Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (924)

Search Parameters:
Keywords = vector autoregressions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 950 KiB  
Article
Industrial Diversification in Emerging Economies: The Role of Human Capital, Technological Investment, and Institutional Quality in Promoting Economic Complexity
by Sinazo Ngqoleka, Thobeka Ncanywa, Zibongiwe Mpongwana and Abiola John Asaleye
Sustainability 2025, 17(15), 7021; https://doi.org/10.3390/su17157021 (registering DOI) - 1 Aug 2025
Abstract
This study examines the role of human capital, technological investment, and institutional quality in promoting economic complexity in South Africa, with implications for sustainable development and the strategic role of Small and Medium Enterprises. Motivated by the growing importance of productive sophistication for [...] Read more.
This study examines the role of human capital, technological investment, and institutional quality in promoting economic complexity in South Africa, with implications for sustainable development and the strategic role of Small and Medium Enterprises. Motivated by the growing importance of productive sophistication for long-term development in emerging economies (notably SDG 8 and SDG 9), the study examines both long-run and short-run dynamics using the Autoregressive Distributed Lag approach, with robustness checks via Fully Modified Least Squares, Dynamic Least Squares, and Canonical Cointegration Regression. Structural Vector Autoregression is employed to assess the persistence of shocks, while the Toda–Yamamoto causality test evaluates causality. The results reveal that institutional quality significantly enhances economic complexity in the long run, while technological investment exhibits a negative long-run impact, potentially indicating absorptive capacity constraints within industries. Though human capital and income per capita do not influence complexity in the long run, they have short-term effects, with income per capita having the most immediate influence. Variance decomposition shows that shocks to technological investment are essential for economic complexity, and are the most persistent, followed by human capital and institutional quality. These findings show the need for institutional reforms that lower entry barriers for SMEs in industries, targeted innovation policies that support upgrading, and human capital strategies aligned with driven industrial transformation. The study offers insights for policymakers striving to influence structural drivers to advance sustainable industrial development and achieve the SDGs. Full article
Show Figures

Figure A1

18 pages, 1033 KiB  
Article
Analyzing the Impact of Carbon Mitigation on the Eurozone’s Trade Dynamics with the US and China
by Pathairat Pastpipatkul and Terdthiti Chitkasame
Econometrics 2025, 13(3), 28; https://doi.org/10.3390/econometrics13030028 - 29 Jul 2025
Viewed by 112
Abstract
This study focusses on the transmission of carbon pricing mechanisms in shaping trade dynamics between the Eurozone and key partners: the USA and China. Using Bayesian variable selection methods and a Time-Varying Structural Vector Autoregressions (TV-SVAR) model, the research identifies the key variables [...] Read more.
This study focusses on the transmission of carbon pricing mechanisms in shaping trade dynamics between the Eurozone and key partners: the USA and China. Using Bayesian variable selection methods and a Time-Varying Structural Vector Autoregressions (TV-SVAR) model, the research identifies the key variables impacting EU carbon emissions over time. The results reveal that manufactured products from the US have a diminishing positive impact on EU carbon emissions, suggesting potential exemption from future regulations. In contrast, manufactured goods from the US and petroleum products from China are expected to increase emissions, indicating a need for stricter trade policies. These findings provide strategic insights for policymakers aiming to balance trade and environmental objectives. Full article
Show Figures

