Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (885)

Search Parameters:
Keywords = vapor treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3116 KiB  
Article
Enhancement of Stability Towards Aging and Soil Degradation Rate of Plasticized Poly(lactic Acid) Composites Containing Ball-Milled Cellulose
by Roberta Capuano, Roberto Avolio, Rachele Castaldo, Mariacristina Cocca, Federico Olivieri, Gennaro Gentile and Maria Emanuela Errico
Polymers 2025, 17(15), 2127; https://doi.org/10.3390/polym17152127 - 1 Aug 2025
Viewed by 287
Abstract
In this study, multicomponent PLA-based biocomposites were developed. In particular, both native fibrous cellulose and cellulose with modified morphology obtained through ball milling treatments were incorporated into the polyester matrix in combination with an oligomeric plasticizer, specifically a lactic acid oligomer (OLA). The [...] Read more.
In this study, multicomponent PLA-based biocomposites were developed. In particular, both native fibrous cellulose and cellulose with modified morphology obtained through ball milling treatments were incorporated into the polyester matrix in combination with an oligomeric plasticizer, specifically a lactic acid oligomer (OLA). The resulting materials were analyzed in terms of their morphology, thermal and mechanical properties over time, water vapor permeability, and degradation under soil burial conditions in comparison to neat PLA and unplasticized PLA/cellulose composites. The cellulose phase significantly affected the mechanical properties and enhanced their long-term stability, addressing a common limitation of PLA/plasticizer blends. Additionally, water vapor permeability increased in all composites. Finally, the ternary systems exhibited a significantly higher degradation rate in soil burial conditions compared to PLA, evidenced by larger weight loss and reduction in the molecular weight of the PLA phase. The degradation rate was notably influenced by the morphology of the cellulose phase. Full article
(This article belongs to the Special Issue Functional Polymer Composites: Synthesis and Application)
Show Figures

Graphical abstract

21 pages, 4228 KiB  
Article
The Combined Effect of Caseinates, Native or Heat-Treated Whey Proteins, and Cryogel Formation on the Characteristics of Kefiran Films
by Nikoletta Pouliou, Eirini Chrysovalantou Paraskevaidou, Athanasios Goulas, Stylianos Exarhopoulos and Georgia Dimitreli
Molecules 2025, 30(15), 3230; https://doi.org/10.3390/molecules30153230 - 1 Aug 2025
Viewed by 228
Abstract
Kefiran, the extracellular polysaccharide produced from the Generally Recognized as Safe (GRAS) bacteria in kefir grains, with its well-documented functional and health-promoting properties, constitutes a promising biopolymer with a variety of possible uses. Its compatibility with other biopolymers, such as milk proteins, and [...] Read more.
Kefiran, the extracellular polysaccharide produced from the Generally Recognized as Safe (GRAS) bacteria in kefir grains, with its well-documented functional and health-promoting properties, constitutes a promising biopolymer with a variety of possible uses. Its compatibility with other biopolymers, such as milk proteins, and its ability to form standalone cryogels allow it to be utilized for the fabrication of films with improved properties for applications in the food and biomedical–pharmaceutical industries. In the present work, the properties of kefiran films were investigated in the presence of milk proteins (sodium caseinate, native and heat-treated whey proteins, and their mixtures), alongside glycerol (as a plasticizer) and cryo-treatment of the film-forming solution prior to drying. A total of 24 kefiran films were fabricated and studied for their physical (thickness, moisture content, water solubility, color parameters and vapor adsorption), mechanical (tensile strength and elongation at break), and optical properties. Milk proteins increased film thickness, solubility and tensile strength and reduced water vapor adsorption. The hygroscopic effect of glycerol was mitigated in the presence of milk proteins and/or the application of cryo-treatment. Glycerol was the most effective at reducing the films’ opacity. Heat treatment of whey proteins proved to be the most effective in increasing film tensile strength, reducing, at the same time, the elongation at break, while sodium caseinates in combination with cryo-treatment resulted in films with high tensile strength and the highest elongation at break. Cryo-treatment, carried out in the present study through freezing followed by gradual thawing of the film-forming solution, proved to be the most effective factor in decreasing film roughness. Based on our results, proper selection of the film-forming solution composition and its treatment prior to drying can result in kefiran–glycerol films with favorable properties for particular applications. Full article
(This article belongs to the Special Issue Development of Food Packaging Materials)
Show Figures

