The Diagnostic Value of Copy Number Variants in Genetic Cardiomyopathies and Channelopathies
Abstract
1. Introduction
2. Structural Cardiomyopathies
2.1. Dilated Cardiomyopathy
2.2. Hypertrophic Cardiomyopathy
2.3. Arrhythmogenic Cardiomyopathy
3. Channelopathies
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SCD | Sudden Cardiac Death |
CMPs | Cardiomyopathies |
DCM | Dilated Cardiomyopathy |
HCM | Hypertrophic Cardiomyopathy |
ACM | Arrhythmogenic Cardiomyopathy |
CNPs | Channelopathies |
LQTS | Long QT Syndrome |
BrS | Brugada Syndrome |
CPVT | Catecholaminergic Polymorphic Ventricular Tachycardia |
SVs | Structural Variants |
CNVs | Copy Number Variants |
SNVs | Single Nucleotide Variants |
Indels | Insertions/Deletions |
MLPA | Multiplex Ligation-dependent Probe Amplification |
PTCs | Premature Termination Codons |
AF | Affecting Function |
PAF | Probably Affecting Function |
aCGH | array Comparative Genomic Hybridization |
ACMG | American College of Medical Genetics and Genomics |
AI | Artificial Intelligence |
References
- Kumar, A.; Avishay, D.M.; Jones, C.R.; Shaikh, J.D.; Kaur, R.; Aljadah, M.; Kichloo, A.; Shiwalkar, N.; Keshavamurthy, S. Sudden Cardiac Death: Epidemiology, Pathogenesis and Management. Rev. Cardiovasc. Med. 2021, 22, 147–158. [Google Scholar] [CrossRef]
- Magi, S.; Lariccia, V.; Maiolino, M.; Amoroso, S.; Gratteri, S. Sudden Cardiac Death: Focus on the Genetics of Channelopathies and Cardiomyopathies. J. Biomed. Sci. 2017, 24, 56. [Google Scholar] [CrossRef]
- Sisakian, H. Cardiomyopathies: Evolution of Pathogenesis Concepts and Potential for New Therapies. World J. Cardiol. 2014, 6, 478–494. [Google Scholar] [CrossRef]
- Garcia-Elias, A.; Benito, B. Ion Channel Disorders and Sudden Cardiac Death. Int. J. Mol. Sci. 2018, 19, 692. [Google Scholar] [CrossRef]
- Agbaedeng, T.A.; Roberts, K.A.; Colley, L.; Noubiap, J.J.; Oxborough, D. Incidence and Predictors of Sudden Cardiac Death in Arrhythmogenic Right Ventricular Cardiomyopathy: A Pooled Analysis. Europace 2022, 24, 1665–1674. [Google Scholar] [CrossRef]
- Sweeney, N.M.; Nahas, S.A.; Chowdhury, S.; Batalov, S.; Clark, M.; Caylor, S.; Cakici, J.; Nigro, J.J.; Ding, Y.; Veeraraghavan, N.; et al. Rapid Whole Genome Sequencing Impacts Care and Resource Utilization in Infants with Congenital Heart Disease. NPJ Genom. Med. 2021, 6, 29. [Google Scholar] [CrossRef]
- Barbitoff, Y.A.; Polev, D.E.; Glotov, A.S.; Serebryakova, E.A.; Shcherbakova, I.V.; Kiselev, A.M.; Kostareva, A.A.; Glotov, O.S.; Predeus, A.V. Systematic Dissection of Biases in Whole-Exome and Whole-Genome Sequencing Reveals Major Determinants of Coding Sequence Coverage. Sci. Rep. 2020, 10, 2057. [Google Scholar] [CrossRef]