Figure 1

36 pages, 1566 KiB  
Article
The Impact of Geopolitical Risk on the Connectedness Dynamics Among Sovereign Bonds
by Mustafa Almabrouk Abdalla Alfughi and Asil Azimli
Mathematics 2025, 13(15), 2379; https://doi.org/10.3390/math13152379 - 24 Jul 2025
Viewed by 344
Abstract
This study examines the impact of geopolitical risk (GPR) on the connectedness dynamics among the sovereign bonds of the emerging seven (E7) and the Group of Seven (G7) countries. Initially, a quantile-based vector-autoregressive (Q-VAR) connectedness approach is used to calculate the total connectedness [...] Read more.
This study examines the impact of geopolitical risk (GPR) on the connectedness dynamics among the sovereign bonds of the emerging seven (E7) and the Group of Seven (G7) countries. Initially, a quantile-based vector-autoregressive (Q-VAR) connectedness approach is used to calculate the total connectedness index (TCI) among sovereign bonds under different market states. Then, the impact of GPR on the TCI at the median and tails is estimated to examine if GPR affects the TCI among sovereign bonds. Using daily yields from 30 January 2012, to 17 June 2024, the findings show that the GPR is one of the significant determinants of the TCI among sovereign bonds during normal and extreme market conditions. Other determinants of the TCI include yields on Treasury bills (T-bills), the exchange rate, and the financial market volatility index. The impact of GPR on the TCI varies significantly during different GPR episodes and bond market conditions. The effect of GPR on the TCI among sovereign bonds yields is higher during war times and when bond yields are average. These findings can be utilized by investors seeking to achieve international diversification and policymakers aiming to mitigate the effects of heightened geopolitical risk on financial stability. Furthermore, GPR can be used as an early signal tool for systematic tail risk spillovers among sovereign bonds. Full article
(This article belongs to the Special Issue Modeling Multivariate Financial Time Series and Computing)
Show Figures

Figure 1

21 pages, 872 KiB  
Article
The Impact of Central Bank Digital Currencies (CBDCs) on Global Financial Systems in the G20 Country GVAR Approach
by Nesrine Gafsi
FinTech 2025, 4(3), 35; https://doi.org/10.3390/fintech4030035 - 24 Jul 2025
Viewed by 372
Abstract
This paper considers the impact of Central Bank Digital Currencies (CBDCs) on the world’s financial systems with a special emphasis on G20 economies. Using quarterly macro-financial data for the period of 2000 to 2024, collected from the IMF, BIS, World Bank, and Atlantic [...] Read more.
This paper considers the impact of Central Bank Digital Currencies (CBDCs) on the world’s financial systems with a special emphasis on G20 economies. Using quarterly macro-financial data for the period of 2000 to 2024, collected from the IMF, BIS, World Bank, and Atlantic Council, a Global Vector Autoregression (GVAR) model is applied to 20 G20 countries. The results reveal significant heterogeneity across economies: CBDC shocks intensify emerging market financial instability (e.g., India, Brazil), while more digitally advanced countries (e.g., UK, Japan) experience stabilization. Retail CBDCs increase disintermediation risks in more fragile banking systems, while wholesale CBDCs improve cross-border liquidity. This article contributes to the literature by providing the first GVAR-based estimation of CBDC spillovers globally. Full article
Show Figures

Figure 1

26 pages, 4918 KiB  
Article
Is Bitcoin a Safe-Haven Asset During U.S. Presidential Transitions? A Time-Varying Analysis of Asset Correlations
by Pathairat Pastpipatkul and Htwe Ko
Int. J. Financial Stud. 2025, 13(3), 134; https://doi.org/10.3390/ijfs13030134 - 22 Jul 2025
Viewed by 475
Abstract
Amid the growing debate over how cryptocurrencies are reshaping global finance, this study explores the nexus between Bitcoin, Brent Crude Oil, Gold and the U.S. Dollar Index. We used a time-varying vector autoregressive (tvVAR) model to examine the connection among these four assets [...] Read more.
Amid the growing debate over how cryptocurrencies are reshaping global finance, this study explores the nexus between Bitcoin, Brent Crude Oil, Gold and the U.S. Dollar Index. We used a time-varying vector autoregressive (tvVAR) model to examine the connection among these four assets during the Trump (2017–2020) and Biden (2021–2024) governments. The 48-week return forecast of the Bitcoin–Gold correlation was also conducted by using the Bayesian Structural Time Series (BSTS) model. Results indicate that Bitcoin was the most volatile asset, while the U.S. Dollar remained the least volatile under both regimes. Under Trump, U.S. Dollar significantly influenced Oil and Bitcoin while Bitcoin and Gold were negatively linked to Oil and positively associated with U.S. Dollar. An inverse relationship between Bitcoin and Gold also emerged. Under Biden, Bitcoin, Gold, and U.S. Dollar all significantly affected Oil with Bitcoin showing a positive impact. Bitcoin and Gold remained negatively correlated though not significantly, and the Dollar maintained positive ties with both. Forecasts show a positive link between Bitcoin and Gold in the coming year. However, Bitcoin does not exhibit consistent characteristics of a safe-haven asset during the U.S. presidential transitions examined, largely due to its high volatility and unstable correlations with a traditional safe-haven asset, Gold. This study contributes to the understanding of shifting relationships between digital and traditional assets across political regimes. Full article
Show Figures

