Cardiogenic Shock Due to Progressive Heart Failure—Clinical Characteristics and Outcomes Compared to Other Aetiologies
Abstract
1. Introduction
2. Objectives
3. Materials and Methods
3.1. General Characteristics of the Performed Study
3.2. Eligibility Criteria
- (1)
- PHF group—patients with CS resulting from progression of HF or progressive myocarditis.
- (2)
- non-PHF group—patients with CS of other aetiologies, including acute coronary syndromes (ACS), pulmonary embolism, or other causes.
3.3. Clinical and Laboratory Data Collection
3.4. In-Hospital Course and Interventions
3.5. Statistical Analysis
4. Results
4.1. General Characteristics
4.2. Laboratory Tests
4.3. Hospitalisation Characteristics
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blumer, V.; Hanff, T.C.; Gage, A.; Schrage, B.; Kanwar, M.K. Cardiogenic Shock Teams: Past, Present, and Future Directions. Circ. Heart Fail. 2025, 18, e011630. [Google Scholar] [CrossRef] [PubMed]
- Chioncel, O.; Parissis, J.; Mebazaa, A.; Thiele, H.; Desch, S.; Bauersachs, J.; Harjola, V.-P.; Antohi, E.-L.; Arrigo, M.; Ben Gal, T.; et al. Epidemiology, pathophysiology and contemporary management of cardiogenic shock—a position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2020, 22, 1315–1341. [Google Scholar] [CrossRef] [PubMed]
- Samsky, M.D.; Morrow, D.A.; Proudfoot, A.G.; Hochman, J.S.; Thiele, H.; Rao, S.V. Cardiogenic Shock After Acute Myocardial Infarction: A Review. JAMA 2021, 326, 1840–1850. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Vavilin, I.; Nguyen, A.H.; Batchelor, W.B.; Blumer, V.; Cilia, L.; Dewanjee, A.; Desai, M.; Desai, S.S.; Flanagan, M.C.; et al. Contemporary approach to cardiogenic shock care: A state-of-the-art review. Front. Cardiovasc. Med. 2024, 11, 1354158. [Google Scholar] [CrossRef]
- Chien, S.-C.; Wang, C.-A.; Liu, H.-Y.; Lin, C.-F.; Huang, C.-Y.; Chien, L.-N. Comparison of the prognosis among in-hospital survivors of cardiogenic shock based on etiology: AMI and Non-AMI. Ann. Intensive Care 2024, 14, 74. [Google Scholar] [CrossRef]
- García-García, C.; López-Sobrino, T.; Sanz-Girgas, E.; Cueto, M.R.; Aboal, J.; Pastor, P.; Buera, I.; Sionis, A.; Andrea, R.; Rodríguez-López, J.; et al. Cardiogenic shock mortality according to Aetiology in a Mediterranean cohort: Results from the Shock-CAT study. ESC Heart Fail. 2025, 12, 1336–1345. [Google Scholar] [CrossRef]
- Riccardi, M.; Pagnesi, M.; Chioncel, O.; Mebazaa, A.; Cotter, G.; Gustafsson, F.; Tomasoni, D.; Latronico, N.; Adamo, M.; Metra, M. Medical therapy of cardiogenic shock: Contemporary use of inotropes and vasopressors. Eur. J. Heart Fail. 2024, 26, 411–431. [Google Scholar] [CrossRef]
- Brener, M.I.; Rosenblum, H.R.; Burkhoff, D. Pathophysiology and Advanced Hemodynamic Assessment of Cardiogenic Shock. Methodist Debakey Cardiovasc. J. 2020, 16, 7–15. [Google Scholar] [CrossRef]
- Telukuntla, K.S.; Estep, J.D. Acute Mechanical Circulatory Support for Cardiogenic Shock. Methodist Debakey Cardiovasc. J. 2020, 16, 27–35. [Google Scholar] [CrossRef]
