Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (203)

Search Parameters:
Keywords = vane pump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3548 KiB  
Article
A Fault Diagnosis Framework for Waterjet Propulsion Pump Based on Supervised Autoencoder and Large Language Model
by Zhihao Liu, Haisong Xiao, Tong Zhang and Gangqiang Li
Machines 2025, 13(8), 698; https://doi.org/10.3390/machines13080698 - 7 Aug 2025
Abstract
The ship waterjet propulsion system is a crucial power unit for high-performance vessels, and the operational state of its core component, the waterjet pump, is directly related to navigation safety and mission reliability. To enhance the intelligence and accuracy of pump fault diagnosis, [...] Read more.
The ship waterjet propulsion system is a crucial power unit for high-performance vessels, and the operational state of its core component, the waterjet pump, is directly related to navigation safety and mission reliability. To enhance the intelligence and accuracy of pump fault diagnosis, this paper proposes a novel diagnostic framework that integrates a supervised autoencoder (SAE) with a large language model (LLM). This framework first employs an SAE to perform task-oriented feature learning on raw vibration signals collected from the pump’s guide vane casing. By jointly optimizing reconstruction and classification losses, the SAE extracts deep features that both represent the original signal information and exhibit high discriminability for different fault classes. Subsequently, the extracted feature vectors are converted into text sequences and fed into an LLM. Leveraging the powerful sequential information processing and generalization capabilities of LLM, end-to-end fault classification is achieved through parameter-efficient fine-tuning. This approach aims to avoid the traditional dependence on manually extracted time-domain and frequency-domain features, instead guiding the feature extraction process via supervised learning to make it more task-specific. To validate the effectiveness of the proposed method, we compare it with a baseline approach that uses manually extracted features. In two experimental scenarios, direct diagnosis with full data and transfer diagnosis under limited-data, cross-condition settings, the proposed method significantly outperforms the baseline in diagnostic accuracy. It demonstrates excellent performance in automated feature extraction, diagnostic precision, and small-sample data adaptability, offering new insights for the application of large-model techniques in critical equipment health management. Full article
(This article belongs to the Special Issue Fault Diagnosis and Fault Tolerant Control in Mechanical System)
Show Figures

Figure 1

27 pages, 8070 KiB  
Article
Study on Solid-Liquid Two-Phase Flow and Wear Characteristics in Multistage Centrifugal Pumps Based on the Euler-Lagrange Approach
by Zhengyin Yang, Yandong Gu, Yingrui Zhang and Zhuoqing Yan
Water 2025, 17(15), 2271; https://doi.org/10.3390/w17152271 - 30 Jul 2025
Viewed by 257
Abstract
Multistage centrifugal pumps, owing to their high head characteristics, are commonly applied in domains like subsea resource exploitation and groundwater extraction. However, the wear of flow passage components caused by solid particles in the fluid severely threatens equipment lifespan and system safety. To [...] Read more.
Multistage centrifugal pumps, owing to their high head characteristics, are commonly applied in domains like subsea resource exploitation and groundwater extraction. However, the wear of flow passage components caused by solid particles in the fluid severely threatens equipment lifespan and system safety. To investigate the influence of solid-liquid two-phase flow on pump performance and wear, this study conducted numerical simulations of the solid-liquid two-phase flow within multistage centrifugal pumps based on the Euler–Lagrange approach and the Tabakoff wear model. The simulation results showed good agreement with experimental data. Under the design operating condition, compared to the clear water condition, the efficiency under the solid-liquid two-phase flow condition decreased by 1.64%, and the head coefficient decreased by 0.13. As the flow rate increases, particle momentum increases, the particle Stokes number increases, inertial forces are enhanced, and the coupling effect with the fluid weakens, leading to an increased impact intensity on flow passage components. This results in a gradual increase in the wear area of the impeller front shroud, back shroud, pressure side, and the peripheral casing. Under the same flow rate condition, when particles enter the pump chamber of a subsequent stage from a preceding stage, the fluid, after being rectified by the return guide vane, exhibits a more uniform flow pattern and reduced turbulence intensity. The particle Stokes number in the subsequent stage is smaller than that in the preceding stage, weakening inertial effects and enhancing the coupling effect with the fluid. This leads to a reduced impact intensity on flow passage components, resulting in a smaller wear area of these components in the subsequent stage compared to the preceding stage. This research offers critical theoretical foundations and practical guidelines for developing wear-resistant multistage centrifugal pumps in solid-liquid two-phase flow applications, with direct implications for extending service life and optimizing hydraulic performance. Full article
Show Figures

