Is Bitcoin a Safe-Haven Asset During U.S. Presidential Transitions? A Time-Varying Analysis of Asset Correlations
Abstract
1. Introduction
2. Related Literature
2.1. Studies Showing Strong Linkages
2.2. Studies Showing Weak or Negative Linkages
2.3. Spillovers and Short-Term Dynamics
2.4. Effects During External Crisis Periods
2.5. Summary and Research Gap
3. Data and Methods
3.1. Data and Preliminary Analysis
3.2. Time Varying Vector Autoregressive (tvVAR(p)) Model
3.3. Bayesian Structural Time Series (BSTS) Model
4. Findings
4.1. Estimated Results Under President Trump and Biden Governments by Using tvVAR(p)
4.2. Forecasted Results for Bitcoin and Gold Nexus by Using the Best Fit BSTS Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Augmented Dickey Fuller (ADF) Testing Results
Under President Trump | Under President Biden | Mix-Periods | ||||
Variable | At Level | First Difference | At Level | First Difference | At Level | First Difference |
Brent Crude Oil Return | −0.385 | −9.230 *** | −12.64 *** | −22.179 *** | −0.265 | −16.319 *** |
Gold Return | 1.893 | −10.39 *** | −10.617 *** | −17.020 *** | 2.870 *** | −14.921 *** |
Bitcoin Return | 3.215 ** | −6.323 *** | −11.003 *** | −18.415 *** | 1.647 | −13.491 *** |
U.S. Dollar Index Return | −1.038 | −11.019 *** | −9.292 *** | −17.818 *** | 0.129 | −15.175 *** |
Notes: President Trump’s first term was from 20 January 2017 to 19 January 2020; President Biden’s first term was from 20 January 2021 to 19 January 2025; and Mix periods denote the periods between 20 January 2017 and 20 March 2025. ** significance at p < 0.05 and *** significance at p < 0.01. |
Appendix A.2. Optimal Lag Length Selection Results
Under President Trump | Under President Biden | Mix Periods | |||||||
Test | AIC | HQ | SC | AIC | HQ | SC | AIC | HQ | SC |
Lag 1 | 22.12 | 22.20 * | 22.31 * | 26.49 * | 26.57 * | 26.69 * | 26.36 | 26.41 | 26.48 |
Lag 2 | 22.08 * | 22.22 | 22.42 | 26.51 | 26.65 | 26.86 | 25.98 | 26.06 | 26.19 |
Lag 3 | 22.14 | 22.34 | 22.63 | 26.54 | 26.74 | 27.03 | 25.79 | 25.90 | 26.08 |
Lag 4 | 22.14 | 22.40 | 22.78 | 26.59 | 26.85 | 27.23 | 25.64 | 25.79 | 26.02 |
Lag 5 | 22.12 | 22.44 | 22.91 | 26.60 | 26.92 | 27.39 | 25.57 | 25.54 * | 26.02 |
Lag 6 | 22.17 | 22.55 | 23.11 | 26.64 | 27.02 | 27.57 | 25.50 * | 25.72 | 26.05 * |
Lag 7 | 22.21 | 22.65 | 23.30 | 26.68 | 27.12 | 27.77 | 25.51 | 25.76 | 26.15 |
Notes: President Trump’s first term was from 20 January 2017 to 19 January 2020; President Biden’s first term was from 20 January 2021 to 19 January 2025; and Mix periods denote the periods between 20 January 2017 and 20 March 2025. * denotes the optimal lag to determine best tvVAR(p) model. |
Appendix A.3. Forecasting Error Results
Bitcoin on Gold | Gold on Bitcoin | |||||
Test | MAPE | RMSE | MAE | MAPE | RMSE | MAE |
12 weeks forecasts ahead | 0.05 | 0.000002 | 0.000002 | 0.01 | 0.000013 | 0.000011 |
24 weeks forecasts ahead | 0.05 | 0.00002 | 0.00002 | 0.01 | 0.000013 | 0.000011 |
48 weeks forecasts ahead * | 0.38 | 0.00002 | 0.000018 | 0.07 | 0.000112 | 0.000096 |
52 weeks forecasts ahead | 0.14 | 0.000008 | 0.000007 | 0.03 | 0.000042 | 0.000037 |
Note: We trained time varying coefficients of weekly returns for 12, 24, 48 and 52 weeks’ length to assess forecasting error percentage for the robustness of BSTS model forecasts. * denotes actual forecasting sample of this study. |
Appendix B