- Boen, H.M.; Loeys, B.L.; Alaerts, M.; Saenen, J.B.; Goovaerts, I.; Van Laer, L.; Vorlat, A.; Vermeulen, T.; Franssen, C.; Pauwels, P.; et al. Diagnostic Yield of Genetic Testing in Heart Transplant Recipients with Prior Cardiomyopathy. J. Heart Lung Transplant. 2022, 41, 1218–1227. [Google Scholar] [CrossRef]
- Pös, O.; Radvanszky, J.; Buglyó, G.; Pös, Z.; Rusnakova, D.; Nagy, B.; Szemes, T. DNA Copy Number Variation: Main Characteristics, Evolutionary Significance, and Pathological Aspects. Biomed. J. 2021, 44, 1218–1227. [Google Scholar] [CrossRef]
- Connolly, J.J.; Glessner, J.T.; Almoguera, B.; Crosslin, D.R.; Jarvik, G.P.; Sleiman, P.M.; Hakonarson, H. Copy Number Variation Analysis in the Context of Electronic Medical Records and Large-Scale Genomics Consortium Efforts. Front. Genet. 2014, 5, 51. [Google Scholar] [CrossRef]
- Zarrei, M.; MacDonald, J.R.; Merico, D.; Scherer, S.W. A Copy Number Variation Map of the Human Genome. Nat. Rev. Genet. 2015, 16, 172–183. [Google Scholar] [CrossRef]
- Minoche, A.E.; Lundie, B.; Peters, G.B.; Ohnesorg, T.; Pinese, M.; Thomas, D.M.; Zankl, A.; Roscioli, T.; Schonrock, N.; Kummerfeld, S.; et al. ClinSV: Clinical Grade Structural and Copy Number Variant Detection from Whole Genome Sequencing Data. Genome Med. 2021, 13, 32. [Google Scholar] [CrossRef]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; De Boer, R.A.; et al. 2023 ESC Guidelines for the Management of Cardiomyopathies: Developed by the Task Force on the Management of Cardiomyopathies of the European Society of Cardiology (ESC). Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef]
- Waldmüller, S.; Sakthivel, S.; Saadi, A.V.; Selignow, C.; Rakesh, P.G.; Golubenko, M.; Joseph, P.K.; Padmakumar, R.; Richard, P.; Schwartz, K.; et al. Novel Deletions in MYH7 and MYBPC3 Identified in Indian Families with Familial Hypertrophic Cardiomyopathy. J. Mol. Cell Cardiol. 2003, 35, 623–636. [Google Scholar] [CrossRef]
- Chanavat, V.; Seronde, M.F.; Bouvagnet, P.; Chevalier, P.; Rousson, R.; Millat, G. Molecular Characterization of a Large MYBPC3 Rearrangement in a Cohort of 100 Unrelated Patients with Hypertrophic Cardiomyopathy. Eur. J. Med. Genet. 2012, 55, 163–166. [Google Scholar] [CrossRef]
- Pezzoli, L.; Sana, M.E.; Ferrazzi, P.; Iascone, M. A New Mutational Mechanism for Hypertrophic Cardiomyopathy. Gene 2012, 507, 165–169. [Google Scholar] [CrossRef]
- de Uña-Iglesias, D.; Ochoa, J.P.; Monserrat, L.; Barriales-Villa, R. Clinical Relevance of the Systematic Analysis of Copy Number Variants in the Genetic Study of Cardiomyopathies. Genes 2024, 15, 774. [Google Scholar] [CrossRef]
- Roberts, J.D.; Herkert, J.C.; Rutberg, J.; Nikkel, S.M.; Wiesfeld, A.C.P.; Dooijes, D.; Gow, R.M.; van Tintelen, J.P.; Gollob, M.H. Detection of Genomic Deletions of PKP2 in Arrhythmogenic Right Ventricular Cardiomyopathy. Clin. Genet. 2013, 83, 452–456. [Google Scholar] [CrossRef]