Figure 1

21 pages, 14506 KiB  
Article
Influence of Exit Setting Angle of Guide Vane on Bias Flow in Outlet Passage of Slanted Axial Flow Pump System
by Lei Xu, Longcan Chen, Bo Zhu, Hucheng Zhang, Tao Jiang, Hongfei Duan and Cheng Qian
J. Mar. Sci. Eng. 2025, 13(8), 1413; https://doi.org/10.3390/jmse13081413 - 24 Jul 2025
Viewed by 268
Abstract
A slanted axial-flow pump is extensively applied in coastal pumping stations; however, severe bias flow within the outlet passage will result in unstable operation and low efficiency of the slanted axial flow pump system. In order to mitigate bias flow in a slanted [...] Read more.
A slanted axial-flow pump is extensively applied in coastal pumping stations; however, severe bias flow within the outlet passage will result in unstable operation and low efficiency of the slanted axial flow pump system. In order to mitigate bias flow in a slanted axial-flow pump outlet passage, seven exit setting angle schemes of the guide vanes were designed. The influence mechanisms of the guide vane exit setting angle on internal flow characteristics, hydraulic loss, flow deviation coefficient, vortex evolution patterns, and pump system efficiency were systematically investigated. The results demonstrate that under design flow conditions, as the exit setting angle of the guide vane ranges from 90° to 105°, the flow field in the first half of the guide vane remains essentially the same. The low-velocity region at the guide vane outlet demonstrates initial contraction followed by gradual expansion with increasing stagger angles. Looking downstream within the flow passage from the left to the right, the hydraulic loss in the outlet passage goes up after an initial descending trend as the exit setting angle increases. When the exit setting angle is 97.5°, the bias coefficient of the outlet passage is 1.031. At this point, the vortex core distribution intensity within the outlet passage reaches a minimum, corresponding to the lowest recorded hydraulic loss of 0.230 m. Compared with the original guide vane scheme, the scheme with an angle set at 97.5° can improve the pump system efficiency of the slanted axial flow pump system, whether the flow is set at a design point or at a large point, and the pump system efficiency is increased by 2.3% under design flow conditions. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 2596 KiB  
Article
Startup Process of Pumped Storage Unit for Avoiding S-Shaped Region Based on Geometric Perspective Method
by Xiaohui Yuan, Kunjie Zhao and Yanhe Xu
Water 2025, 17(13), 1999; https://doi.org/10.3390/w17131999 - 3 Jul 2025
Viewed by 222
Abstract
This paper aims to study the mechanism of avoiding the S-shaped region (S-shaped region, SFR) during the startup of pumped storage units (pumped storage units, PSUs). Firstly, the state space model of the PSU in frequency mode is built using the transfer coefficient [...] Read more.
This paper aims to study the mechanism of avoiding the S-shaped region (S-shaped region, SFR) during the startup of pumped storage units (pumped storage units, PSUs). Firstly, the state space model of the PSU in frequency mode is built using the transfer coefficient of the pump turbine. Then, according to the characteristics of the SFR, the accurate range of the SFR is determined in the full characteristic curve. Finally, combined with a specific power station, this paper proposes a novel geometric perspective method to reveal the underlying mechanism for avoiding the SFR during the startup of PSUs. The core innovation lies in establishing, for the first time, the precise spatial relationship (positioning and distance) between the no-load operating point and the upper boundary of the SFR, thereby identifying two critical necessary and sufficient conditions for successful startup avoiding instability. Based on this mechanism, the critical state of PSUs entering the SFR and the influence of operation points on the startup stability that the PSU is putting into PID control are analyzed using the Hopf bifurcation principle. The results show that two conditions need to be met when the PSU starts up to avoid the SFR. One is that the system operation point is in the stable region, and the other is that the speed overshoot is less than the critical speed overshoot. The speed overshoot is the direct cause of the unit entering the SFR, leading to startup failure. When the PSU is started up and put into proportional–integral–derivative (proportional–integral–derivative, PID) control, a certain margin of flow and guide vane opening will help reduce the speed overshoot and prevent the unit from entering the SFR. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