Appendix B.1. Estimated Results for the Periods from 20 January 2017 to 20 March 2025
Variable I | Estimate | Std. Error | T.Value | Variable J | Estimate | Std. Error | T.Value |
Crude Oil.L6 | −0.06221 | 0.05718 | −1.088 | Crude Oil.L1 | −1.900 | 2.222 | −0.855 |
Gold.L6 | −0.00129 | 0.00147 | −0.876 | Gold.L1 | −0.1869 | 0.05724 | −3.265 *** |
Bitcoin.L6 | −0.00116 | 0.01318 | −0.088 | Bitcoin.L1 | 0.6576 | 0.5121 | 1.284 |
U.S. Dollar.L6 | 0.000004 | 0.000021 | 0.220 | U.S. Dollar.L1 | 0.000116 | 0.00081 | 0.143 |
Constant | −0.00676 | 0.04728 | −0.143 | Constant | 0.3567 | 1.837 | 0.194 |
Residual | 0.9665 | R2 | 0.5356 | Residual | 37.55 | R2 | 0.5145 |
Adj. R2 | 0.5072 | F-Stat | 18.89 *** | Adj. R2 | 0.4849 | F-Stat | 17.36 *** |
Note: I the dependent variable is Crude Oil, and J the dependent variable is Gold. *** significance at p < 0.001. |
Appendix B.2. Estimated Results for the Periods from 20 January 2017 to 20 March 2025
Variable K | Estimate | Std. Error | T.Value | Variable L | Estimate | Std. Error | T.Value |
Crude Oil.L1 | 0.02755 | 0.2184 | 0.126 | Crude Oil.L6 | 320.1615 | 138.52 | 2.311 * |
Gold.L1 | 0.00131 | 0.00356 | 0.233 | Gold.L6 | 2.29970 | 3.5687 | 0.644 |
Bitcoin.L1 | −0.1620 | 0.05033 | −3.219 ** | Bitcoin.L6 | −2.2969 | 31.9289 | −0.072 |
U.S. Dollar.L1 | −0.00006 | 0.00008 | −0.791 | U.S. Dollar.L6 | −0.15901 | 0.0505 | −3.147 ** |
Constant | 0.00262 | 0.1806 | 0.014 | Constant | −5.07627 | 114.5406 | −0.044 |
Residual | 3.691 | R2 | 0.5253 | Residual | 2341 | R2 | 0.4189 |
Adj. R2 | 0.4964 | F-Stat | 18.12 *** | Adj. R2 | 0.3834 | F-Stat | 11.8 *** |
Note: K the dependent variable is Bitcoin, and L the dependent variable is U.S. Dollar. * significance at p < 0.05, ** significance at p < 0.01, *** significance at p < 0.001. |
Appendix B.3. The tvIRF Results for the Periods from 20 January 2017 to 20 March 2025
References
- Abid, I., Bouri, E., Galariotis, E., Guesmi, K., & Mzoughi, H. (2023). Bitcoin vs. fiat currencies: Insights from extreme dependence and risk spillover analysis with financial markets. International Review of Financial Analysis, 90, 102806. [Google Scholar] [CrossRef]
- Aliu, F., Asllani, A., & Haskova, S. (2023). The impact bitcoin on gold, the volatility index (VIX), and the dollar index (USDX): Analysis based on VAR, SVAR, and wavelet coherence. Studies in Economics and Finance, 41(1), 64–87. [Google Scholar] [CrossRef]
- Andrews, A., & Kimpton, S. (2023). Econometric forecasting of tourist arrivals using Bayesian structural time series. The Economic Society of Australia, 42(2), 200–211. [Google Scholar] [CrossRef]
- Attarzadeh, A., Isayev, M., & Irani, F. (2024). Dynamic interconnectedness and portfolio implications among cryptocurrency, gold, energy, and stock markets: A TVP-VAR approach. Sustainable Futures, 8, 100375. [Google Scholar] [CrossRef]
- Bara, A., Georgescu, I. A., Oprea, S. V., & Cristescu, M. P. (2024). Exploring the dynamics of Brent crude oil, S&P500 and Bitcoin prices amid economic instability. IEEE Access, 12, 31366–31384. [Google Scholar] [CrossRef] [PubMed]
- Baur, D. G., Dimpfl, T., & Kuck, K. (2018). Bitcoin, gold and the US dollar—A replication and extension. Finance Research Letters, 25, 103–110. [Google Scholar] [CrossRef]
- Bhuiyan, R. A., Husain, A., & Zhang, C. (2023). Diversification evidence of bitcoin and gold from wavelet analysis. Financial Innovation, 9, 100. [Google Scholar] [CrossRef] [PubMed]