- Pilichou, K.; Lazzarini, E.; Rigato, I.; Celeghin, R.; De Bortoli, M.; Perazzolo Marra, M.; Cason, M.; Jongbloed, J.; Calore, M.; Rizzo, S.; et al. Large Genomic Rearrangements of Desmosomal Genes in Italian Arrhythmogenic Cardiomyopathy Patients. Circ. Arrhythm. Electrophysiol. 2017, 10, 10. [Google Scholar] [CrossRef]
- Fedida, J.; Fressart, V.; Charron, P.; Surget, E.; Hery, T.; Richard, P.; Donal, E.; Keren, B.; Duthoit, G.; Hidden-Lucet, F.; et al. Contribution of Exome Sequencing for Genetic Diagnostic in Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia. PLoS ONE 2017, 12, e0181840. [Google Scholar] [CrossRef]
- Lenarduzzi, S.; Spedicati, B.; Alessandrini, B.; Tesolin, P.; Paldino, A.; Gigli, M.; Sinagra, G.; Gasparini, P.; Ferro, M.D.; Girotto, G. Whole-Exome Sequencing: Clinical Characterization of Pediatric and Adult Italian Patients Affected by Different Forms of Hereditary Cardiovascular Diseases. Mol. Genet. Genom. Med. 2023, 11, e2143. [Google Scholar] [CrossRef]
- Norton, N.; Li, D.; Rieder, M.J.; Siegfried, J.D.; Rampersaud, E.; Züchner, S.; Mangos, S.; Gonzalez-Quintana, J.; Wang, L.; McGee, S.; et al. Genome-Wide Studies of Copy Number Variation and Exome Sequencing Identify Rare Variants in BAG3 as a Cause of Dilated Cardiomyopathy. Am. J. Hum. Genet. 2011, 88, 273–282. [Google Scholar] [CrossRef]
- Gupta, P.; Bilinska, Z.T.; Sylvius, N.; Boudreau, E.; Veinot, J.P.; Labib, S.; Bolongo, P.M.; Hamza, A.; Jackson, T.; Ploski, R.; et al. Genetic and Ultrastructural Studies in Dilated Cardiomyopathy Patients: A Large Deletion in the Lamin A/C Gene Is Associated with Cardiomyocyte Nuclear Envelope Disruption. Basic. Res. Cardiol. 2010, 105, 365–377. [Google Scholar] [CrossRef]
- Heliö, K.; Cicerchia, M.; Hathaway, J.; Tommiska, J.; Huusko, J.; Saarinen, I.; Koskinen, L.; Muona, M.; Kytölä, V.; Djupsjöbacka, J.; et al. Diagnostic Yield of Genetic Testing in a Multinational Heterogeneous Cohort of 2088 DCM Patients. Front. Cardiovasc. Med. 2023, 10, 1254272. [Google Scholar] [CrossRef]
- Herkert, J.C.; Abbott, K.M.; Birnie, E.; Meems-Veldhuis, M.T.; Boven, L.G.; Benjamins, M.; du Marchie Sarvaas, G.J.; Barge-Schaapveld, D.Q.C.M.; van Tintelen, J.P.; van der Zwaag, P.A.; et al. Toward an Effective Exome-Based Genetic Testing Strategy in Pediatric Dilated Cardiomyopathy. Genet. Med. 2018, 20, 1374–1386. [Google Scholar] [CrossRef]
- Singer, E.S.; Ross, S.B.; Skinner, J.R.; Weintraub, R.G.; Ingles, J.; Semsarian, C.; Bagnall, R.D. Characterization of Clinically Relevant Copy-Number Variants from Exomes of Patients with Inherited Heart Disease and Unexplained Sudden Cardiac Death. Genet. Med. 2021, 23, 86–93. [Google Scholar] [CrossRef]
