Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (267)

Search Parameters:
Keywords = valley urban area

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 6681 KiB  
Article
Spatial Distribution Characteristics and Cluster Differentiation of Traditional Villages in the Central Yunnan Region
by Tao Chen, Sisi Zhang, Juan Chen, Jiajing Duan, Yike Zhang and Yaoning Yang
Land 2025, 14(8), 1565; https://doi.org/10.3390/land14081565 - 30 Jul 2025
Viewed by 316
Abstract
As an integral component of humanity’s cultural heritage, traditional villages universally confront challenges such as population loss and cultural discontinuity amid rapid urbanization. Cluster-based protection models have increasingly become the international consensus for addressing the survival crisis of such settlements. This study selects [...] Read more.
As an integral component of humanity’s cultural heritage, traditional villages universally confront challenges such as population loss and cultural discontinuity amid rapid urbanization. Cluster-based protection models have increasingly become the international consensus for addressing the survival crisis of such settlements. This study selects the Central Yunnan region of Southwest China—characterized by its complex geography and multi-ethnic habitation—as the research area. Employing ArcGIS spatial analysis techniques alongside clustering algorithms, we examine the spatial distribution characteristics and clustering patterns of 251 traditional villages within this region. The findings are as follows. In terms of spatial distribution, traditional villages in Central Yunnan are unevenly dispersed, predominantly aggregating on mid-elevation gentle slopes; their locations are chiefly influenced by rivers and historical courier routes, albeit with only indirect dependence on waterways. Regarding single-cluster attributes, the spatial and geomorphological features exhibit a composite “band-and-group” pattern shaped by river valleys; culturally, two dominant modes emerge—“ancient-route-dependent” and “ethnic-symbiosis”—reflecting an economy-driven cultural mechanism alongside latent marginalization risks. Concerning construction characteristics, the “Qionglong-Ganlan” and Han-style “One-seal” residential features stand out, illustrating both adaptation to mountainous environments and the cumulative effects of historical culture. Based on these insights, we propose a three-tiered clustering classification framework—“comprehensive-element coordination”, “feature-led”, and “potential-cultivation”—to inform the development of contiguous and typological protection strategies for traditional villages in highland, multi-ethnic regions. Full article
Show Figures

Figure 1

18 pages, 11346 KiB  
Article
Comparative CFD Analysis Using RANS and LES Models for NOx Dispersion in Urban Streets with Active Public Interventions in Medellín, Colombia
by Juan Felipe Rodríguez Berrio, Fabian Andres Castaño Usuga, Mauricio Andres Correa, Francisco Rodríguez Cortes and Julio Cesar Saldarriaga
Sustainability 2025, 17(15), 6872; https://doi.org/10.3390/su17156872 - 29 Jul 2025
Viewed by 217
Abstract
The Latin American and Caribbean (LAC) region faces persistent challenges of inequality, climate change vulnerability, and deteriorating air quality. The Aburrá Valley, where Medellín is located, is a narrow tropical valley with complex topography, strong thermal inversions, and unstable atmospheric conditions, all of [...] Read more.
The Latin American and Caribbean (LAC) region faces persistent challenges of inequality, climate change vulnerability, and deteriorating air quality. The Aburrá Valley, where Medellín is located, is a narrow tropical valley with complex topography, strong thermal inversions, and unstable atmospheric conditions, all of which exacerbate the accumulation of pollutants. In Medellín, NO2 concentrations have remained nearly unchanged over the past eight years, consistently approaching critical thresholds, despite the implementation of air quality control strategies. These persistent high concentrations are closely linked to the variability of the atmospheric boundary layer (ABL) and are often intensified by prolonged dry periods. This study focuses on a representative street canyon in Medellín that has undergone recent urban interventions, including the construction of new public spaces and pedestrian areas, without explicitly considering their impact on NOx dispersion. Using Computational Fluid Dynamics (CFD) simulations, this work evaluates the influence of urban morphology on NOx accumulation. The results reveal that areas with high Aspect Ratios (AR > 0.65) and dense vegetation exhibit reduced wind speeds at the pedestrian level—up to 40% lower compared to open zones—and higher NO2 concentrations, with maximum simulated values exceeding 50 μg/m3. This study demonstrates that the design of pedestrian corridors in complex urban environments like Medellín can unintentionally create pollutant accumulation zones, underscoring the importance of integrating air quality considerations into urban planning. The findings provide actionable insights for policymakers, emphasizing the need for comprehensive modeling and field validation to ensure healthier urban spaces in cities affected by persistent air quality issues. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