- Bouteska, A., Hassan, M. K., Rashid, M., & Bilgin, M. H. (2024). The dynamics of bonds, commodites and bitcoin based on NARDL approach. Quarternly Review of Economics and Finance, 94, 58–70. [Google Scholar] [CrossRef]
- Casas, I., & Casal, R. F. (2022). tvReg: Time-varying coefficients in multi-equation regression in R. The R Journal, 14, 251453353. [Google Scholar] [CrossRef]
- Choudhary, S., Jain, A., & Biswal, P. C. (2024). Dynamic linkages among bitcoin, equity, gold and oil: An implied volatility perspective. Finance Research Letters, 62, 105220. [Google Scholar] [CrossRef]
- Corbet, S., Larkin, C., Lucey, B. M., Meegan, A., & Yarovaya, L. (2020). The impact of macroeconomic news on Bitcoin returns. The European Journal of Finance, 26(14), 1396–1416. [Google Scholar] [CrossRef]
- Darie, F. C., & Miron, A. D. (2023). Bitcoin, gold and crude oil versus the US dollar—A GARCH volatility analysis. Proceedings of the 17th International Conference on Business Excellence, 17, 254–265. [Google Scholar] [CrossRef]
- Das, D., & Kannadhasan, M. (2018). Do global factors impact bitcoin prices? Evidence from wavelet approach. Journal of Economic Research, 23, 227–264. Available online: https://www.researchgate.net/publication/329308550 (accessed on 19 February 2025).
- Das, D., Roux, C. L. L., Jana, R. K., & Dutta, A. (2020). Does Bitcoin hedge crude oil implied volatility and structural shocks? A comparison with gold, commodity and the US Dollar. Finance Research Letters, 36, 101335. [Google Scholar] [CrossRef]
- Fei, W., & Bai, L. (2009). Time-varying parameter auto-regressive models for autocoveriance nonstationary time series. Science in China Series A: Mathematics, 52, 577–584. [Google Scholar] [CrossRef]
- Gkillas, K., Bouri, E., Gupta, R., & Roubaud, D. (2022). Spillovers in higher-order moments of crude oil, gold and Bitcoin. The Quarterly Review of Economics and Finance, 84, 398–406. [Google Scholar] [CrossRef]
- Gozbasi, O., Altinoz, B., & Sahin, E. E. (2021). Is Bitcoin a safe haven? A study on the factors that affect Bitcoin prices. International Journal of Economics and Financial Issues, 11(4), 35–40. [Google Scholar] [CrossRef]
- Gronwald, M. (2019). Is Bitcoin a commodity? On price jumps, demand shocks, and certainty of supply. Journal of International Money and Finance, 97, 86–92. [Google Scholar] [CrossRef]
- Gursoy, S., & Sokmen, F. S. (2021). Investigation of the relationship between Bitcoin and gold prices with the Maki conintegration test. Ekonomi, 3(2), 217–230. [Google Scholar] [CrossRef]
- Hernandez, J. A., Hasan, M. Z., & Mclver, R. P. (2023). Bitcoin, gold and the VIX: Short- and long-term effects of economic policy uncertainty. Applied Economics Letters, 30(6), 761–765. [Google Scholar] [CrossRef]
- Hsu, T. K., Lien, W. C., & Lee, Y. H. (2023). Exploring relationships among crude oil, Bitcoin, and carbon dioxide emissions: Quantile mediation analysis. Processes, 11, 1555. [Google Scholar] [CrossRef]
- Hung, N. T. (2022). Asymmetric connectedness among S&P 500, crude oil, gold and Bitcoin. Managerial Finance, 48(4), 587–610. [Google Scholar] [CrossRef]
- Ibrahim, J., & Basah, M. Y. A. (2022). A study on relationship between Crypto currency, commodity and foreign exchange rate. The Journal of Muamalat and Islamic Finance Research, 19(2), 1–12. [Google Scholar] [CrossRef]