- Orphanou, N.; Papatheodorou, E.; Anastasakis, A. Dilated Cardiomyopathy in the Era of Precision Medicine: Latest Concepts and Developments. Heart Fail. Rev. 2022, 27, 1173–1191. [Google Scholar] [CrossRef]
- Hershberger, R.E.; Hedges, D.J.; Morales, A. Dilated Cardiomyopathy: The Complexity of a Diverse Genetic Architecture. Nat. Rev. Cardiol. 2013, 10, 531–547. [Google Scholar] [CrossRef]
- Norton, N.; Siegfried, J.D.; Li, D.; Hershberger, R.E. Assessment of LMNA Copy Number Variation in 58 Probands with Dilated Cardiomyopathy. Clin. Transl. Sci. 2011, 4, 351–352. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Preston, C.G.; Wright, M.W.; Madhavrao, R.; Harrison, S.M.; Goldstein, J.L.; Luo, X.; Wand, H.; Wulf, B.; Cheung, G.; Mandell, M.E.; et al. ClinGen Variant Curation Interface: A Variant Classification Platform for the Application of Evidence Criteria from ACMG/AMP Guidelines. Genome Med. 2022, 14, 6. [Google Scholar] [CrossRef]
- Mates, J.; Mademont-Soler, I.; Del Olmo, B.; Ferrer-Costa, C.; Coll, M.; Pérez-Serra, A.; Picó, F.; Allegue, C.; Fernandez-Falgueras, A.; Álvarez, P.; et al. Role of Copy Number Variants in Sudden Cardiac Death and Related Diseases: Genetic Analysis and Translation into Clinical Practice. Eur. J. Hum. Genet. 2018, 26, 1014–1025. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Yuan, F.; Yu, B.-R. Whole-Exome Sequencing Reveals Mutational Signature of Hypertrophic Cardiomyopathy. Int. J. Gen. Med. 2023, 16, 4617–4628. [Google Scholar] [CrossRef]
- Bidina, L.; Kupics, K.; Sokolova, E.; Pavlovics, M.; Dobele, Z.; Caunite, L.; Kalejs, O.; Gailite, L. PKP2 and DSG2 Genetic Variations in Latvian Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Registry Patients. Anatol. J. Cardiol. 2018, 20, 296–302. [Google Scholar] [CrossRef]
- Fernández-Falgueras, A.; Sarquella-Brugada, G.; Brugada, J.; Brugada, R.; Campuzano, O. Cardiac Channelopathies and Sudden Death: Recent Clinical and Genetic Advances. Biology 2017, 6, 7. [Google Scholar] [CrossRef]
- Schimpf, R.; Veltmann, C.; Wolpert, C.; Borggrefe, M. Channelopathies: Brugada Syndrome, Long QT Syndrome, Short QT Syndrome, and CPVT. Herz 2009, 34, 281–288. [Google Scholar] [CrossRef]
- Badura, K.; Buławska, D.; Dąbek, B.; Witkowska, A.; Lisińska, W.; Radzioch, E.; Skwira, S.; Młynarska, E.; Rysz, J.; Franczyk, B. Primary Electrical Heart Disease—Principles of Pathophysiology and Genetics. Int. J. Mol. Sci. 2024, 25, 1826. [Google Scholar] [CrossRef]
- Tester, D.J.; Benton, A.J.; Train, L.; Deal, B.; Baudhuin, L.M.; Ackerman, M.J. Prevalence and Spectrum of Large Deletions or Duplications in the Major Long QT Syndrome-Susceptibility Genes and Implications for Long QT Syndrome Genetic Testing. Am. J. Cardiol. 2010, 106, 1124–1128. [Google Scholar] [CrossRef]