Figure 1

24 pages, 1163 KiB  
Article
The Analysis of Cultural Convergence and Maritime Trade Between China and Saudi Arabia: Toda–Yamamoto Granger Causality
by Nashwa Mostafa Ali Mohamed, Jawaher Binsuwadan, Rania Hassan Mohammed Abdelkhalek and Kamilia Abd-Elhaleem Ahmed Frega
Sustainability 2025, 17(14), 6501; https://doi.org/10.3390/su17146501 - 16 Jul 2025
Viewed by 411
Abstract
This study investigates the dynamic relationship between maritime trade and cultural convergence between China and Saudi Arabia, with a particular focus on the roles of creative goods and information and communication technology (ICT) exports as proxies for sociocultural integration. Utilizing quarterly data from [...] Read more.
This study investigates the dynamic relationship between maritime trade and cultural convergence between China and Saudi Arabia, with a particular focus on the roles of creative goods and information and communication technology (ICT) exports as proxies for sociocultural integration. Utilizing quarterly data from 2012 to 2021, the analysis employs the Toda–Yamamoto Granger causality approach within a Vector Autoregression (VAR) framework. This methodology offers a robust means of testing causality without requiring data stationarity or cointegration, thereby reducing estimation bias and enhancing applicability to real-world economic data. The empirical model examines causal interactions among maritime trade, creative goods exports, ICT exports, and population, the latter serving as a control variable to account for demographic scale effects on trade dynamics. The results indicate statistically significant bidirectional causality between maritime trade and both creative goods and ICT exports, suggesting a reciprocal reinforcement between trade and cultural–technological exchange. In contrast, the relationship between maritime trade and population is found to be unidirectional. These findings underscore the strategic importance of cultural and technological flows in shaping maritime trade patterns. Furthermore, the study contextualizes its results within broader policy initiatives, notably China’s Belt and Road Initiative and Saudi Arabia’s Vision 2030, both of which aim to promote mutual economic diversification and regional integration. The study contributes to the literature on international trade and cultural economics by demonstrating how cultural convergence can serve as a catalyst for strengthening bilateral trade relations. Policy implications include the promotion of cultural and technological collaboration, investment in maritime infrastructure, and the incorporation of cultural dimensions into trade policy formulation. Full article
Show Figures

Figure 1

22 pages, 1209 KiB  
Article
Modeling the Dynamic Relationship Between Energy Exports, Oil Prices, and CO2 Emission for Sustainable Policy Reforms in Indonesia
by Restu Arisanti, Mustofa Usman, Sri Winarni and Resa Septiani Pontoh
Sustainability 2025, 17(14), 6454; https://doi.org/10.3390/su17146454 - 15 Jul 2025
Viewed by 307
Abstract
Indonesia’s dependence on fossil fuel exports, particularly coal and crude oil, presents a dual challenge: sustaining economic growth while addressing rising CO2 emissions. Despite significant attention to domestic energy consumption, the environmental implications of export activities remain underexplored. This study examines the [...] Read more.
Indonesia’s dependence on fossil fuel exports, particularly coal and crude oil, presents a dual challenge: sustaining economic growth while addressing rising CO2 emissions. Despite significant attention to domestic energy consumption, the environmental implications of export activities remain underexplored. This study examines the dynamic relationship between energy exports, crude oil prices, and CO2 emissions in Indonesia using a Vector Autoregressive (VAR) model with annual data from 2002 to 2022. The analysis incorporates Impulse Response Functions (IRFs) and Forecast Error Variance Decomposition (FEVD) to trace short- and long-term interactions among variables. Findings reveal that coal exports are strongly persistent and positively linked to past emission levels, while oil exports respond negatively to both coal and emission shocks—suggesting internal trade-offs. CO2 emissions are primarily self-driven yet increasingly influenced by oil export fluctuations over time. Crude oil prices, in contrast, have limited impact on domestic emissions. This study contributes a novel export-based perspective to Indonesia’s emission profile and demonstrates the value of dynamic modeling in policy analysis. Results underscore the importance of integrated strategies that balance trade objectives with climate commitments, offering evidence-based insights for refining Indonesia’s nationally determined contributions (NDCs) and sustainable energy policies. Full article
Show Figures