- Jin, F., Li, J., & Li, G. (2022). Modeling the linkages between Bitcoin, gold, dollar, crude oil, and stock markets: A GARCH-EVT-Copula approach. Discrete Dynamics in Nature and Society, 2022, 8901180. [Google Scholar] [CrossRef]
- Kapetanios, G., Marcellino, M., & Venditti, F. (2017). Large time-varying parameter VARs: A nonparametric approach. Journal of Applied Econometrics, 34(7), 1027–1049. [Google Scholar] [CrossRef]
- Karimi, P., Ghazani, M. M., & Ebrahimi, S. B. (2023). Analyzing spillover effects of selected cryptocurrencies on gold and brent crude oil under COVID-19 pandemic: Evidence from GJR-GARCH and EVT copula methods. Resources Policy, 85, 103887. [Google Scholar] [CrossRef]
- Khairudin, K., Ahmad, N., Razali, A., & Azmi, A. (2018). Forecasting international tourist arrivals in Penang using time series model. International Journal of Academic Research in Business & Social Sciences, 8(16), 38–59. [Google Scholar] [CrossRef]
- Klein, T., Thu, H. P., & Walther, T. (2018). Bitcoin is not the new gold—A comparison of volatility, correlation, and portfolio performance. International Review of Finance Analysis, 59, 105–116. [Google Scholar] [CrossRef]
- Ko, H., & Chaiboonsri, C. (2024). Forecasting international tourist arrivasl to Myanmar during ongoing military coup period: Bayesian structural time series. Advances in Appplied Macroeconomics, 2, 21–40. [Google Scholar] [CrossRef]
- Kumah, S. P., & Mensah, J. O. (2022). Are cryptocurrencies connected to gold? A wavelet-based quantile-in-quantile approach. International Journal of Finance & Economics, 27, 3640–3659. [Google Scholar] [CrossRef]
- Kumar, S., Kumar, A., & Singh, G. (2022). Gold, crude oil, bitcoin and Indian stock market: Recent confirmation from nonlinear ARDL analysis. Journal of Economic Studies, 50(4), 734–751. [Google Scholar] [CrossRef]
- Liu, Y., & Naktnasukanjn, N. (2022, June 17–19). Dynamic correlation measurement between Bitcoin, crude oil and gold. Proceedings of the International Conference on Information Economy, Data Modeling and Cloud Computing, ICIDC 2022, Qingdao, China. [Google Scholar] [CrossRef]
- Madhavan, M., Sharafuddin, M. A., Piboonrungroj, P., & Yang, C. C. (2020). Short-term forecasting for airline industry: The case of Indian air passenger and air cargo. Global Business Review, 24(6), 1145–1179. [Google Scholar] [CrossRef]
- Nakamoto, S. (2008). Bitcoin a peer-to-peer electronic cash system. Available online: https://Bitcoin.org/Bitcoin.pdf (accessed on 23 February 2025).
- Nguyen, L. T. H., Vu, H. H., & Le, A. P. (2024). Testing Bitcoin’s safe-haven property and the correlation between Bitcoin, gold, oil, stock marekts, and Google trends. Investment Management and Financial Innovations, 21(2), 103–115. [Google Scholar] [CrossRef]
- Ozturk, S. S. (2020). Dynamic Connectedness between Bitcoin, gold, crude oil volatilities and returns. Journal of Risk and Financial Management, 13, 275. [Google Scholar] [CrossRef]
- Qabhobho, T., Mpuku, C., Anyikwa, I., & Phiri, A. (2024). Tail-spillover effects between African currencies, bitcoin, gold and oil during two recent black swan events. Cogent Business & Management, 11(1), 2343411. [Google Scholar] [CrossRef]
- Ryan, J. A., Ulrich, J. M., & Ryan, M. J. A. (2024a). Package ‘xts’. Available online: https://cran.r-project.org/web/packages/xts/xts.pdf (accessed on 23 February 2025).