- Barc, J.; Briec, F.; Schmitt, S.; Kyndt, F.; Le Cunff, M.; Baron, E.; Vieyres, C.; Sacher, F.; Redon, R.; Le Caignec, C.; et al. Screening for Copy Number Variation in Genes Associated with the Long QT Syndrome: Clinical Relevance. J. Am. Coll. Cardiol. 2011, 57, 40–47. [Google Scholar] [CrossRef]
- Senthivel, V.; Jolly, B.; VR, A.; Bajaj, A.; Bhoyar, R.; Imran, M.; Vignesh, H.; Divakar, M.K.; Sharma, G.; Rai, N.; et al. Whole Genome Sequencing of Families Diagnosed with Cardiac Channelopathies Reveals Structural Variants Missed by Whole Exome Sequencing. J. Hum. Genet. 2024, 69, 455–465. [Google Scholar] [CrossRef]
- Gnazzo, M.; Parlapiano, G.; Di Lorenzo, F.; Perrino, D.; Genovese, S.; Lanari, V.; Righi, D.; Calì, F.; Silvetti, M.S.; Falcone, E.; et al. Copy Number Variants in Cardiac Channelopathies: Still a Missed Part in Routine Arrhythmic Diagnostics. Biomolecules 2024, 14, 1450. [Google Scholar] [CrossRef]
- Sonoda, K.; Ohno, S.; Ozawa, J.; Hayano, M.; Hattori, T.; Kobori, A.; Yahata, M.; Aburadani, I.; Watanabe, S.; Matsumoto, Y.; et al. Copy Number Variations of SCN5A in Brugada Syndrome. Heart Rhythm. 2018, 15, 1179–1188. [Google Scholar] [CrossRef]
- Broendberg, A.K.; Pedersen, L.N.; Nielsen, J.C.; Jensen, H.K. Repeated Molecular Genetic Analysis in Brugada Syndrome Revealed a Novel Disease-Associated Large Deletion in the SCN5A Gene. Hear. Case Rep. 2016, 2, 261–264. [Google Scholar] [CrossRef]
- Moscu-Gregor, A.; Marschall, C.; Müntjes, C.; Schönecker, A.; Schuessler-Hahn, F.; Hohendanner, F.; Parwani, A.S.; Boldt, L.H.; Ott, C.E.; Bennewiz, A.; et al. Novel Variants in TECRL Cause Recessive Inherited CPVT Type 3 with Severe and Variable Clinical Symptoms. J. Cardiovasc. Electrophysiol. 2020, 31, 1527–1535. [Google Scholar] [CrossRef]
- Bhuiyan, Z.A.; Van Den Berg, M.P.; Van Tintelen, J.P.; Bink-Boelkens, M.T.E.; Wiesfeld, A.C.P.; Alders, M.; Postma, A.V.; Van Langen, I.; Mannens, M.M.A.M.; Wilde, A.A.M. Expanding Spectrum of Human RYR2-Related Disease: New Electrocardiographic, Structural, and Genetic Features. Circulation 2007, 116, 1569–1576. [Google Scholar] [CrossRef]
- Dharmawan, T.; Nakajima, T.; Ohno, S.; Iizuka, T.; Tamura, S.; Kaneko, Y.; Horie, M.; Kurabayashi, M. Identification of a Novel Exon3 Deletion of RYR2 in a Family with Catecholaminergic Polymorphic Ventricular Tachycardia. Ann. Noninvasive Electrocardiol. 2019, 24, e12623. [Google Scholar] [CrossRef]
- Campbell, M.J.; Czosek, R.J.; Hinton, R.B.; Miller, E.M. Exon 3 Deletion of Ryanodine Receptor Causes Left Ventricular Noncompaction, Worsening Catecholaminergic Polymorphic Ventricular Tachycardia, and Sudden Cardiac Arrest. Am. J. Med. Genet. A 2015, 167, 2197–2200. [Google Scholar] [CrossRef]