Figure 1

38 pages, 5409 KiB  
Article
Quantifying the Synergy Between Industrial Structure Optimization, Ecological Environment Management, and Socio-Economic Development
by Zexi Xue, Zhouyun Chen, Qun Lin and Ansheng Huang
Buildings 2025, 15(14), 2469; https://doi.org/10.3390/buildings15142469 - 14 Jul 2025
Viewed by 278
Abstract
In the context of the new developmental philosophy, this study aimed to address the bottleneck of regional sustainable development; it constructs a three-system evaluation indicator system for Industrial Structure Optimization (ISO), Ecological Environment Management (EEM), and Socio-economic Development (SED), based on panel data [...] Read more.
In the context of the new developmental philosophy, this study aimed to address the bottleneck of regional sustainable development; it constructs a three-system evaluation indicator system for Industrial Structure Optimization (ISO), Ecological Environment Management (EEM), and Socio-economic Development (SED), based on panel data from 20 cities in the Western Taiwan Straits Economic Zone between 2011 and 2023. To reveal how the synergistic development of the three subsystems in different domains can achieve sustainable development through their interactions and to analyze the dynamic patterns of the three subsystems, this study employed the panel vector autoregression (PVAR) model to examine the interactions between subsystems. Additionally, drawing on the framework of evolutionary economics, the study quantified the temporal evolution and spatial characteristics of the coupling coordination level among the three subsystems based on the results of the degree of coupling coordination model. The results indicate the following: (1) ISO shows a significant upward trend, EEM slightly declines, and SED experiences minor fluctuations before accelerating. (2) ISO, EEM, and SED exhibited self-reinforcing effects. (3) The degree of coupling, coordination, and coupling coordination all exhibit a trend of “fluctuating and increasing initially, followed by steady growth”. The spatial patterns of the degree of coupling, coordination, and coupling coordination have shifted from “decentralized” to “centralized”, with clear signs of synergistic development. (4) The difference in the degree of coupling coordination along the north–south direction remained the primary factor contributing to inter-regional disparities. Regions with the higher degrees of coupling coordination were concentrated in the southeastern coastal areas, while those with the lower degrees of coupling coordination appeared in the northeastern mountainous areas and southwestern coastal areas. (5) The spatial connection in the strength of the degree of coupling coordination has gradually increased, with notable intra-provincial connections and weakened inter-city connections across the province. The study’s results provided decision-making references for the construction of a sustainable development community. Full article
(This article belongs to the Special Issue Promoting Green, Sustainable, and Resilient Urban Construction)
Show Figures

Figure 1

18 pages, 662 KiB  
Article
Sustainability of Tourism and Economic Development in Three Religious Tourism Destinations: The Critical Role of Fossil Fuel Energy on Air Pollution and Human Health
by Melike Bildirici and Özgür Ömer Ersin
Sustainability 2025, 17(14), 6351; https://doi.org/10.3390/su17146351 - 11 Jul 2025
Viewed by 318
Abstract
The study examined the relations and Granger causality among environmental pollution, air quality, life expectancy, religious tourism, petroleum consumption and economic growth in three countries, Italy, Saudi Arabia and Türkiye, three countries with a prominent role of religious tourism, given the high shares [...] Read more.
The study examined the relations and Granger causality among environmental pollution, air quality, life expectancy, religious tourism, petroleum consumption and economic growth in three countries, Italy, Saudi Arabia and Türkiye, three countries with a prominent role of religious tourism, given the high shares of religious tourism revenues in their economies and due to pilgrimage-type religious tourism activities in total tourism activities. The study employed a yearly sample of 1975–2019 and novel Fourier-augmented vector autoregressive and Fourier Granger causality tests, under the structural breaks in the data. The findings indicate negative effects on environmental pollution and air quality from tourism in addition to such effects on life expectancy in all countries analyzed, and in this relation, fossil fuel consumption in these nations and its acceleration with tourism play crucial roles. These effects are amplified by economic growth coupled with tourism revenues that go in hand with high fossil fuel consumption, which further worsen the impacts on the environment. In the causality testing stage, the results determined unidirectional causality from tourism, fossil fuel energy consumption, and economic growth to both carbon dioxide emissions and to particulate matter 2.5. These effects are also reinforced by feedback effects between air pollution and life expectancy, which enhance the effects on both environment and air quality. These findings are used to suggest important policy recommendations, among which, the reduction in high dependency on fossil fuel in the energy mix is most central. Equally, policies are suggested to encourage sustainable tourism to reverse the adverse effects on health, environmental degradation and worsened air quality in these nations. Full article
Show Figures