21 pages, 12846 KiB  
Article
Analysis of the Energy Loss Mechanism in Hydraulic Turbines with Different Guide-Vane Numbers Based on Entropy Generation Theory
by Fengxia Shi, Denghui Zhang, Pengcheng Wang, Xiaohui Wang and Chong Feng
Processes 2025, 13(6), 1899; https://doi.org/10.3390/pr13061899 - 16 Jun 2025
Viewed by 438
Abstract
To explore the influence of guide vanes on the energy loss of hydraulic turbines, a pump characterized by a simple structure and convenient operation was selected as the research subject. Entropy generation theory was utilized to analyze entropy generation losses at different flow [...] Read more.
To explore the influence of guide vanes on the energy loss of hydraulic turbines, a pump characterized by a simple structure and convenient operation was selected as the research subject. Entropy generation theory was utilized to analyze entropy generation losses at different flow rates, with a particular emphasis on the mechanisms in the impeller and draft tube. The findings indicate that turbulent entropy production dominates energy dissipation. Under the best efficiency point (BEP), the total entropy generation loss of Z0 = 11 turbine was 7.18% and 5.76% lower than that of Z0 = 7 and Z0 = 9, respectively. The proportion of entropy generation loss in the impeller was highest under low-flow and optimal operating conditions, while the proportion of entropy generation loss in the draft tube was highest under high-flow conditions. In guide-vane-free turbines, the impeller’s high turbulent entropy generation rate was attributed to vortices and backflow caused by significant velocity gradients. For guide-vane-equipped turbines, high turbulent entropy generation rates arose from rotor–stator interactions and flow separation at blade inlets. Under high-flow-rate conditions, the entropy generation loss in the draft tube was significantly larger than that in other flow components, primarily due to vortices generated by excessive velocity circulation at the impeller outlet near the upstream draft tube flow passages, leading to high turbulent entropy generation rates. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

16 pages, 12973 KiB  
Article
Study of Inlet Vortex Behavior in Dual-Pump Systems and Its Influence on Pump Operational Instability
by Wei Song, Jilong Lin, Yonggang Lu, Yun Zhao and Zhengwei Wang
Water 2025, 17(12), 1784; https://doi.org/10.3390/w17121784 - 14 Jun 2025
Viewed by 486
Abstract
This study addresses inlet flow distribution and pressure pulsation-induced vibration in LNG dual-pump parallel systems. We investigate an LNG dual-submerged pump tower system. Our approach combines computational fluid dynamics with vortex dynamics theory. We examine inlet flow characteristics under different flow conditions. Pressure [...] Read more.
This study addresses inlet flow distribution and pressure pulsation-induced vibration in LNG dual-pump parallel systems. We investigate an LNG dual-submerged pump tower system. Our approach combines computational fluid dynamics with vortex dynamics theory. We examine inlet flow characteristics under different flow conditions. Pressure pulsation propagation patterns are analyzed. System stability mechanisms are investigated. A 3D model incorporates inducers, impellers, guide vanes, outlet sections, and base structures. The SST k-ω turbulence model and Q-criterion vortex identification reveal key features. Results show minimal head differences during parallel operation. The inlet flow field remains uniform without significant vortices. However, local low-velocity zones beneath the base may cause flow separation at low flows. Pressure pulsations are governed by guide vane rotor–stator interactions. These disturbances propagate backward to impellers and inducers. Outlet sections show asymmetric pressure fluctuations. This asymmetry results from spatial positioning differences. Complex base geometries generate low-intensity vortices. Vortex intensity stabilizes at higher flows. These findings provide theoretical foundations for vibration suppression. Full article
(This article belongs to the Special Issue Hydrodynamics Science Experiments and Simulations, 2nd Edition)
Show Figures