- Josephs, K.S.; Seaby, E.G.; May, P.; Theotokis, P.; Yu, J.; Andreou, A.; Sinclair, H.; Morris-Rosendahl, D.; Thomas, E.R.A.; Ennis, S.; et al. Cardiomyopathies in 100,000 Genomes Project: Interval Evaluation Improves Diagnostic Yield and Informs Strategies for Ongoing Gene Discovery. Genome Med. 2024, 16, 125. [Google Scholar] [CrossRef]
- Riggs, E.R.; Andersen, E.F.; Cherry, A.M.; Kantarci, S.; Kearney, H.; Patel, A.; Raca, G.; Ritter, D.I.; South, S.T.; Thorland, E.C.; et al. Technical Standards for the Interpretation and Reporting of Constitutional Copy-Number Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 2020, 22, 245–257. [Google Scholar] [CrossRef]
- Mango, R.; Luchetti, A.; Sangiuolo, R.; Ferradini, V.; Briglia, N.; Giardina, E.; Ferrè, F.; Citterich, M.H.; Romeo, F.; Novelli, G.; et al. Next Generation Sequencing and Linkage Analysis for the Molecular Diagnosis of a Novel Overlapping Syndrome Characterized by Hypertrophic Cardiomyopathy and Typical Electrical Instability of Brugada Syndrome. Circ. J. 2016, 80, 938–949. [Google Scholar] [CrossRef]
- Eisfeldt, J.; Ameur, A.; Lenner, F.; Ten Berk de Boer, E.; Ek, M.; Wincent, J.; Vaz, R.; Ottosson, J.; Jonson, T.; Ivarsson, S.; et al. A National Long-Read Sequencing Study on Chromosomal Rearrangements Uncovers Hidden Complexities. Genome Res. 2024, 34, 1774–1784. [Google Scholar] [CrossRef]
- Bonfiglio, F.; Legati, A.; Lasorsa, V.A.; Palombo, F.; De Riso, G.; Isidori, F.; Russo, S.; Furini, S.; Merla, G.; Coppedè, F.; et al. Best Practices for Germline Variant and DNA Methylation Analysis of Second- and Third-Generation Sequencing Data. Hum. Genom. 2024, 18, 120. [Google Scholar] [CrossRef]
- Pennings, M.; Meijer, R.P.P.; Gerrits, M.; Janssen, J.; Pfundt, R.; de Leeuw, N.; Gilissen, C.; Gardeitchik, T.; Schouten, M.; Voermans, N.; et al. Copy Number Variants from 4800 Exomes Contribute to ~7% of Genetic Diagnoses in Movement Disorders, Muscle Disorders and Neuropathies. Eur. J. Hum. Genet. 2023, 31, 654–662. [Google Scholar] [CrossRef]
- Feng, Y.; Cai, L.; Hong, W.; Zhang, C.; Tan, N.; Wang, M.; Wang, C.; Liu, F.; Wang, X.; Ma, J.; et al. Rewiring of 3D Chromatin Topology Orchestrates Transcriptional Reprogramming and the Development of Human Dilated Cardiomyopathy. Circulation 2022, 145, 1663–1683. [Google Scholar] [CrossRef]
- Rahaie, Z.; Rabiee, H.R.; Alinejad-Rokny, H. CNVDeep: Deep Association of Copy Number Variants with Neurocognitive Disorders. BMC Bioinform. 2024, 25, 283. [Google Scholar] [CrossRef]
- Schuetz, R.J.; Ceyhan, D.; Antoniou, A.A.; Chaudhari, B.P.; White, P. CNVoyant a Machine Learning Framework for Accurate and Explainable Copy Number Variant Classification. Sci. Rep. 2024, 14, 22411. [Google Scholar] [CrossRef]
Phenotype | Gene | CNV | Pathogenicity | Exon(s) | Reference |