Figure 1

21 pages, 5559 KiB  
Article
The Use of Minimization Solvers for Optimizing Time-Varying Autoregressive Models and Their Applications in Finance
by Zhixuan Jia, Wang Li, Yunlong Jiang and Xingshen Liu
Mathematics 2025, 13(14), 2230; https://doi.org/10.3390/math13142230 - 9 Jul 2025
Viewed by 221
Abstract
Time series data are fundamental for analyzing temporal dynamics and patterns, enabling researchers and practitioners to model, forecast, and support decision-making across a wide range of domains, such as finance, climate science, environmental studies, and signal processing. In the context of high-dimensional time [...] Read more.
Time series data are fundamental for analyzing temporal dynamics and patterns, enabling researchers and practitioners to model, forecast, and support decision-making across a wide range of domains, such as finance, climate science, environmental studies, and signal processing. In the context of high-dimensional time series, the Vector Autoregressive model (VAR) is widely used, wherein each variable is modeled as a linear combination of lagged values of all variables in the system. However, the traditional VAR framework relies on the assumption of stationarity, which states that the autoregressive coefficients remain constant over time. Unfortunately, this assumption often fails in practice, especially in systems subject to structural breaks or evolving temporal dynamics. The Time-Varying Vector Autoregressive (TV-VAR) model has been developed to address this limitation, allowing model parameters to vary over time and thereby offering greater flexibility in capturing non-stationary behavior. In this study, we propose an enhanced modeling approach for the TV-VAR framework by incorporating minimization solvers in generalized additive models and one-sided kernel smoothing techniques. The effectiveness of the proposed methodology is assessed using simulations based on non-homogeneous Markov chains, accompanied by a detailed discussion of its advantages and limitations. Finally, we illustrate the practical utility of our approach using an application to real-world financial data. Full article
(This article belongs to the Section E5: Financial Mathematics)
Show Figures

Figure 1

22 pages, 5340 KiB  
Article
Vegetation Growth Carryover and Lagged Climatic Effect at Different Scales: From Tree Rings to the Early Xylem Growth Season
by Jiuqi Chen, Yonghui Wang, Tongwen Zhang, Kexiang Liu, Kailong Guo, Tianhao Hou, Jinghui Song, Zhihao He and Beihua Liang
Forests 2025, 16(7), 1107; https://doi.org/10.3390/f16071107 - 4 Jul 2025
Viewed by 261
Abstract
Vegetation growth is influenced not only by current climatic conditions but also by growth-enhancing signals and preceding climate factors. Taking the dominant species, Juniperus seravschanica Kom, in Tajikistan as the research subject, this study combines tree-ring width data with early xylem growth season [...] Read more.
Vegetation growth is influenced not only by current climatic conditions but also by growth-enhancing signals and preceding climate factors. Taking the dominant species, Juniperus seravschanica Kom, in Tajikistan as the research subject, this study combines tree-ring width data with early xylem growth season data (from the start of xylem growth to the first day of the NDVI peak month), simulated using the Vaganov–Shashkin (V-S) model, a process-based tree-ring growth model. This study aims to explore the effects of vegetation growth carryover (VGC) and lagged climatic effects (LCE) on tree rings and the early xylem growth season at two different scales by integrating tree-ring width data and xylem phenology simulations. A vector autoregression (VAR) model was employed to analyze the response intensity and duration of VGC and LCE. The results show that the VGC response intensity in the early xylem growth season is higher than that of tree-ring width. The LCE duration for both the early xylem growth season and tree-ring width ranges from 0 to 11 (years or seasons), with peak LCE response intensity observed at a lag of 2–3 (years or seasons). The persistence of the climate lag effect on vegetation growth has been underestimated, supporting the use of a lag of 0–3 (years or seasons) to study the long-term impacts of climate. The influence of VGC on vegetation growth is significantly stronger than that of LCEs; ultimately indicating that J. seravschanica adapts to harsh environments by modulating its growth strategy through VGC and LCE. Investigating the VGC and LCE of multi-scale xylem growth indicators enhances our understanding of forest ecosystem dynamics. Full article
(This article belongs to the Special Issue Tree-Ring Analysis: Response and Adaptation to Climate Change)
Show Figures