Figure 1

21 pages, 5400 KiB  
Article
Study on the Movement and Distribution Patterns of Sand Particles in a Vane-Type Multiphase Pump
by Chenwei Wang, Guangtai Shi, Yao Liu, Haigang Wen and Wenjuan Lv
J. Mar. Sci. Eng. 2025, 13(6), 1034; https://doi.org/10.3390/jmse13061034 - 24 May 2025
Viewed by 430
Abstract
In oilfield operations, produced fluids consist of complex mixtures including heavy oil, sand, and water. Variations in sand particle parameters and operational conditions can significantly impact the performance of multiphase pumps. To elucidate the movement patterns of sand particles within a vane-type multiphase [...] Read more.
In oilfield operations, produced fluids consist of complex mixtures including heavy oil, sand, and water. Variations in sand particle parameters and operational conditions can significantly impact the performance of multiphase pumps. To elucidate the movement patterns of sand particles within a vane-type multiphase pump, this study employs the Discrete Phase Model (DPM) to investigate the effects of different sand particle parameters and operational conditions on the internal flow characteristics. The study found that: sand particle diameter, flow rate, rotational speed, and oil content significantly influence the trajectories of the solid–liquid two-phase flow, the motion characteristics of sand particles, and the vortices in the liquid flow field. As sand particle diameter increases, their radial and axial momentum first rise and then decline. Both radial and axial momentum are positively correlated with sand concentration. An increase in flow rate, higher rotational speed, and lower oil content all lead to greater fluctuations in the radial momentum curve of sand particles inside the impeller. Larger sand particles are predominantly distributed near the inlet, while smaller particles are more concentrated at the outlet. Higher sand concentrations and non-spherical particles increase particle distribution within the flow passages, with the guide vane channels exhibiting the most pronounced accumulation—reaching a maximum concentration of 6260 kg/m3 due to elevated sand loading. Increasing flow rate, rotational speed, or oil content significantly reduces sand concentration in the flow channel, promoting more efficient particle transport. Conversely, lower inlet sand concentration, non-spherical particles, reduced flow rate, decreased rotational speed, and higher oil content all result in fewer large particles in the flow passage. The findings provide important guidance for improving the wear resistance of vane-type multiphase pumps. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 4561 KiB  
Article
Noise and Vibration Analysis of Electric Oil Pump with Asymmetric Pitch Control for Gearbox in Hybrid and Battery Electric Vehicle
by Chinchul Choi
Appl. Sci. 2025, 15(10), 5779; https://doi.org/10.3390/app15105779 - 21 May 2025
Viewed by 449
Abstract
This study proposes an asymmetric pitch control technique for electric oil pumps with symmetric gear-type pumps in order to reduce noise and vibration. For vane pump noise reduction, mechanical asymmetric pitch arrangements of each vane are widely used. However, the mechanical asymmetric pitch [...] Read more.
This study proposes an asymmetric pitch control technique for electric oil pumps with symmetric gear-type pumps in order to reduce noise and vibration. For vane pump noise reduction, mechanical asymmetric pitch arrangements of each vane are widely used. However, the mechanical asymmetric pitch arrangement approach is not applicable in gear-type pumps due to structural limitations. The proposed asymmetric pitch control method provides similar effects to the mechanical asymmetric pitch arrangement by employing instantaneous motor torque controls for an electric oil pump with a gear-type pump. The magnitude of motor torque for each pump tooth is determined with an asymmetric pitch formula, which has been widely used for mechanical vane pumps in previous studies and patents. A formula for the shape of instantaneous motor torque is proposed for the analysis of pressure fluctuations of pumps, which is a combination of trigonometric and exponential functions. The calibration factors for the magnitude and shape can be adjusted according to the characteristics of a given pump. The experimental results for a 400 W electric pump show that the proposed method reduced and dispersed the noise peak by approximately 4 dB(A) in comparison with the normal control, and affected hydraulic performance with a less than 1% decrease in flow rate in not only pump-level but also gearbox-level test environments. Full article
(This article belongs to the Special Issue Noise Measurement, Acoustic Signal Processing and Noise Control)
Show Figures