- Ryan, J. A., Ulrich, J. M., Thielen, W., Teetor, P., Bronder, S., & Ulrich, M. J. M. (2024b). Package ‘quantmod’. Available online: https://cran.r-project.org/web/packages/quantmod/quantmod.pdf (accessed on 23 February 2025).
- Sadewa, P., & Huruta, A. D. (2024). Will Bitcoin become the 21st century gold? Spillover effect of return and volatility betweeen digital and traditional assets. Industrija, 52(1), 73–91. [Google Scholar] [CrossRef]
- Shahzad, S. J. H., Bouri, E., Roubaud, D., Kristoufek, L., & Lucey, B. (2019). Is Bitcoin a better safe-haven investment than gold and commodities? International Review of Financial Analysis, 63, 322–330. [Google Scholar] [CrossRef]
- Shaik, M., Rabbani, M. R., Atif, M., Aysan, A. F., Alam, M. N., & Kayani, U. N. (2024). The dynamic volatility nexus of geo-political risks, stocks, bond, bitcoin, gold and oil during COVID-19 and Russian-Ukraine war. PLoS ONE, 19(2), e0286963. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G. D., Shahbaz, M., Singh, S., & Chopra, R. (2023). Investigating the nexus between green economy, sustainability, bitcoin and oil prices: Contextual evidence from the United States. Resources Policy, 80, 103168. [Google Scholar] [CrossRef]
- Shehzad, K., Bilgili, F., Zaman, U., Kocak, E., & Kuskaya, S. (2021). Is gold favourable than bitcoin during the COVID-19 outbreak? Comparative analysis through wavelet approach. Resources Policy, 73, 102163. [Google Scholar] [CrossRef] [PubMed]
- Sims, C. A. (1980). Macroeconomics and Reality. Econometrica, 48(1), 1–48. [Google Scholar] [CrossRef]
- Steven, L. S., & Varian, H. (2013). Predicting the present with Bayesian structural time series. Available online: https://ssrn.com/abstract=2304426 (accessed on 23 February 2025).
- Su, C. W., Qin, M., Tao, R., Shao, X. F., Albu, L. L., & Umar, M. (2020a). Can Bitcoin hedge the risks of geopoltical events? Technological Forecasting & Social Change, 159, 120182. [Google Scholar] [CrossRef]
- Su, C. W., Qin, M., Tao, R., & Zhang, X. (2020b). Is the status of gold threatened by Bitcoin? Economic Research-Ekonomska Istrazivanja, 33(1), 420–437. [Google Scholar] [CrossRef]
- Su, C. W., Yang, S., Qin, M., & Lobont, O. R. (2023). Gold vs bitcoin: Who can resist panic in the U.S.? Resources Policy, 85, 103880. [Google Scholar] [CrossRef]
- Symitsi, E., & Chalvatzis, K. J. (2019). The economic value of Bitcoin: A portfolio analysis of currencies, gold, oil and stocks. Research in International Business and Finance, 48, 97–110. [Google Scholar] [CrossRef]
- Toudas, K., Pafos, D., Boufounou, P., & Raptis, A. (2024). Cryptocurrency, gold, and stock exchange market performance correlation: Empirical evidence. FinTech, 3, 324–336. [Google Scholar] [CrossRef]
- Wang, K. M., & Lee, Y. M. (2022). Is gold a safe haven for exchange rate risks? An empirical study of major currency countries. Journal of Multinational Financial Management, 63, 100705. [Google Scholar] [CrossRef]
- Zeileis, A., Grothendieck, G., Ryan, J. A., Andrews, F., & Zeileis, M. A. (2025). Package ‘zoo’. Available online: https://cran.r-project.org/web/packages/zoo/zoo.pdf (accessed on 22 February 2025).