Figure 1

16 pages, 4172 KiB  
Article
Vapor Phase Application of Thymus vulgaris Essential Oil to Control the Biodeteriogenic Fungus Alternaria alternata
by Francesca Bosco, Chiara Mollea and Davide Fissore
Appl. Sci. 2025, 15(15), 8420; https://doi.org/10.3390/app15158420 - 29 Jul 2025
Viewed by 266
Abstract
In the present work, the antimicrobial efficacy of Thymus vulgaris essential oil (EO) was investigated on Alternaria alternata strain BNR; a paper biodeteriogen was used as a model for a contaminated library. The influence of EO volume and diffusion modality, treatment duration, and [...] Read more.
In the present work, the antimicrobial efficacy of Thymus vulgaris essential oil (EO) was investigated on Alternaria alternata strain BNR; a paper biodeteriogen was used as a model for a contaminated library. The influence of EO volume and diffusion modality, treatment duration, and inoculum age was evaluated in the vapor phase. In Petri dish screening, the influence of different EO volumes (5, 7.5, and 10 μL) on the microbial growth lag phase was investigated, and the growth inhibition period was established. The most effective treatment (10 μL EO) was then scaled up in a glass airtight container of 2650 cm3; a cold diffusion method was applied in order to quickly reach the maximum concentration of active compounds in the vapor phase. These tests demonstrated that EO efficacy is affected by the inoculum age and the contact time, and that the treatment should be performed as early as is feasible. A mycostatic effect was confirmed to be proportional to the utilized EO volume and independent from the treatment method. The information obtained in the present work will be applied to the set-up of an EO treatment in a library characterized by different levels of air contamination. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

14 pages, 1354 KiB  
Article
Layered Structures Based on Ga2O3/GaS0.98Se0.02 for Gas Sensor Applications
by Veaceslav Sprincean, Mihail Caraman, Tudor Braniste and Ion Tiginyanu
Surfaces 2025, 8(3), 53; https://doi.org/10.3390/surfaces8030053 - 28 Jul 2025
Viewed by 280
Abstract
Efficient detection of toxic and flammable vapors remains a major technological challenge, especially for environmental and industrial applications. This paper reports on the fabrication technology and gas-sensing properties of nanostructured Ga2O3/GaS0.98Se0.02. The β-Ga2O [...] Read more.
Efficient detection of toxic and flammable vapors remains a major technological challenge, especially for environmental and industrial applications. This paper reports on the fabrication technology and gas-sensing properties of nanostructured Ga2O3/GaS0.98Se0.02. The β-Ga2O3 nanowires/nanoribbons with inclusions of Ga2S3 and Ga2Se3 microcrystallites were obtained by thermal treatment of GaS0.98Se0.02 slabs in air enriched with water vapors. The microstructure, crystalline quality, and elemental composition of the obtained samples were investigated using electron microscopy, X-ray diffraction, and Raman spectroscopy. The obtained structures show promising results as active elements in gas sensor applications. Vapors of methanol (CH3OH), ethanol (C2H5OH), and acetone (CH3-CO-CH3) were successfully detected using the nanostructured samples. The electrical signal for gas detection was enhanced under UV light irradiation. The saturation time of the sensor depends on the intensity of the UV radiation beam. Full article
Show Figures