Figure 1

36 pages, 4216 KiB  
Article
Research on the Tail Risk Spillover Effect of Cryptocurrencies and Energy Market Based on Complex Network
by Xiao-Li Gong and Xue-Ting Wang
Entropy 2025, 27(7), 704; https://doi.org/10.3390/e27070704 - 30 Jun 2025
Viewed by 504
Abstract
As the relationship between cryptocurrency mining activities and electricity consumption becomes increasingly close, the risk spillover effect is steadily drawing a lot of attention to the energy and cryptocurrency markets. For the purpose of studying the risk contagion between the cryptocurrency and energy [...] Read more.
As the relationship between cryptocurrency mining activities and electricity consumption becomes increasingly close, the risk spillover effect is steadily drawing a lot of attention to the energy and cryptocurrency markets. For the purpose of studying the risk contagion between the cryptocurrency and energy market, this paper constructs a risk contagion network between cryptocurrency and China’s energy market using complex network methods. The tail risk spillover effects under various time and frequency domains were captured by the spillover index, which was assessed by the leptokurtic quantile vector autoregression (QVAR) model. Considering the spatial heterogeneity of energy companies, the spatial Durbin model was used to explore the impact mechanism of risk spillovers. The research showed that the framework of this paper more accurately reflects the tail risk spillover effect between China’s energy market and cryptocurrency market under various shock scales, with the extreme state experiencing a much higher spillover effect than the normal state. Furthermore, this study found that the tail risk contagion between cryptocurrency and China’s energy market exhibits notable dynamic variation and cyclical features, and the long-term risk spillover effect is primarily responsible for the total spillover. At the same time, the study found that the company with the most significant spillover effect does not necessarily have the largest company size, and other factors, such as geographical location and business composition, need to be considered. Moreover, there are spatial spillover effects among listed energy companies, and the connectedness between cryptocurrency and the energy market network generates an obvious impact on risk spillover effects. The research conclusions have an important role in preventing cross-contagion of risks between cryptocurrency and the energy market. Full article
(This article belongs to the Special Issue Complexity of Social Networks)
Show Figures

Figure 1

18 pages, 699 KiB  
Article
Systemic Risk and Commercial Bank Stability in the Middle East and North Africa (MENA) Region
by Rim Jalloul and Mahfuzul Haque
Risks 2025, 13(7), 120; https://doi.org/10.3390/risks13070120 - 24 Jun 2025
Viewed by 502
Abstract
Using panel data spanning 2004–2023 of 21 countries in the MENA (Middle East and North Africa) region, we measure systemic risk and assess its influence on key banking sector performance indicators, including financial stability (proxied by commercial bank branches per 100,000 adults), providing [...] Read more.
Using panel data spanning 2004–2023 of 21 countries in the MENA (Middle East and North Africa) region, we measure systemic risk and assess its influence on key banking sector performance indicators, including financial stability (proxied by commercial bank branches per 100,000 adults), providing evidence from the emerging market context. One of the key findings of the study is the pivotal role played by financial access in promoting banking stability. In particular, the density and outreach of commercial banking branches were shown to have a stabilizing effect on the banking system. Also, findings reveal that systemic risk significantly undermines bank stability and operational efficiency while constraining financial depth. The study contributes to the literature by offering empirical evidence on the adverse effects of systemic risk in a region characterized by financial volatility and structural vulnerabilities. These findings align with existing global evidence that links financial development with reduced systemic risk, yet they also offer new empirical insights that are contextually relevant to the MENA region. The findings provide actionable recommendations for policymakers. Regulatory authorities in the MENA region should consider strategies that not only enhance the robustness of financial institutions but also promote inclusive access to banking services. The dual focus on institutional soundness and outreach could serve as a cornerstone for sustainable financial stability. Tailored policies that encourage branch expansion in underserved areas, coupled with incentives for inclusive banking practices, may yield long-term benefits by reducing the concentration of risk and improving the responsiveness of the financial system to external shocks. Full article
(This article belongs to the Special Issue Risk Analysis in Financial Crisis and Stock Market)
Show Figures