- Zeinedini, S., Karimi, M. S., Khanzadi, A., & Falahati, A. (2024). Impact of oil and gold prices on Bitcoin price during Russia-Ukraine and Israel-Gaza wars. Resources Policy, 99, 105405. [Google Scholar] [CrossRef]
- Zhang, Y., Zhou, L., Li, Y., & Liu, F. (2023). Higher-order moment nexus between the US Dollar, crude oil, gold and bitcoin. North American Journal of Economics and Finance, 68, 101998. [Google Scholar] [CrossRef]
Variable A | Estimate | Std. Error | T.Value | Variable B | Estimate | Std. Error | T.Value |
---|---|---|---|---|---|---|---|
Crude Oil.L1 | −0.1295 | 0.07787 | −1.663 | Crude Oil.L1 | 3.051 | 2.743 | 1.112 |
Gold.L1 | 0.002949 | 0.002207 | 1.336 | Gold.L1 | −0.1458 | 0.07774 | −1.875 |
Bitcoin.L1 | 0.01070 | 0.02242 | 0.477 | Bitcoin.L1 | −1.026 | 0.7898 | −1.299 |
U.S. Dollar.L1 | −0.0000718 | 0.0000591 | −1.216 | U.S. Dollar.L1 | −0.00225 | 0.00208 | −1.081 |
Crude Oil.L2 | −0.01597 | 0.07831 | −0.204 | Crude Oil.L2 | −2.781 | 2.758 | −1.008 |
Gold.L2 | −0.0008265 | 0.00221 | −0.374 | Gold.L2 | −0.01399 | 0.07791 | −0.180 |
Bitcoin.L2 | −0.01992 | 0.02205 | −0.903 | Bitcoin.L2 | −0.04328 | 0.7767 | −0.056 |
U.S. Dollar.L2 | 0.0001335 | 0.000061 | 2.175 * | U.S. Dollar.L2 | 0.000082 | 0.000216 | 0.038 |
Constant | −0.0713 | 0.05552 | −1.284 | Constant | 3.737 | 1.956 | 1.911 |
Residual | 0.7643 | R2 | 0.06501 | Residual | 26.92 | R2 | 0.0789 |
Adj. R2 | 0.02684 | F-Stat | 1.703 * | Adj. R2 | 0.04139 | F-Stat | 2.101 ** |
Variable C | Estimate | Std. Error | T.Value | Variable D | Estimate | Std. Error | T.Value |
---|---|---|---|---|---|---|---|
Crude Oil.L1 | 0.18235 | 0.25068 | 0.727 | Crude Oil.L1 | 130.494 | 91.8234 | 1.421 |
Gold.L1 | −0.00853 | 0.00711 | −1.200 | Gold.L1 | −1.91398 | 2.60257 | −0.735 |
Bitcoin.L1 | 0.10778 | 0.07218 | 1.493 | Bitcoin.L1 | −34.4164 | 26.4397 | −1.302 |
U.S. Dollar.L1 | 0.000738 | 0.00019 | 3.878 *** | U.S. Dollar.L1 | 0.2345 | 0.0696 | 3.366 *** |
Crude Oil.L2 | −0.20559 | 0.25209 | −0.816 | Crude Oil.L2 | −104.3788 | 92.3418 | −1.130 |
Gold.L2 | −0.00699 | 0.00712 | −0.983 | Gold.L2 | 1.85211 | 2.6081 | 0.710 |
Bitcoin.L2 | 0.03234 | 0.07098 | 0.456 | Bitcoin.L2 | 10.57329 | 26.0008 | 0.407 |
U.S. Dollar.L2 | −0.00039 | 0.00019 | −2.003 * | U.S. Dollar.L2 | 0.25194 | 0.07239 | 3.480 *** |
Constant | −0.01723 | 0.1787 | −0.096 | Constant | 92.76725 | 65.4686 | 1.417 |
Residual | 2.46 | R2 | 0.1018 | Residual | 901.2 | R2 | 0.1747 |
Adj. R2 | 0.06512 | F-Stat | 2.776 *** | Adj. R2 | 0.141 | F-Stat | 5.186 *** |
Variable E | Estimate | Std. Error | T.Value | Variable F | Estimate | Std. Error | T-Value |
---|---|---|---|---|---|---|---|
Crude Oil.L1 | −11.71201 | 63.7506 | −0.184 | Crude Oil.L1 | 1.526 | 0.6510 | 2.344 * |
Gold.L1 | 3.7626 | 1.6978 | 2.216 * | Gold.L1 | 0.9715 | 0.01734 | 56.040 *** |
Bitcoin.L1 | −49.9397 | 24.8278 | −2.011 * | Bitcoin.L1 | −0.3812 | 0.2535 | −1.504 |
U.S. Dollar.L1 | 0.94945 | 0.02316 | 40.989 *** | U.S. Dollar.L1 | 0.00045 | 0.00024 | 1.898 |