- Zhang, H.; Shah, A.; Ravandi, A. Cardiogenic shock-sex-specific risk factors and outcome differences. Can. J. Physiol. Pharmacol. 2024, 102, 530–537. [Google Scholar] [CrossRef]
- Takla, A.; Mostafa, M.R.; Eid, M.M.; Abuelazm, M.; Hassan, A.R.; Katamesh, B.; Mahmoud, A.; Abusnina, W.; Belal, M.; Ziada, A.R.; et al. Sex difference in outcomes and management of cardiogenic shock: A systematic review and meta-analysis. Curr. Probl. Cardiol. 2024, 49, 102777. [Google Scholar] [CrossRef]
- Sundermeyer, J.; Kellner, C.; Beer, B.N.; Besch, L.; Dettling, A.; Bertoldi, L.F.; Blankenberg, S.; Dauw, J.; Dindane, Z.; Eckner, D.; et al. Sex-related differences in patients presenting with heart failure–related cardiogenic shock. Clin. Res. Cardiol. 2024, 113, 612–625. [Google Scholar] [CrossRef]
- Ton, V.-K.; Kanwar, M.K.; Li, B.; Blumer, V.; Li, S.; Zweck, E.; Sinha, S.S.; Farr, M.; Hall, S.; Kataria, R.; et al. Impact of Female Sex on Cardiogenic Shock Outcomes: A Cardiogenic Shock Working Group Report. Heart Fail. 2023, 11, 1742–1753. [Google Scholar] [CrossRef]
- Daniels, L.B.; Phreaner, N.; Berg, D.D.; Bohula, E.A.; Chaudhry, S.-P.; Fordyce, C.B.; Goldfarb, M.J.; Katz, J.N.; Kenigsberg, B.B.; Lawler, P.R.; et al. Sex Differences in Characteristics, Resource Utilization, and Outcomes of Cardiogenic Shock: Data From the Critical Care Cardiology Trials Network (CCCTN) Registry. Circ. Cardiovasc. Qual. Outcomes 2024, 17, e010614. [Google Scholar] [CrossRef] [PubMed]
- Albert, C.L.; Carmona-Rubio, A.E.; Weiss, A.J.; Procop, G.G.; Starling, R.C.; Rodriguez, E.R. The Enemy Within: Sudden-Onset Reversible Cardiogenic Shock with Biopsy-Proven Cardiac Myocyte Infection by Severe Acute Respiratory Syndrome Coronavirus 2. Circulation 2020, 142, 1865–1870. [Google Scholar] [CrossRef] [PubMed]
- Urban, S.; Fułek, M.; Błaziak, M.; Iwanek, G.; Jura, M.; Fułek, K.; Guzik, M.; Garus, M.; Gajewski, P.; Lewandowski, Ł.; et al. COVID-19 Related Myocarditis in Adults: A Systematic Review of Case Reports. J. Clin. Med. 2022, 11, 5519. [Google Scholar] [CrossRef]
- Kobusiak-Prokopowicz, M.; Fułek, K.; Fułek, M.; Kaaz, K.; Mysiak, A.; Kurpas, D.; Beszłej, J.A.; Brzecka, A.; Leszek, J. Cardiovascular, Pulmonary, and Neuropsychiatric Short- and Long-Term Complications of COVID-19. Cells 2022, 11, 3882. [Google Scholar] [CrossRef]
- Gurin, M.I.; Lin, Y.J.; Bernard, S.; Goldberg, R.I.; Narula, N.; Faillace, R.T.; Alviar, C.L.; Bangalore, S.; Keller, N.M. Cardiogenic shock complicating multisystem inflammatory syndrome following COVID-19 infection: A case report. BMC Cardiovasc. Disord. 2021, 21, 522. [Google Scholar] [CrossRef]
- Abdelazeem, B.; Borcheni, M.; Alnaimat, S.; Mallikethi-Reddy, S.; Sulaiman, A. Persistent Cardiac Magnetic Resonance Imaging Features of Myocarditis Detected Months After COVID-19 Infection. Cureus 2021, 13, e14250. [Google Scholar] [CrossRef]
- Shakerian, B.; Mandegar, M.H. A fatal case of fulminant myocarditis after influenza infection with a rapidly progressive course: A case report. IDCases 2024, 36, e01986. [Google Scholar] [CrossRef]