Figure 1

23 pages, 3632 KiB  
Article
Composite HPMC-Gelatin Films Loaded with Cameroonian and Manuka Honeys Show Antibacterial and Functional Wound Dressing Properties
by Joshua Boateng and Sana Khan
Gels 2025, 11(7), 557; https://doi.org/10.3390/gels11070557 - 19 Jul 2025
Viewed by 790
Abstract
Antimicrobial resistance in infected chronic wounds present significant risk of complications (e.g., amputations, fatalities). This research aimed to formulate honey-loaded hydrocolloid film comprising gelatin and HPMC, for potential treatment of infected chronic wounds. Honeys from different sources (Cameroonian and Manuka) were used as [...] Read more.
Antimicrobial resistance in infected chronic wounds present significant risk of complications (e.g., amputations, fatalities). This research aimed to formulate honey-loaded hydrocolloid film comprising gelatin and HPMC, for potential treatment of infected chronic wounds. Honeys from different sources (Cameroonian and Manuka) were used as the bioactive ingredients and their functional characteristics evaluated and compared. The formulated solvent cast films were functionally characterized for tensile, mucoadhesion and moisture handling properties. The morphology and physical characteristics of the films were also analyzed using FTIR, X-ray diffraction and scanning electron microscopy. Antibacterial susceptibility testing was performed to study the inhibition of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus by honey components released from the films. The % elongation values (8.42–40.47%) increased, elastic modulus (30.74–0.62 Nmm) decreased, the stickiness (mucoadhesion) (0.9–1.9 N) increased, equilibrium water content (32.9–72.0%) and water vapor transmission rate (900–298 gm2 day−1) generally decreased, while zones of inhibition (2.4–6.5 mm) increased with increasing honey concentration for 1 and 5% w/v, respectively. The results generally showed similar performance for the different honeys and demonstrate the efficacy of honey-loaded hydrocolloid films as potential wound dressing against bacterial growth and potential treatment of infected chronic wounds. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Pharmaceutical Applications of Gels)
Show Figures

Graphical abstract

31 pages, 7931 KiB  
Article
Enhanced Pool Boiling via Binder-Jetting 3D-Printed Porous Copper Structures: CHF and HTC Investigation
by Lilian Aketch Okwiri, Takeshi Mochizuki, Kairi Koito, Noriaki Fukui and Koji Enoki
Appl. Sci. 2025, 15(14), 7892; https://doi.org/10.3390/app15147892 - 15 Jul 2025
Viewed by 277
Abstract
The escalating heat flux densities in high-performance electronics necessitate superior thermal management. This study enhanced pool-boiling heat transfer, a method offering high heat removal capacity, by leveraging Binder Jetting 3D Printing (BJ3DP) to create complex porous copper structures without the need for chemical [...] Read more.
The escalating heat flux densities in high-performance electronics necessitate superior thermal management. This study enhanced pool-boiling heat transfer, a method offering high heat removal capacity, by leveraging Binder Jetting 3D Printing (BJ3DP) to create complex porous copper structures without the need for chemical treatments. This approach enables a reliable utilization of phenomena like capillarity for improved performance. Three types of porous copper structures, namely Large Lattice, Small Lattice, and Staggered, were fabricated on pure copper substrates and tested via pool boiling of de-ionized and de-gassed water at atmospheric pressure. Compared to a plain polished copper surface, which exhibited a critical heat flux (CHF) of 782 kW/m2 at a wall superheat of 18 K, the 3D-printed porous copper surfaces showed significantly improved heat transfer performance. The Staggered surface achieved a conventional CHF of 2342.4 kW/m2 (a 199.7% enhancement) at a wall superheat of 24.6 K. Notably, the Large Lattice and Small Lattice structures demonstrated exceptionally stable boiling without reaching the typical catastrophic CHF within the experimental parameters. These geometries continued to increase in heat flux, reaching maximums of 2397.7 kW/m2 (206.8% higher at a wall superheat of 55.6 K) and 2577.2 kW/m2 (229.7% higher at a wall superheat of 39.5 K), respectively. Subsequently, a gradual decline in heat flux was observed with an increasing wall superheat, demonstrating an outstanding resistance to the boiling crisis. These improvements are attributed to the formation of distinct vapor–liquid pathways within the porous structures, which promotes the efficient rewetting of the heated surface through capillary action. This mechanism supports a highly efficient, self-sustaining boiling configuration, emphasizing the superior rewetting and vapor management capabilities of these 3D-printed porous structures, which extend the boundaries of sustained high heat flux performance. The porous surfaces also demonstrated a higher heat transfer coefficient (HTC), particularly at lower heat fluxes (≤750 kW/m2). High-speed digital camera visualization provided further insight into the boiling phenomenon. Overall, the findings demonstrate that these BJ3DP structured surfaces produce optimized vapor–liquid pathways and capillary-enhanced rewetting, offering significantly superior heat transfer performance compared to smooth surfaces and highlighting their potential for advanced thermal management. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