Figure 1

18 pages, 1198 KiB  
Article
Information-Theoretic Sequential Framework to Elicit Dynamic High-Order Interactions in High-Dimensional Network Processes
by Helder Pinto, Yuri Antonacci, Gorana Mijatovic, Laura Sparacino, Sebastiano Stramaglia, Luca Faes and Ana Paula Rocha
Mathematics 2025, 13(13), 2081; https://doi.org/10.3390/math13132081 - 24 Jun 2025
Viewed by 262
Abstract
Complex networks of stochastic processes are crucial for modeling the dynamics of interacting systems, particularly those involving high-order interactions (HOIs) among three or more components. Traditional measures—such as mutual information (MI), interaction information (II), the redundancy-synergy index (RSI), and O-information (OI)—are typically limited [...] Read more.
Complex networks of stochastic processes are crucial for modeling the dynamics of interacting systems, particularly those involving high-order interactions (HOIs) among three or more components. Traditional measures—such as mutual information (MI), interaction information (II), the redundancy-synergy index (RSI), and O-information (OI)—are typically limited to static analyses not accounting for temporal correlations and become computationally unfeasible in large networks due to the exponential growth of the number of interactions to be analyzed. To address these challenges, first a framework is introduced to extend these information-theoretic measures to dynamic processes. This includes the II rate (IIR), RSI rate (RSIR), and the OI rate gradient (ΔOIR), enabling the dynamic analysis of HOIs. Moreover, a stepwise strategy identifying groups of nodes (multiplets) that maximize either redundant or synergistic HOIs is devised, offering deeper insights into complex interdependencies. The framework is validated through simulations of networks composed of cascade, common drive, and common target mechanisms, modelled using vector autoregressive (VAR) processes. The feasibility of the proposed approach is demonstrated through its application in climatology, specifically by analyzing the relationships between climate variables that govern El Niño and the Southern Oscillation (ENSO) using historical climate data. Full article
(This article belongs to the Special Issue Recent Advances in Time Series Analysis)
Show Figures

Figure 1

28 pages, 2003 KiB  
Article
The South African Fear and Greed Index and Its Connectedness to the U.S. Index
by Deevarshan Naidoo, Peter Moores-Pitt and Paul-Francois Muzindutsi
J. Risk Financial Manag. 2025, 18(7), 349; https://doi.org/10.3390/jrfm18070349 - 23 Jun 2025
Viewed by 588
Abstract
This study investigates the cross-country spillover effects of investor sentiment, specifically Fear and Greed, between the United States and South Africa, within the broader context of increasing global financial integration and behavioral finance. Using monthly data from June 2007 to June 2024, this [...] Read more.
This study investigates the cross-country spillover effects of investor sentiment, specifically Fear and Greed, between the United States and South Africa, within the broader context of increasing global financial integration and behavioral finance. Using monthly data from June 2007 to June 2024, this research constructs and tests the validity of a South African Fear and Greed Index, adapted from CNN’s U.S.-centric index, to better capture the unique dynamics and contribute to an alternate sentiment index for an emerging market. Employing the Diebold and Yilmaz (DY) connectedness framework, this study quantifies both static and dynamic spillover effects via a vector autoregression-based variance decomposition model. The results reveal significant bidirectional sentiment transmission, with the U.S. acting as a dominant net transmitter and South Africa as a net receiver, along with notable cross-country effects closely linked to the global economic trend. Spillover intensity escalates during periods of global economic stress, such as the 2008 financial crisis and the COVID-19 pandemic. The findings highlight that the USA significantly influences South Africa and that the adapted SA Fear and Greed Index better accounts for South African market conditions. Full article
(This article belongs to the Section Financial Markets)
Show Figures

Figure 1

Back to TopTop