- Damman, K.; Valente, M.A.E.; Voors, A.A.; O’Connor, C.M.; van Veldhuisen, D.J.; Hillege, H.L. Renal impairment, worsening renal function, and outcome in patients with heart failure: An updated meta-analysis. Eur. Heart J. 2013, 35, 455–469. [Google Scholar] [CrossRef]
- Smith, D.H.; Thorp, M.L.; Gurwitz, J.H.; McManus, D.D.; Goldberg, R.J.; Allen, L.A.; Hsu, G.; Sung, S.H.; Magid, D.J.; Go, A.S. Chronic Kidney Disease and Outcomes in Heart Failure With Preserved Versus Reduced Ejection Fraction. Circ. Cardiovasc. Qual. Outcomes 2013, 6, 333–342. [Google Scholar] [CrossRef]
- Schupp, T.; Abel, N.; Schmidberger, M.; Höpfner, M.K.; Schmitt, A.; Reinhardt, M.; Forner, J.; Lau, F.; Akin, M.; Rusnak, J.; et al. Prevalence and prognosis of aortic valve diseases in patients hospitalized with heart failure with mildly reduced ejection fraction. Eur. J. Heart Fail. 2024, 26, 1832–1846. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Lim, A.; Poh, S.L.; Hazirah, S.N.; Chua, C.J.H.; Sutamam, N.B.; Arkachaisri, T.; Yeo, J.G.; Kofidis, T.; Sorokin, V.; et al. Pro-Inflammatory Derangement of the Immuno-Interactome in Heart Failure. Front. Immunol. 2022, 13, 817514. [Google Scholar] [CrossRef] [PubMed]
- Marvasti, T.B.; Alibhai, F.J.; Yang, G.J.; Li, S.-H.; Wu, J.; Yau, T.; Li, R.-K. Heart Failure Impairs Bone Marrow Hematopoietic Stem Cell Function and Responses to Injury. J. Am. Heart Assoc. 2023, 12, e027727. [Google Scholar] [CrossRef] [PubMed]
- Dudda, J.; Schupp, T.; Rusnak, J.; Weidner, K.; Abumayyaleh, M.; Ruka, M.; Egner-Walter, S.; Forner, J.; Müller, J.; Bertsch, T.; et al. C-Reactive Protein and White Blood Cell Count in Cardiogenic Shock. J. Clin. Med. 2023, 12, 965. [Google Scholar] [CrossRef]
- Naidu, S.S.; Baran, D.A.; Jentzer, J.C.; Hollenberg, S.M.; van Diepen, S.; Basir, M.B.; Grines, C.L.; Diercks, D.B.; Hall, S.; Kapur, N.K.; et al. SCAI SHOCK Stage Classification Expert Consensus Update: A Review and Incorporation of Validation Studies: This statement was endorsed by the American College of Cardiology (ACC), American College of Emergency Physicians (ACEP), American Heart Association. J. Am. Coll. Cardiol. 2022, 79, 933–946. [Google Scholar] [CrossRef]
- Batsides, G.; Massaro, J.; Cheung, A.; Soltesz, E.; Ramzy, D.; Anderson, M.B. Outcomes of Impella 5.0 in Cardiogenic Shock: A Systematic Review and Meta-Analysis. Innovations 2018, 13, 254–260. [Google Scholar] [CrossRef]
- Stewart, G.C.; Givertz, M.M. Mechanical Circulatory Support for Advanced Heart Failure. Circulation 2012, 125, 1304–1315. [Google Scholar] [CrossRef]
- Obradovic, D.; Freund, A.; Feistritzer, H.-J.; Sulimov, D.; Loncar, G.; Abdel-Wahab, M.; Zeymer, U.; Desch, S.; Thiele, H. Temporary mechanical circulatory support in cardiogenic shock. Prog. Cardiovasc. Dis. 2021, 69, 35–46. [Google Scholar] [CrossRef]
- Pappalardo, F.; Schulte, C.; Pieri, M.; Schrage, B.; Contri, R.; Soeffker, G.; Greco, T.; Lembo, R.; Müllerleile, K.; Colombo, A.; et al. Concomitant implantation of Impella(®) on top of veno-arterial extracorporeal membrane oxygenation may improve survival of patients with cardiogenic shock. Eur. J. Heart Fail. 2017, 19, 404–412. [Google Scholar] [CrossRef]
