilization strategy from acquisitive-type to conservative-type. Strong positive relationships between plant organs and soil P and available P revealed that P was the key driver of nutrient cycling in H. kouytchense shrubs, enhancing plant organ–soil coupling relationships. In conclusion, H. kouytchense demonstrates flexible adaptability, suggesting that future vegetation restoration and conservation management projects in karst ecosystems should consider the nutrient adaptation strategies of different species, paying particular attention to P utilization. Full article
(This article belongs to the Special Issue Plant Functional Diversity and Nutrient Cycling in Forest Ecosystems)
Show Figures

Figure 1

41 pages, 1835 KiB  
Review
A Comprehensive Review of Vertical Forest Buildings: Integrating Structural, Energy, Forestry, and Occupant Comfort Aspects in Renovation Modeling
by Vachan Vanian, Theodora Fanaradelli and Theodoros Rousakis
Fibers 2025, 13(8), 101; https://doi.org/10.3390/fib13080101 - 25 Jul 2025
Viewed by 146
Abstract
This current review examines modeling approaches for renovating reinforced concrete (RC) buildings for vertical forest (VF) application, taking into account structural retrofitting, energy systems, forestry integration, and occupant comfort. The study assesses research conducted with an advanced 3D finite element analysis and the [...] Read more.
This current review examines modeling approaches for renovating reinforced concrete (RC) buildings for vertical forest (VF) application, taking into account structural retrofitting, energy systems, forestry integration, and occupant comfort. The study assesses research conducted with an advanced 3D finite element analysis and the use of retrofitting modeling techniques, including textile-reinforced mortar (TRM), fiber-reinforced polymer (FRP), seismic joints, and green concrete applications. The energy system modeling methods are reviewed, taking into account the complexity of incorporating vegetation and seasonal variations. During forestry integration, three main design parameters are identified, namely, root systems, trunks, and crowns, for their critical role in the structural stability and optimal environmental performance. The comfort models are identified evolving from static to adaptive models incorporating thermal, acoustic, visual and air quality parameters. The current review consists of more than one hundred studies indicating that the integration of natural systems to buildings requires a multidimensional and multidisciplinary approach with sophisticated systems. The findings of this review provide the basis for implementing VF models to RC buildings, while highlighting areas requiring further research and validation. Full article
(This article belongs to the Collection Review Papers of Fibers)
Show Figures

Figure 1

21 pages, 5027 KiB  
Article
Accumulation Characteristics of Trace Elements in Leafy Vegetables with Different Heavy Metal Tolerances Under Cd and as Stress
by Yuan Meng, Liang Zhang, Liping Li, Linquan Wang, Yongfu Wu, Tao Zeng, Haiqing Shi, Zeli Chang, Qian Shi and Jian Ma
Agronomy 2025, 15(8), 1790; https://doi.org/10.3390/agronomy15081790 - 25 Jul 2025
Viewed by 272
Abstract
This study investigates growth responses, heavy metal (Cd, As) uptake, translocation, and mineral nutrient regulation in leafy vegetables with varying heavy metal tolerance, addressing the threat posed by combined Cd and As pollution. Three high-tolerance, four moderate-tolerance, and one sensitive leafy vegetable were [...] Read more.
This study investigates growth responses, heavy metal (Cd, As) uptake, translocation, and mineral nutrient regulation in leafy vegetables with varying heavy metal tolerance, addressing the threat posed by combined Cd and As pollution. Three high-tolerance, four moderate-tolerance, and one sensitive leafy vegetable were grown in Cd+As-contaminated hydroponics. Post-harvest yields and concentrations of Cd, As, and trace elements were assessed. Results showed that (1) compared with single heavy metal treatments, the combination of Cd and As significantly increased the translocation factor of Cd in black bean sprouts and white radish sprouts by up to 83.83% and 503.2%; (2) changes in mineral nutrient concentrations in leafy vegetables were similar between single and combined heavy metal stresses, but the regulatory patterns varied among different leafy vegetable species; (3) under Cd/As exposure, high-tolerance leafy vegetables (e.g., pak choi) had strong heavy metal accumulation abilities, and heavy metal stress positively regulated mineral elements in their roots; In contrast, sensitive leafy vegetables (e.g., pea sprouts) often exhibited suppressed mineral element content in their roots, which was a result of their strategy to reduce heavy metal uptake. These results offer key insights into resistance mechanisms against combined heavy metal pollution in leafy vegetables, supporting phytoremediation efforts and safe production. Full article
(This article belongs to the Special Issue Heavy Metal Pollution and Prevention in Agricultural Soils)
Show Figures

Figure 1

Back to TopTop