20 pages, 2421 KiB  
Article
Mitigation of Water-Deficit Stress in Soybean by Seaweed Extract: The Integrated Approaches of UAV-Based Remote Sensing and a Field Trial
by Md. Raihanul Islam, Hasan Muhammad Abdullah, Md Farhadur Rahman, Mahfuzul Islam, Abdul Kaium Tuhin, Md Ashiquzzaman, Kh Shakibul Islam and Daniel Geisseler
Drones 2025, 9(7), 487; https://doi.org/10.3390/drones9070487 - 10 Jul 2025
Viewed by 427
Abstract
In recent years, global agriculture has encountered several challenges exacerbated by the effects of changes in climate, such as extreme water shortages for irrigation and heat waves. Water-deficit stress adversely affects the morpho-physiology of numerous crops, including soybean (Glycine max L.), which [...] Read more.
In recent years, global agriculture has encountered several challenges exacerbated by the effects of changes in climate, such as extreme water shortages for irrigation and heat waves. Water-deficit stress adversely affects the morpho-physiology of numerous crops, including soybean (Glycine max L.), which is considered as promising crop in Bangladesh. Seaweed extract (SWE) has the potential to improve crop yield and alleviate the adverse effects of water-deficit stress. Remote and proximal sensing are also extensively utilized in estimating morpho-physiological traits owing to their cost-efficiency and non-destructive characteristics. The study was carried out to evaluate soybean morpho-physiological traits under the application of water extracts of Gracilaria tenuistipitata var. liui (red seaweed) with two varying irrigation water conditions (100% of total crop water requirement (TCWR) and 70% of TCWR). Principal component analysis (PCA) revealed that among the four treatments, the 70% irrigation + 5% (v/v) SWE and the 100% irrigation treatments overlapped, indicating that the application of SWE effectively mitigated water-deficit stress in soybeans. This result demonstrates that the foliar application of 5% SWE enabled soybeans to achieve morpho-physiological performance comparable to that of fully irrigated plants while reducing irrigation water use by 30%. Based on Pearson’s correlation matrix, a simple linear regression model was used to ascertain the relationship between unmanned aerial vehicle (UAV)-derived vegetation indices and the field-measured physiological characteristics of soybean. The Normalized Difference Red Edge (NDRE) strongly correlated with stomatal conductance (R2 = 0.76), photosystem II efficiency (R2 = 0.78), maximum fluorescence (R2 = 0.64), and apparent transpiration rate (R2 = 0.69). The Soil Adjusted Vegetation Index (SAVI) had the highest correlation with leaf relative water content (R2 = 0.87), the Blue Normalized Difference Vegetation Index (bNDVI) with steady-state fluorescence (R2 = 0.56) and vapor pressure deficit (R2 = 0.74), and the Green Normalized Difference Vegetation Index (gNDVI) with chlorophyll content (R2 = 0.73). Our results demonstrate how UAV and physiological data can be integrated to improve precision soybean farming and support sustainable soybean production under water-deficit stress. Full article
(This article belongs to the Special Issue Recent Advances in Crop Protection Using UAV and UGV)
Show Figures