- Thiele, H.; Ohman, E.M.; de Waha-Thiele, S.; Zeymer, U.; Desch, S. Management of cardiogenic shock complicating myocardial infarction: An update 2019. Eur. Heart J. 2019, 40, 2671–2683. [Google Scholar] [CrossRef]
Parameter | All Patients (n = 280) | Valid n | Group: PHF Count (n = 84) | Group: Non-PHF Count (n = 196) | p-Value |
---|---|---|---|---|---|
Age (IQR) | 69 (60–76) | 280 | 65 (49–74) | 69 (63–78) | <0.01 |
Sex, male (%) | 197 (70) | 280 | 68 (81) | 129 (66) | 0.01 |
BMI kg/m2 (IQR) | 26.8 (24–29.4) | 120 | 27.5 (23.5–29.4) | 26.4 (24.2–29.4) | 0.87 |
Body mass, kg (IQR) | 80 (69–86) | 134 | 81 (70–95) | 76 (68–85) | 0.14 |
Arterial hypertension, n (%) | 166 (59) | 280 | 44 (52) | 122 (62) | 0.12 |
DM, n (%) | 99 (35) | 280 | 33 (39) | 66 (34) | 0.37 |
CKD, n (%) | 55 (20) | 280 | 25 (30) | 30 (15) | <0.01 |
Hyperlipidaemia, n (%) | 65 (23) | 280 | 26 (31) | 39 (20) | 0.04 |
Active CA, n (%) | 14 (5) | 280 | 2 (2) | 12 (6) | 0.15 |
MI in past, n (%) | 79 (28) | 280 | 24 (29) | 55 (28) | 0.93 |
PCI in past, n (%) | 74 (26) | 280 | 26 (31) | 48 (24) | 0.26 |
CABG in past, n (%) | 15 (5) | 280 | 7 (8) | 8 (4) | 0.15 |
Significant Valve Disease, n (%) | 50 (18) | 280 | 25 (30) | 25 (13) | <0.01 |
Valve procedure, n (%) | 22 (8) | 280 | 9 (11) | 13 (7) | 0.24 |
PAD, n (%) | 36 (13) | 280 | 8 (10) | 28 (14) | 0.28 |
CIS, n (%) | 19 (7) | 280 | 7 (8) | 12 (6) | 0.50 |
CHS, n (%) | 1 (0) | 280 | 0 (0) | 1 (1) | 0.70 |
Alcohol Addiction, n (%) | 31 (11) | 280 | 12 (14) | 19 (10) | 0.26 |
Nicotinism in the past/now, n (%) | 106 (38) | 280 | 30 (36) | 76 (39) | 0.63 |
Parameter | All Patients (n = 280) | Valid n | Group: PHF Count (n = 84) | Group: Non-PHF Count (n = 196) | p-Value |
---|---|---|---|---|---|
Hb g/dL (SD) | 12.1 (2.16) | 258 | 12.3 (2.2) | 12 (2.2) | 0.31 |
Ht % (SD) | 36.7 (6.3) | 258 | 37.5 (6.4) | 36.4 (6.2) | 0.17 |
PLT × 109/L (IQR) | 205.5 (148–269) | 258 | 183 (130–299) | 208 (163–260) | 0.36 |
WBC × 109/L (IQR) | 12.2 (9–17.4) | 258 | 9.4 (6.9–16.4) | 13.3 (10.4–17.6) | <0.01 |
NT-proBNP pg/mL (IQR) | 7063 (2119–17,249) | 168 | 7883 (2881–15,390) | 6796 (1796–20,787) | 0.61 |
CRP mg/L (IQR) | 28 (7.4–86.3) | 216 | 21.9 (8.2–58.3) | 32.4 (5.7–97.4) | 0.47 |
Procalcitonin ng/mL (IQR) | 0.68 (0.1–2.8) | 69 | 0.2 (0.05–1) | 0.83 (0.1–3.18) | 0.15 |
Tn μg/L (IQR) | 3587 (189–34,438) | 187 | 188 (61–1392) | 10,921 (809–45,792) | <0.01 |
Creatinine mg/dL (IQR) | 1.41 (1.01–1.9) | 234 | 1.42 (1.13–1.94) | 1.33 (0.94–1.9) | 0.23 |
GFR mL/min/1.73 m2 (IQR) | 52 (33–73) | 230 | 54 (32–72) | 52 (34–73) | 0.93 |
Bilirubin mg/dL (IQR) | 1 (0.6–1.7) | 139 | 1.3 (0.6–2.3) | 0.85 (0.6–1.6) | 0.07 |
D-Dimers µg/L (IQR) | 4.04 (1.46–17.21) | 98 | 2.36 (1.32–14.26) | 5.05 (1.74–19.56) | 0.46 |
Lactate mmol/L (IQR) | 3 (1.5–6) | 202 | 2.5 (1.3–5.4) | 3.2 (1.6–6.1) | 0.19 |
Parameter | All Patients (n = 280) | Group: PHF Count (n = 84) | Group: Non-PHF Count (n = 196) | p-Value |