Figure 1

17 pages, 9179 KiB  
Article
Effect of Guide Vane Opening on Flow Distortion and Impeller Stress in a Pump-Turbine Under Extremely Low-Head Conditions
by Xiangyu Chen, Qifei Li, Lu Xin, Shiang Zhang, Mingjie Cheng and Tianding Han
Energies 2025, 18(10), 2576; https://doi.org/10.3390/en18102576 - 16 May 2025
Viewed by 308
Abstract
Under extremely low-head conditions, the performance and stability of pump-turbine units are strongly influenced by the flow distortion caused by variations in guide vane opening. In this study, a pump-turbine model—representative of a domestic pumped storage power station—was investigated through a combination of [...] Read more.
Under extremely low-head conditions, the performance and stability of pump-turbine units are strongly influenced by the flow distortion caused by variations in guide vane opening. In this study, a pump-turbine model—representative of a domestic pumped storage power station—was investigated through a combination of experimental observations and three-dimensional unsteady numerical simulations employing the SST k-ω turbulence model. The analysis focused on characterizing the variations in turbulence kinetic energy, pressure pulsations, and impeller force fluctuations as the guide vane opening was altered. The results reveal that, with increasing guide vane opening, the turbulence kinetic energy within the impeller region is notably reduced. This reduction is primarily attributed to a decrease in energy losses along the suction surfaces of the blades and within the straight pipe section of the tailwater tunnel. Simultaneously, pressure pulsations were detected at multiple locations including the volute inlet, the blade-free zone, downstream of the conical pipe, and along the inner surface of the shaft tube. While most regions experienced a decline in pressure pulsation intensity with larger openings, the bladeless zone exhibited a significant increase. Moreover, force analysis at four distinct guide vane settings indicated that an opening of 41 mm resulted in relatively uniform fluctuations in the impeller forces. This uniformity suggests that an optimal guide vane configuration exists, which minimizes uneven stress distributions and enhances the operational stability of the pump-turbine under extremely low-head conditions. These findings offer valuable insights for the design and operational optimization of pump-turbine systems in pumped storage power stations. Full article
(This article belongs to the Special Issue Renewable Energy System Technologies: 2nd Edition)
Show Figures

Figure 1

20 pages, 7057 KiB  
Article
Research on Particle Motion Characteristics in a Spiral-Vane-Type Multiphase Pump Based on CFD-DEM
by Guangtai Shi, Xi Yang, Binyan Li, Hongqiang Chai and Hao Qin
J. Mar. Sci. Eng. 2025, 13(5), 845; https://doi.org/10.3390/jmse13050845 - 24 Apr 2025
Viewed by 488
Abstract
In oil–gas mixed transportation using spiral-vane-type multiphase pumps, high sand content often causes wear on flow-passing components. To reveal the motion patterns of particles, a three-stage spiral-vane-type multiphase pump was selected as the research subject. A visualization test bench was constructed, and the [...] Read more.
In oil–gas mixed transportation using spiral-vane-type multiphase pumps, high sand content often causes wear on flow-passing components. To reveal the motion patterns of particles, a three-stage spiral-vane-type multiphase pump was selected as the research subject. A visualization test bench was constructed, and the pump’s performance curve was obtained by experimental measurements. High-speed photography was used to capture the flow process of a single particle within the pump, and CFD-DEM was used to study the motion characteristics of four particle sizes (0.5 mm, 1 mm, 1.5 mm, and 2 mm). The results showed that 0.5 mm and 1 mm particles had smaller trajectory angles in the guide vanes, while 1.5 mm and 2 mm particles had larger angles, with wall collisions observed. Velocity changes were similar: When they just enter the impeller, the circumferential velocity increases sharply and then stabilizes around 15 m/s. After entering the guide vane passage, the circumferential velocity exhibits an initial abrupt decrease followed by a gradual reduction. The axial velocity increases gradually along the impeller passage, reaches the highest value at the impeller outlet, and begins to decrease gradually after entering the guide vane. The particles had higher volume fractions in the guide vane and collided more with impeller walls. Collisions with guide vane walls increased with particle size. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 2316 KiB  
Article
Failure Modes and Effect Analysis of Turbine Units of Pumped Hydro-Energy Storage Systems
by Georgi Todorov, Ivan Kralov, Konstantin Kamberov, Yavor Sofronov, Blagovest Zlatev and Evtim Zahariev
Energies 2025, 18(8), 1885; https://doi.org/10.3390/en18081885 - 8 Apr 2025
Viewed by 661
Abstract
In the present paper, the subject of investigation is the reliability assessment of the single-stage reversible Hydropower Unit No. 3 (HU3) in the Bulgarian Pumped Hydro-Electric Storage (PHES) plant “Chaira”, which processes the waters of the “Belmeken” dam and “Chaira” dam. Preceding the [...] Read more.
In the present paper, the subject of investigation is the reliability assessment of the single-stage reversible Hydropower Unit No. 3 (HU3) in the Bulgarian Pumped Hydro-Electric Storage (PHES) plant “Chaira”, which processes the waters of the “Belmeken” dam and “Chaira” dam. Preceding the destruction of HU4 and its virtual simulation, an analysis and its conclusions for rehabilitation and safety provided the information required for the reliability assessment of HU3. Detailed analysis of the consequences of the prolonged use of HU3 was carried out. The Supervisory Control and Data Acquisition (SCADA) system records were studied. Fault Tree Analysis (FTA) was applied to determine the component relationships and subsystem failures that can lead to an undesired primary event. A Failure Modes and Effect Analysis methodology was proposed for the large-scale hydraulic units and PHES. Based on the data of the virtual simulation and the investigations of the HU4 and its damages, as well as on the failures in the stay vanes of HU3, it is recommended to organize the monitoring of crucial elements of the structure and of water ingress into the drainage holes, which will allow for detecting failures in a timely manner. Full article
(This article belongs to the Special Issue Optimization Design and Simulation Analysis of Hydraulic Turbine)
Show Figures