Constant | 378.9899 | 4895.9 | 0.077 | Constant | −81.05 | 49.99 | −1.621 |
Residual | 3755 | R2 | 0.9754 | Residual | 38.34 | R2 | 0.9826 |
Adj. R2 | 0.9749 | F-Stat | 1998 *** | Adj. R2 | 0.9822 | F-Stat | 2848 *** |
Variable G | Estimate | Std. Error | T.Value | Variable H | Estimate | Std. Error | T-Value |
---|---|---|---|---|---|---|---|
Crude Oil.L1 | 0.01471 | 0.07056 | 0.208 | Crude Oil.L1 | −11.712 | 63.7506 | −0.184 |
Gold.L1 | −0.001402 | 0.001879 | −0.746 | Gold.L1 | 3.76261 | 1.69778 | 2.216 * |
Bitcoin.L1 | 0.9282 | 0.02748 | 33.780 *** | Bitcoin.L1 | −49.9399 | 24.8278 | −2.011 * |
U.S. Dollar.L1 | 0.000006 | 0.0000256 | 0.223 | U.S. Dollar.L1 | 0.94945 | 24.8278 | 40.989 *** |
Constant | 7.175 | 5.419 | 1.324 | Constant | 378.989 | 4895.92 | 0.077 |
Residual | 4.156 | R2 | 0.8926 | Residual | 3755 | R2 | 0.9657 |
Adj. R2 | 0.8905 | F-Stat | 419.8 *** | Adj. R2 | 0.965 | F-Stat | 1421 |
Under President Trump Government | Under President Biden Government | |||||||
---|---|---|---|---|---|---|---|---|
The dynamic relationship among financial assets (Crude Oil, Gold, Bitcoin, and U.S. dollar index) | ||||||||
Variable | Crude Oil | Gold | Bitcoin | U.S. dollar | Crude Oil | Gold | Bitcoin | U.S. dollar |
Crude Oil | (−) | (−) | (−) | (+) * | (−) | (+) * | (−) * | (+) *** |
Gold | (−) | (−) | (−) | (+) | (+) * | (+) *** | (−) | (+) |
Bitcoin | (−) | (−) | (+) | (−) * | (+) | (−) | (+) *** | (+) |
U.S. dollar | (−) | (+) | (+) | (+) *** | (−) | (+) * | (−) * | (+) *** |
The time-varying impulse responses (tvIRFs) of one asset to another under Trump and Biden Governments | ||||||||
Variable | Crude Oil | Gold | Bitcoin | U.S. dollar | Crude Oil | Gold | Bitcoin | U.S. dollar |
Crude Oil | - | PF | PF | PF | - | P | SP | MN |
Gold | PF | - | TN | TN | N | - | P | P |
Bitcoin | SP | NF | - | TN | P | N | - | N |
U.S. dollar | PN | TN | PF | - | SN | P | SP | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastpipatkul, P.; Ko, H. Is Bitcoin a Safe-Haven Asset During U.S. Presidential Transitions? A Time-Varying Analysis of Asset Correlations. Int. J. Financial Stud. 2025, 13, 134. https://doi.org/10.3390/ijfs13030134
Pastpipatkul P, Ko H. Is Bitcoin a Safe-Haven Asset During U.S. Presidential Transitions? A Time-Varying Analysis of Asset Correlations. International Journal of Financial Studies. 2025; 13(3):134. https://doi.org/10.3390/ijfs13030134
Chicago/Turabian StylePastpipatkul, Pathairat, and Htwe Ko. 2025. "Is Bitcoin a Safe-Haven Asset During U.S. Presidential Transitions? A Time-Varying Analysis of Asset Correlations" International Journal of Financial Studies 13, no. 3: 134. https://doi.org/10.3390/ijfs13030134
APA StylePastpipatkul, P., & Ko, H. (2025). Is Bitcoin a Safe-Haven Asset During U.S. Presidential Transitions? A Time-Varying Analysis of Asset Correlations. International Journal of Financial Studies, 13(3), 134. https://doi.org/10.3390/ijfs13030134