---|---|---|---|---|
C, n (%) | 101 (36) | 40 (48) | 61 (31) | 0.02 |
D, n (%) | 121 (43) | 32 (38) | 89 (45) | |
E, n (%) | 58 (21) | 12 (14) | 46 (23) |
Parameter | All Patients (n = 280) | Valid n | Group: PHF Count (n = 84) | Group: Non-PHF Count (n = 196) | p-Value |
---|---|---|---|---|---|
Hospitalisation time, days (IQR) | 12 (3–24) | 280 | 16 (8–30) | 10 (2–22) | <0.01 |
MV, n (%) | 134 (48) | 280 | 33 (39) | 101 (52) | 0.06 |
RRT, n (%) | 56 (20) | 280 | 15 (18) | 41 (21) | 0.56 |
MCS, n (%) | 115 (41) | 280 | 33 (39) | 82 (42) | 0.69 |
Coronary revascularisation, n (%) | 50 (18) | 280 | 13 (15) | 137 (70) | <0.01 |
EF at admission, % (IQR) | 31 (22–45) | 231 | 26 (18–35) | 35 (25–45) | <0.01 |
EF at discharge, % (IQR) | 33 (20–49) | 84 | 20 (17–42) | 38 (26–52) | 0.01 |
Mortality, n (%) | 172 (61) | 280 | 44 (52) | 128 (65) | 0.04 |
Parameter | All Patients (n = 115) | Group: PHF Count (n = 33) | Group: Non-PHF Count (n = 82) | p-Value |
---|---|---|---|---|
IABP, n (%) | 40 (35) | 5 (15) | 35 (43) | <0.01 |
Impella CP, n (%) | 22 (19) | 3 (9) | 19 (23) | |
Impella 5.5, n (%) | 8 (7) | 5 (15) | 3 (4) | |
Impella + ECMO, n (%) | 15 (13) | 6 (18) | 9 (11) | |
HeartMate 3, n (%) | 6 (5) | 6 (18) | 0 (0) | |
ECMO + IABP, n (%) | 10 (9) | 3 (9) | 7 (9) | |
Uprage IABP to Impella CP, n (%) | 4 (3) | 1 (3) | 3 (4) | |
Uprage IABP to Impella 5.5, n (%) | 4 (3) | 1 (3) | 3 (4) | |
Upgrade Impella CP to Impella 5.5, n (%) | 6 (5) | 3 (9) | 3 (4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krupka, D.; Fułek, M.; Drewniowska, J.; Florek, K.; Milewski, M.; Nnoli, M.; Grunwald, K.; Chełmoński, A.; Karska, K.; Cicirko, K.; et al. Cardiogenic Shock Due to Progressive Heart Failure—Clinical Characteristics and Outcomes Compared to Other Aetiologies. Biomedicines 2025, 13, 1856. https://doi.org/10.3390/biomedicines13081856
Krupka D, Fułek M, Drewniowska J, Florek K, Milewski M, Nnoli M, Grunwald K, Chełmoński A, Karska K, Cicirko K, et al. Cardiogenic Shock Due to Progressive Heart Failure—Clinical Characteristics and Outcomes Compared to Other Aetiologies. Biomedicines. 2025; 13(8):1856. https://doi.org/10.3390/biomedicines13081856
Chicago/Turabian StyleKrupka, Dominik, Michał Fułek, Julia Drewniowska, Kamila Florek, Mateusz Milewski, Michał Nnoli, Katarzyna Grunwald, Adam Chełmoński, Karolina Karska, Kacper Cicirko, and et al. 2025. "Cardiogenic Shock Due to Progressive Heart Failure—Clinical Characteristics and Outcomes Compared to Other Aetiologies" Biomedicines 13, no. 8: 1856. https://doi.org/10.3390/biomedicines13081856
APA StyleKrupka, D., Fułek, M., Drewniowska, J., Florek, K., Milewski, M., Nnoli, M., Grunwald, K., Chełmoński, A., Karska, K., Cicirko, K., Mazur, K., Ptak, J., Błaziak, M., Zymliński, R., Goździk, W., Barteczko-Grajek, B., Bochenek, M., Przybylski, R., Zakliczyński, M., ... Kuliczkowski, W. (2025). Cardiogenic Shock Due to Progressive Heart Failure—Clinical Characteristics and Outcomes Compared to Other Aetiologies. Biomedicines, 13(8), 1856. https://doi.org/10.3390/biomedicines13081856