Graphical abstract

45 pages, 1648 KiB  
Review
Tribological Performance Enhancement in FDM and SLA Additive Manufacturing: Materials, Mechanisms, Surface Engineering, and Hybrid Strategies—A Holistic Review
by Raja Subramani, Ronit Rosario Leon, Rajeswari Nageswaren, Maher Ali Rusho and Karthik Venkitaraman Shankar
Lubricants 2025, 13(7), 298; https://doi.org/10.3390/lubricants13070298 - 7 Jul 2025
Viewed by 863
Abstract
Additive Manufacturing (AM) techniques, such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), are increasingly adopted in various high-demand sectors, including the aerospace, biomedical engineering, and automotive industries, due to their design flexibility and material adaptability. However, the tribological performance and surface integrity [...] Read more.
Additive Manufacturing (AM) techniques, such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), are increasingly adopted in various high-demand sectors, including the aerospace, biomedical engineering, and automotive industries, due to their design flexibility and material adaptability. However, the tribological performance and surface integrity of parts manufactured by AM are the biggest functional deployment challenges, especially in wear susceptibility or load-carrying applications. The current review provides a comprehensive overview of the tribological challenges and surface engineering solutions inherent in FDM and SLA processes. The overview begins with a comparative overview of material systems, process mechanics, and failure modes, highlighting prevalent wear mechanisms, such as abrasion, adhesion, fatigue, and delamination. The effect of influential factors (layer thickness, raster direction, infill density, resin curing) on wear behavior and surface integrity is critically evaluated. Novel post-processing techniques, such as vapor smoothing, thermal annealing, laser polishing, and thin-film coating, are discussed for their potential to endow surface durability and reduce friction coefficients. Hybrid manufacturing potential, where subtractive operations (e.g., rolling, peening) are integrated with AM, is highlighted as a path to functionally graded, high-performance surfaces. Further, the review highlights the growing use of finite element modeling, digital twins, and machine learning algorithms for predictive control of tribological performance at AM parts. Through material-level innovations, process optimization, and surface treatment techniques integration, the article provides actionable guidelines for researchers and engineers aiming at performance improvement of FDM and SLA-manufactured parts. Future directions, such as smart tribological, sustainable materials, and AI-based process design, are highlighted to drive the transition of AM from prototyping to end-use applications in high-demand industries. Full article
(This article belongs to the Special Issue Wear and Friction in Hybrid and Additive Manufacturing Processes)
Show Figures

Figure 1

19 pages, 1240 KiB  
Article
Extending the Recovery Ratio of Brackish Water Desalination to Zero Liquid Discharge (>95%) Through Combination of Nanofiltration, 2-Stage Reverse-Osmosis, Silica Precipitation, and Mechanical Vapor Recompression
by Paz Nativ, Raz Ben-Asher, Yaron Aviezer and Ori Lahav
ChemEngineering 2025, 9(4), 70; https://doi.org/10.3390/chemengineering9040070 - 3 Jul 2025
Viewed by 459
Abstract
Extending the recovery ratio (RR) of brackish water reverse osmosis (RO) plants to zero liquid discharge (ZLD, i.e., ≥95%) is vital, particularly inland, where the cost of safe retentate disposal is substantial. Various suggestions appear in the literature; however, many of these are [...] Read more.
Extending the recovery ratio (RR) of brackish water reverse osmosis (RO) plants to zero liquid discharge (ZLD, i.e., ≥95%) is vital, particularly inland, where the cost of safe retentate disposal is substantial. Various suggestions appear in the literature; however, many of these are impractical in the real world. Often, the limiting parameter that determines the maximal recovery is the SiO2 concentration that develops in the RO retentate and the need to further desalinate the high osmotic pressure retentates produced in the process. This work combines well-proven treatment schemes to attain RR ≥ 95% at a realistic cost. The raw brackish water undergoes first a 94% recovery nanofiltration (NF) step, whose permeate undergoes a further 88-RR RO step. To increase the overall RR, the retentate of the 1st RO step undergoes SiO2 removal performed via iron electro-dissolution and then a 2nd, 43% recovery, RO pass. The retentate of this step is combined with the NF retentate, and the mix is treated with mechanical vapor recompression (MVR) (RR = 62.7%). The results show that >95% recovery can be attained by the suggested process at an overall cost of ~USD 0.70/m3. This is ~60% higher than the USD 0.44/m3 calculated for the baseline operation (RR = 82.7%), making the concept feasible when either the increase in the plant’s capacity is regulatorily requested, or when the available retentate discharge method is very costly. The cost assessment accuracy was approximated at >80%. Full article
Show Figures