Figure 1

19 pages, 16839 KiB  
Article
Study on the Unsteady Pressure Fluctuations and Radial Forces in a Vaned-Diffuser Heavy-Liquid-Metal Centrifugal Pump
by Xudan Ma, Hui Sheng, Chenyang Wang, Yao Lu and Kefeng Lyu
Energies 2025, 18(7), 1698; https://doi.org/10.3390/en18071698 - 28 Mar 2025
Viewed by 372
Abstract
Lead–Bismuth Eutectic (LBE) is a very dense medium whose specific gravity is more than 10 times that of water. The unsteady hydraulic exciting force generated by the rotor–stator interaction (RSI) is significantly increased in the LBE pump, which has an important influence on [...] Read more.
Lead–Bismuth Eutectic (LBE) is a very dense medium whose specific gravity is more than 10 times that of water. The unsteady hydraulic exciting force generated by the rotor–stator interaction (RSI) is significantly increased in the LBE pump, which has an important influence on the stable operation of the pump. The clearance between the vaned diffuser inlet and the impeller outlet has great influence on the rotor–stator interaction. This paper studies the unsteady flow characteristics in pumps with different rotor–stator clearance in different flow rates and transported mediums. The results show that at the design point, the head and efficiency of the pump when transporting LBE are 3.52% and 8.05% higher than those when transporting water. The pressure fluctuation distribution is similar at different positions inside the pump when transporting LBE and water, but the dimensionless pressure fluctuation coefficient is slightly larger when transporting water. The radial force in the pump shows a larger amplitude of 6BPF frequency with small clearance ratios, and the frequency is related to the guide vane number. When the clearance ratio increases from 1.03 to 1.13, the amplitude of 6BPF keeps decreasing. The amplitude at a clearance ratio of 1.13 decreased to 4.7% of that at 1.03. The research presented in this paper could provide some references for the design of the clearance between the rotor–stator parts in the LBE pump. Full article
Show Figures