---|---|---|---|---|---|
HCM | MYBPC3 | Deletion | N.A. | Intron 32 | [14] |
MYBPC3 | Deletion | N.A. | Exons 27–35 | [15,16] | |
MYBPC3 | Deletion | Likely Pathogenic | Exon 21 | [17] | |
MYBPC3 | Deletion | Likely Pathogenic | Exons 4–5 | ||
MYBPC3 | Deletion | Likely Pathogenic | Exons 1–5 | ||
MYBPC3 | Deletion | Likely Pathogenic | Exons 4–7 | ||
MYBPC3 | Deletion | Likely Pathogenic | All exons | ||
MYBPC3 | Deletion | Likely Pathogenic | Exons 1–17 | ||
MYBPC3 | Deletion | Likely Pathogenic | Exon 18 | ||
MYBPC3 | Deletion | Pathogenic | Exons 23–26 | ||
MYBPC3 | Del/Ins | Likely Pathogenic | Exon 27 | ||
MYH7 | Deletion | Pathogenic | All exons | ||
FHL1 | Deletion | Likely Pathogenic | Exons 1–7 | ||
FHOD3 | Del/Ins | Pathogenic | Exon 15 | ||
FHOD3 | Deletion | Pathogenic | Exons 15–16 | ||
FHOD3 | Del/Ins | Pathogenic | Exons 15–16 | ||
LAMP2 | Deletion | Likely Pathogenic | Exon 7 | ||
PKP2 | Deletion | Likely Pathogenic | Exons 13–14 | ||
PKP2 | Deletion | Pathogenic | Exon 8 | ||
PLN | Deletion | Pathogenic | Exons 1–2 | ||
ACM | PKP2 | Deletion | N.A. | Exons 1–14 | [18] |
PKP2 | Deletion | N.A. | Exons 2–14 | ||
PKP2 | Deletion | N.A. | All exons | [19] | |
PKP2 | Deletion | N.A. | Exon 4 | ||
PKP2 | Deletion | N.A. | Exons 6–11 | ||
PKP2 | Duplication | N.A. | 5′UTR-Exon1 | ||
DSC2 | Duplication | N.A. | Exons 7–9 | ||
DSC2/DSG2 | Deletion | N.A. | DSC2 All exons/DSG2 All exons | ||
PKP2 | Deletion | N.A. | Exons 1–14 | [20] | |
PKP2 | Deletion | N.A. | Exons 2–14 | ||
PKP2 | Deletion | N.A. | Exons 1–7 | ||
PKP2 | Deletion | N.A. | Exon 4 | ||
PKP2 | Deletion | N.A. | Exons 6–14 | [21] | |
PKP2 | Deletion | N.A. | Exons 6–14 | ||
PKP2 | Deletion | N.A. | Exon 12 | ||
DMD | Deletion | Likely Pathogenic | Exons 25–30 | [17] | |
DMD | Duplication | Likely Pathogenic | Exons 40–55 | ||
DSP | Deletion | Pathogenic | Exons 21–24 | ||
FLNC | Deletion | Likely Pathogenic | All exons | ||
FLNC | Deletion | Pathogenic | Exons 3–48 | ||
PKP2 | Deletion | Likely Pathogenic | Exon 8 | ||
PKP2 | Deletion | Likely Pathogenic | Exon 4 | ||
PKP2 | Deletion | Likely Pathogenic | Exon 10 | ||
PKP2 | Duplication | Likely Pathogenic | Exons 8–10 | ||
PKP2 | Del/Ins | Likely Pathogenic | Exons 5–14 | ||
PKP2 | Deletion | Likely Pathogenic | Exons 13–14 | ||
PKP2 | Deletion | Likely Pathogenic | Exons 13–14 | ||
DCM | BAG3 | Deletion | N.A. | Exon 4 | [22] |
LMNA | Deletion | N.A. | Exons 3–12 | [23] | |
GATA4 | Deletion | N.A. | All exons | [24] | |
DMD | Deletion | N.A. | Exons 48–51 | ||
DMD | Duplication | N.A. | Exons 19–37 | ||
LMNA | Del/Ins | N.A. | NA | ||
PKP2 | Deletion | N.A. | Exon 8 | ||
DSP | Deletion | N.A. | Exon 1 | ||
RBM20 | Deletion | N.A. | NA | [25] | |