Figure 1

17 pages, 1778 KiB  
Article
Stomatal–Hydraulic Coordination Mechanisms of Wheat in Response to Atmospheric–Soil Drought and Rewatering
by Lijuan Wang, Yanqun Zhang, Hao Li, Xinlong Hu, Pancen Feng, Yan Mo and Shihong Gong
Agriculture 2025, 15(13), 1375; https://doi.org/10.3390/agriculture15131375 - 27 Jun 2025
Viewed by 338
Abstract
Drought stress severely limits agricultural productivity, with atmospheric and soil water deficits often occurring simultaneously in field conditions. While plant responses to individual drought factors are well-documented, recovery mechanisms following combined atmospheric–soil drought remain poorly understood, hindering drought resistance strategies and irrigation optimization. [...] Read more.
Drought stress severely limits agricultural productivity, with atmospheric and soil water deficits often occurring simultaneously in field conditions. While plant responses to individual drought factors are well-documented, recovery mechanisms following combined atmospheric–soil drought remain poorly understood, hindering drought resistance strategies and irrigation optimization. We set up two VPD treatments (low and high vapor pressure deficit) and two soil moisture treatments (CK: control soil moisture with sufficient irrigation, 85–95% field capacity; drought: soil moisture with deficit irrigation, 50–60% field capacity) in the pot experiment. We investigated wheat’s hydraulic transport (leaf hydraulic conductance, Kleaf) and gas exchange (stomatal conductance, gs; photosynthetic rate, An) responses to combined drought stress from atmospheric and soil conditions at the heading stage, as well as rewatering 55 days after treatment initiation. The results revealed that: (1) high VPD and soil drought significantly reduced leaf hydraulic conductance (Kleaf), with a high VPD decreasing Kleaf by 31.6% and soil drought reducing Kleaf by 33.2%; The high VPD decreased stomatal conductance (gs) by 43.6% but the photosynthetic rate (An) by only 12.3%; (2) After rewatering, gs and An of atmospheric and soil drought recovered relatively rapidly, while Kleaf did not; (3) Atmospheric and soil drought stress led to adaptive changes in wheat’s stomatal regulation strategies, with an increasing severity of drought stress characterized by a shift from non-conservative to conservative water regulation behavior. These findings elucidate wheat’s hydraulic–stomatal coordination mechanisms under drought stress and their differential recovery patterns, providing theoretical foundation for improved irrigation management practices. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

21 pages, 4098 KiB  
Article
Gas Sensor Properties of (CuO/WO3)-CuWO4 Heterostructured Nanocomposite Materials
by Michael Castaneda Mendoza, Carlos A. Parra Vargas, Miryam Rincón Joya, Adenilson J. Chiquito and Angela M. Raba-Páez
Materials 2025, 18(12), 2896; https://doi.org/10.3390/ma18122896 - 18 Jun 2025
Viewed by 490
Abstract
In this work, we report the evaluation of a (CuO/WO3)-CuWO4 heterostructured system as a methanol and acetone gas sensor in different configurations, contrasted with the pure oxides CuO and WO3. The samples were synthesized using a modified precipitation [...] Read more.
In this work, we report the evaluation of a (CuO/WO3)-CuWO4 heterostructured system as a methanol and acetone gas sensor in different configurations, contrasted with the pure oxides CuO and WO3. The samples were synthesized using a modified precipitation route followed by a single thermal treatment step to induce multiphase simultaneous crystallization. The structural characterization by XRD showed that all the materials presented the formation of monoclinic CuO and WO3 and triclinic CuWO4. No additional phases were detected in the samples, and a reduction in the crystallite size of the CuO phase after the crystallization in the heterostructured system was observed. FE-SEM analysis made it possible to directly observe the morphology and the structures of the samples at the nanometer scale, showing a heterogeneous grain formation and supporting the formation of a heterostructure. UV-Vis DRS was used to study the optical properties of the materials, and the presence of two optical band gaps was successfully determined, which provides further evidence of heterostructure formation via this modified synthesis route. The variation in the resistance of the materials was observed in the presence of methanol and acetone vapors, where the heterostructure exhibited a substantial change in performance in the configuration with 40% copper precursor (Cu40:W60), the sample that presented the highest response as a sensor against these VOCs. To our knowledge, this is the first time that this system has been reported as a gas sensor, using the multiple configurations of the (CuO/WO3)-CuWO4 heterostructured system. Full article
Show Figures