Figure 1

16 pages, 6873 KiB  
Article
Size Effect on Energy Characteristics of Axial Flow Pump Based on Entropy Production Theory
by Hongliang Wang, Xiaofeng Wu, Xiao Xu, Suhao Bian and Fan Meng
Machines 2025, 13(3), 252; https://doi.org/10.3390/machines13030252 - 20 Mar 2025
Viewed by 480
Abstract
To investigate the size effect on the energy characteristics of axial flow pumps, this study scaled the original model size based on the head similarity principle, resulting in four size schemes (Schemes 2–4 correspond to 3, 5, and 10 times the size of [...] Read more.
To investigate the size effect on the energy characteristics of axial flow pumps, this study scaled the original model size based on the head similarity principle, resulting in four size schemes (Schemes 2–4 correspond to 3, 5, and 10 times the size of Scheme 1, respectively). By solving the unsteady Reynolds-averaged Navier–Stokes (URANS) equations with the Shear Stress Transport (SST) k-omega turbulence model, the external characteristic parameters and internal flow field structures were predicted. Additionally, the spatial distribution of internal hydraulic losses was analyzed using entropy generation theory. The results revealed three key findings: (1) the efficiency of axial flow pumps significantly improves with increasing size ratio, with Scheme 4 exhibiting a 6.1% efficiency increase compared to Scheme 1; (2) as the size ratio increases, the entropy production coefficients of all hydraulic components decrease, with the impeller and guide vanes in Scheme 4 showing reductions of 55.1% and 56.5%, respectively, compared to Scheme 1; (3) the high entropy generation coefficient regions in the impeller and guide vanes are primarily concentrated near the rim, with their area decreasing as the size ratio increases. Specifically, the entropy production coefficients at the rim of impeller and guide vanes in Scheme 4 decreased by 84.85% and 58.2%, respectively, compared to Scheme 1. These findings provide valuable insights for the selection and optimization of axial flow pumps in applications such as cross-regional water transfer, agricultural irrigation, and urban drainage systems. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

24 pages, 21713 KiB  
Article
Numerical and Experimental Investigation of the Ultra-Low Head Bidirectional Shaft Extension Pump Under Near-Zero Head Conditions
by Fulin Zhang, Yuan Zheng, Gaohui Li and Jing Dai
Machines 2025, 13(3), 220; https://doi.org/10.3390/machines13030220 - 7 Mar 2025
Viewed by 436
Abstract
Theoretical analysis, numerical simulation, and experimental study are used to investigate the ultra-low head bidirectional shaft extension pump, especially near-zero head conditions. The results show that under forward operation, at low flow and design flow conditions, the closer to the shroud, the closer [...] Read more.
Theoretical analysis, numerical simulation, and experimental study are used to investigate the ultra-low head bidirectional shaft extension pump, especially near-zero head conditions. The results show that under forward operation, at low flow and design flow conditions, the closer to the shroud, the closer the vortex is to the back of the guide vanes, and the vortex area is becoming smaller. The hydraulic loss of the outlet passage is 15% of the operating head at the minimum flow and 170% of the operating head under near-zero head condition. The peak-to-peak (PTP) value of pressure fluctuation increases with the increase in flow rate. The primary frequency (PF) of vibration is strongly related to the primary and secondary frequencies (PSFs) of pressure fluctuation. Under reverse operation, when the flow rate is less than 0.83Qr0, the uniformity of axial velocity distribution Vu and the velocity-weighted average angle θ show an approximately exponential declining pattern. The hydraulic loss of the outlet passage at the minimum flow rate is 61% of the operating head and 350% of the operating head under near-zero head condition. The exponential fitting can better describe the relationship between circulation and hydraulic loss. As the flow rate decreases, the PF of vibration decreases to rotational frequency. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

17 pages, 10919 KiB  
Article
Influence of Impeller–Diffuser Side-Gap Flow with a Simplified Leakage Model on the Performance and Internal Flow of a Centrifugal Pump
by Hyeon-Seok Shim
Energies 2025, 18(5), 1278; https://doi.org/10.3390/en18051278 - 5 Mar 2025
Viewed by 914
Abstract
This study conducts a numerical analysis to understand the effect of flow through the impeller–diffuser side gap on the performance and internal flow of a centrifugal pump. Three-dimensional steady-state Reynolds-averaged Navier–Stokes simulations are performed, employing the shear stress transport turbulence model for turbulence [...] Read more.
This study conducts a numerical analysis to understand the effect of flow through the impeller–diffuser side gap on the performance and internal flow of a centrifugal pump. Three-dimensional steady-state Reynolds-averaged Navier–Stokes simulations are performed, employing the shear stress transport turbulence model for turbulence closure. To analyze the effects of side-gap flow on the main passage flow, a simplified fluid domain for the side gap is constructed and applied with a one-dimensional loss model for the leakage flow. The numerical results are validated with experimental data for performance curves and velocity components at the diffuser inlet. For a detailed analysis of the leakage flow, flow simulations are carried out for three cases: flow absence, inflow, and outflow (leakage) in the impeller–diffuser gap. Significant performance deviations are observed according to the flow direction in the gap, and the detailed fluid flow structures are examined to assess its impact on the performance. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

Back to TopTop