TTN | Deletion | Pathogenic | Exons 224–335 | [26] |
Phenotype | Gene | CNV | Pathogenicity | Exon(s) | Reference |
---|---|---|---|---|---|
LQTs | KCNQ1 | Deletion | N.A. | Exon 3 | [38] |
LQTs | KCNQ1 | Deletion | N.A. | Exon 7 | |
LQTs | KCNQ1 | Deletion | N.A. | Exons 7–8 | [39] |
LQTs | KCNH2 | Deletion | N.A. | Exons 4–15 | |
LQTs | KCNH2 | Deletion | N.A. | Exons 1–15 | |
LQTs | KCNQ1 | Deletion | Pathogenic | Exons 8–9 | [32] |
LQTs | KCNH2 | Deletion | Pathogenic | Exons 1–15 | |
LQTs | KCNE1 | Deletion | Pathogenic | Exon 3 | |
LQTs | KCNQ1 | Deletion | Pathogenic | Exon 2 | [40] |
LQTs | KCNQ1 | Deletion | N.A. | Exon 1 | [41] |
LQTs | KCNQ1 | Deletion | N.A. | Exon 7 | |
LQTs | KCNQ1 | Deletion | N.A. | Exons 9–10 | |
LQTs | KCNQ1 | Deletion | N.A. | Exon 16 | |
BrS | SCN5A | Deletion | N.A. | Exon 3 | |
BrS | SCN5A | Deletion | N.A. | Exons 15–16 | |
BrS | SCN5A | Deletion | N.A. | All exons | [42] |
BrS | SCN5A | Deletion | N.A. | Exon 4 | |
BrS | SCN5A | Deletion | N.A. | Exon 24 | |
BrS | SCN5A | Duplication | N.A. | Exons 17–24 | |
BrS | SCN5A | Deletion | N.A. | Exon 23 | [43] |
CPVT | TECRL/EPHA5 | Duplication | Variant of Uncertain Significance | Exons 1–12/Exon 1 | [44] |
CPVT | RYR2 | Deletion | N.A. | Exon 3 | [45] |
CPVT | RYR2 | Deletion | Pathogenic | Exon 3 | [46] |
CPVT | RYR2 | Deletion | Pathogenic | Exon 3 | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caputo, V.; Visconti, V.V.; Marchionni, E.; Ferradini, V.; Balsano, C.; De Vico, P.; Calò, L.; Mango, R.; Novelli, G.; Sangiuolo, F. The Diagnostic Value of Copy Number Variants in Genetic Cardiomyopathies and Channelopathies. J. Cardiovasc. Dev. Dis. 2025, 12, 258. https://doi.org/10.3390/jcdd12070258
Caputo V, Visconti VV, Marchionni E, Ferradini V, Balsano C, De Vico P, Calò L, Mango R, Novelli G, Sangiuolo F. The Diagnostic Value of Copy Number Variants in Genetic Cardiomyopathies and Channelopathies. Journal of Cardiovascular Development and Disease. 2025; 12(7):258. https://doi.org/10.3390/jcdd12070258
Chicago/Turabian StyleCaputo, Valerio, Virginia Veronica Visconti, Enrica Marchionni, Valentina Ferradini, Clara Balsano, Pasquale De Vico, Leonardo Calò, Ruggiero Mango, Giuseppe Novelli, and Federica Sangiuolo. 2025. "The Diagnostic Value of Copy Number Variants in Genetic Cardiomyopathies and Channelopathies" Journal of Cardiovascular Development and Disease 12, no. 7: 258. https://doi.org/10.3390/jcdd12070258
APA StyleCaputo, V., Visconti, V. V., Marchionni, E., Ferradini, V., Balsano, C., De Vico, P., Calò, L., Mango, R., Novelli, G., & Sangiuolo, F. (2025). The Diagnostic Value of Copy Number Variants in Genetic Cardiomyopathies and Channelopathies. Journal of Cardiovascular Development and Disease, 12(7), 258. https://doi.org/10.3390/jcdd12070258