Figure 1

20 pages, 2709 KiB  
Article
Study on the Characteristics of High-Temperature and High-Pressure Spray Flash Evaporation for Zero-Liquid Discharge of Desulfurization Wastewater
by Lanshui Zhang and Zhong Liu
Energies 2025, 18(12), 3180; https://doi.org/10.3390/en18123180 - 17 Jun 2025
Viewed by 312
Abstract
Zero-liquid discharge (ZLD) of desulfurization wastewater from coal-fired power plants is a critical challenge in the thermal power industry. Flash evaporation technology provides an efficient method for wastewater concentration and the recovery of high-quality freshwater resources. In this study, numerical simulations of the [...] Read more.
Zero-liquid discharge (ZLD) of desulfurization wastewater from coal-fired power plants is a critical challenge in the thermal power industry. Flash evaporation technology provides an efficient method for wastewater concentration and the recovery of high-quality freshwater resources. In this study, numerical simulations of the high-temperature and high-pressure spray flash evaporation process within a flash tank were conducted using the Discrete Phase Model (DPM) and a self-developed heat and mass transfer model for superheated droplets under depressurization conditions. The effects of feedwater temperature, pressure, nozzle spray angle, and mass flow rate on spray flash evaporation characteristics were systematically analyzed. Key findings reveal that (1) feedwater temperature is the dominant factor, with the vaporization rate significantly increasing from 19.78% to 55.88% as temperature rises from 240 °C to 360 °C; (2) higher pressure reduces equilibrium time (flash evaporation is complete within 6 ms) but shows negligible impact on final vaporization efficiency (stabilized at 33.93%); (3) increasing the spray angle provides limited improvement to water recovery efficiency (<1%); (4) an optimal mass flow rate exists (0.2 t/h), achieving a peak vaporization rate of 42.6% due to balanced evaporation space utilization. This work provides valuable insights for industrial applications in desulfurization wastewater treatment. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

26 pages, 4725 KiB  
Review
Hybrid Surface Treatment Technologies Based on the Electrospark Alloying Method: A Review
by Oksana Haponova, Viacheslav Tarelnyk, Tomasz Mościcki and Nataliia Tarelnyk
Coatings 2025, 15(6), 721; https://doi.org/10.3390/coatings15060721 - 16 Jun 2025
Viewed by 605
Abstract
Technologies for functional coatings are evolving rapidly, with electrospark alloying (ESA) emerging as a promising method for surface modification due to its efficiency and localized impact. This review analyzes the fundamental principles of ESA and the effects of process parameters on coating characteristics [...] Read more.
Technologies for functional coatings are evolving rapidly, with electrospark alloying (ESA) emerging as a promising method for surface modification due to its efficiency and localized impact. This review analyzes the fundamental principles of ESA and the effects of process parameters on coating characteristics and highlights its advantages and limitations. Particular attention is given to hybrid ESA-based technologies, including combinations with laser treatment, plastic deformation, vapor deposition, and polymer-metal overlays. These hybrid methods significantly improve coating quality by enhancing hardness, adhesion, and structural integrity and reducing roughness and defects. However, the multi-parameter nature of these processes presents optimization challenges. This review identifies knowledge gaps related to process reproducibility, control of microstructure formation, and long-term performance under service conditions. Recent breakthroughs in combining ESA with high-energy surface treatments are discussed. Future research should focus on systematic parameter optimization, in situ diagnostics, and predictive modeling to enable the design of application-specific hybrid coatings. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

16 pages, 2588 KiB  
Article
Removal of a Mixture of Pollutants in Air Using a Pilot-Scale Planar Reactor: Competition Effect on Mineralization
by Ahmed Amin Touazi, Mabrouk Abidi, Nacer Belkessa, Mohamed-Aziz Hajjaji, Walid Elfalleh and Amine Aymen Assadi
Catalysts 2025, 15(6), 595; https://doi.org/10.3390/catal15060595 - 16 Jun 2025
Viewed by 394
Abstract
This study investigated the remediation of organic acid pollutants, specifically butyric acid (C4H8O) and valeric acid (C5H10O2), as well as their binary mixtures in the vapor phase at various ratios. The remediation process [...] Read more.
This study investigated the remediation of organic acid pollutants, specifically butyric acid (C4H8O) and valeric acid (C5H10O2), as well as their binary mixtures in the vapor phase at various ratios. The remediation process involved the use of a continuous pilot-scale reactor. A TiO2 catalyst was deposited on glass fiber tissue (GFT) and ultraviolet (UV) irradiation with an intensity of 20 W/m2. The main objective of this study was to assess the effectiveness of the photocatalytic process by oxidizing and mineralizing a mixture of carboxylic acids in a rectangular reactor at pilot scale. This was achieved by calculating the removal efficiency and the selectivity of CO2 (SCO2). Each individual compound was treated separately, followed by the treatment of binary mixtures with molar fractions of 0.25, 0.5, and 0.75. The concentration of pollutants at the inlet varied between 50, 100, 150, and 200 mg/m3, while the flowrate ranged from 2 to 6 m3/h. The obtained results for the removal efficiency of butyric acid, the binary acid mixture (25% butyric acid + 75% valeric acid), and valeric acid were satisfactory, with percentages of 58%, 32%, and 41%, respectively. It is evident that the selectivity toward CO2 is better for butyric acid compared to valeric acid and the binary carboxylic acid mixture, with values of 43.70%, 33.49%, and 21.96%, respectively, across all concentrations. A simulation model based on mass transfer and catalytic oxidation mechanisms was developed and successfully validated against the experimental data for each pollutant. Reusability tests conducted on the TiO2 on GFT, both in its initial (clean) state and after 50 h of the photocatalytic treatment of butyric acid, showed a 15% decrease in photocatalytic efficiency. Full article
Show Figures

Figure 1

20 pages, 2167 KiB  
Review
To Rezūm or Not to Rezūm: A Narrative Review of Water Vapor Thermal Therapy for Benign Prostatic Hyperplasia
by Aris Kaltsas, Ilias Giannakodimos, Evangelos N. Symeonidis, Dimitrios Deligiannis, Marios Stavropoulos, Asterios Symeonidis, Konstantinos Adamos, Zisis Kratiras, Andreas Andreou and Michael Chrisofos
J. Clin. Med. 2025, 14(12), 4254; https://doi.org/10.3390/jcm14124254 - 15 Jun 2025
Viewed by 1525
Abstract
Background/Objectives: Benign prostatic hyperplasia (BPH) is a common urological condition that can significantly impair quality of life in aging men by causing lower urinary tract symptoms (LUTS), including nocturia, weak stream, and incomplete emptying. While pharmacotherapy and surgical approaches such as transurethral [...] Read more.
Background/Objectives: Benign prostatic hyperplasia (BPH) is a common urological condition that can significantly impair quality of life in aging men by causing lower urinary tract symptoms (LUTS), including nocturia, weak stream, and incomplete emptying. While pharmacotherapy and surgical approaches such as transurethral resection of the prostate (TURP) remain cornerstone treatments, minimally invasive surgical therapies (MISTs) have emerged to bridge the gap between long-term medication use and invasive surgery. This narrative review assesses Rezūm therapy (water vapor thermal therapy, WVTT) by examining its mechanism of action, clinical efficacy, safety profile, and place in the BPH treatment algorithm. Methods: This narrative review synthesizes evidence from randomized controlled trials (RCTs), prospective studies, real-world cohorts, and published systematic reviews with meta-analyses to provide a comprehensive evaluation of Rezūm therapy for BPH. Key outcomes assessed include changes in International Prostate Symptom Score (IPSS), urinary flow rates, retreatment rates, adverse events, and sexual function preservation. Results: Across multiple studies, Rezūm significantly reduces IPSS (typically by ≥50%) and increases peak urinary flow by 4–5 mL/s. These improvements are durable, with five-year follow-up data showing low retreatment rates of approximately 4–5% and sustained symptom relief. The procedure, performed under local or minimal anesthesia, has a favorable safety profile: most adverse events are mild or transient, and notable complications, such as bleeding requiring transfusion or persistent sexual dysfunction, are rare. Importantly, Rezūm preserves both erectile and ejaculatory function in most patients, setting it apart from many traditional surgical interventions associated with higher sexual side effect rates. Conclusions: Rezūm is an effective and minimally invasive alternative for men with moderate prostatic enlargement who desire durable symptom improvement while avoiding the morbidity and sexual side effects associated with more invasive surgery. Future research should aim to further refine patient selection and assess long-term outcomes in broader populations. Full article
(This article belongs to the Special Issue Urologic Surgery: From Bench to Bedside)
Show Figures

Figure 1

Back to TopTop