22 pages, 5184 KiB  
Article
Evolution Characteristics of Urban Heat Island Circulation for Loess Tableland Valley Towns
by Zhuolei Yu, Yi Wang, Jukun Wang, Xiaoxue Wang and Songheng Wu
Buildings 2025, 15(15), 2649; https://doi.org/10.3390/buildings15152649 - 27 Jul 2025
Viewed by 152
Abstract
Urban heat island circulation (UHIC) determines the wind and thermal environments in urban areas. For Loess Tableland valley towns, the evolution characteristics of the UHIC over this negative terrain are not well understood, and therefore, it is important to investigate the evolution characteristics. [...] Read more.
Urban heat island circulation (UHIC) determines the wind and thermal environments in urban areas. For Loess Tableland valley towns, the evolution characteristics of the UHIC over this negative terrain are not well understood, and therefore, it is important to investigate the evolution characteristics. A city-scale computational fluid dynamics (CSCFD) model is used, and simulation results are validated by the water tank experiment. The evolution process over such negative terrain can be divided into transient and quasi-steady stages, and in the transient stage, the airflow pattern evolves from thermal convection to city-scale closed circulation, while that in the quasi-steady stage is only city-scale closed circulation. In order to further reveal the characteristics of city-scale closed circulation, the sensitivities of different factors influencing the start time, outflow time, mixing height and heat island intensity are analyzed, and the most significant factors influencing these four parameters are urban heat flux, slope height, slope height, and potential temperature lapse rate, respectively. Finally, the dimensionless mixing height and heat island intensity for the valley town increase by 56.80% and 128.68%, respectively, compared to those for the flat city. This study provides guidance for the location and layout of built-up areas in the valley towns. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

20 pages, 9145 KiB  
Article
Valuating Hydrological Ecosystem Services Provided by Groundwater in a Dryland Region in the Northwest of Mexico
by Frida Cital, J. Eliana Rodríguez-Burgueño, Concepción Carreón-Diazconti and Jorge Ramírez-Hernández
Water 2025, 17(15), 2221; https://doi.org/10.3390/w17152221 - 25 Jul 2025
Viewed by 306
Abstract
Drylands cover approximately 41% of Earth’s land surface, supporting about 500 million people and 45% of global agriculture. Groundwater is essential in drylands and is crucial for maintaining ecosystem services and offering numerous benefits. This article, for the first time, analyses and valuates [...] Read more.
Drylands cover approximately 41% of Earth’s land surface, supporting about 500 million people and 45% of global agriculture. Groundwater is essential in drylands and is crucial for maintaining ecosystem services and offering numerous benefits. This article, for the first time, analyses and valuates the hydrological ecosystem services (HESs) provided by groundwater in a region of the Colorado River Delta in Mexico, an area with uncertain economic impact due to water scarcity. The main water sources are the Colorado River and groundwater from the Mexicali and San Luis Rio Colorado valley aquifers, both of which are overexploited. Valuation techniques include surrogate and simulated market methods for agricultural, industrial, urban, and domestic uses, the shadow project approach for water conservation and purification cost avoidance, and the contingent valuation method for recreation. Data from 2013 to 2015 and 2020 were used as they are the most reliable sources available. The annual value of HESs provided by groundwater was USD 883,520 million, with water conservation being a key factor. The analyzed groundwater uses reflect differences in efficiency and economic value, providing key information for decisions on governance, allocation, conservation, and revaluation of water resources. These results suggest reorienting crops, establishing differentiated rates, and promoting payment for environmental services programs. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

18 pages, 6810 KiB  
Article
The Impact of the Built Environment on Innovation Output in High-Density Urban Centres at the Micro-Scale: A Case Study of the G60 S&T Innovation Valley, China
by Lie Wang and Lingyue Li
Buildings 2025, 15(14), 2528; https://doi.org/10.3390/buildings15142528 - 18 Jul 2025
Viewed by 195
Abstract
The micro-scale interplay between the built environment and innovation has attracted increasing scholarly attention. However, discussions on how such microdynamics operate and vary across high-density cities remain insufficient. This study focuses on nine high-density urban centres along the G60 S&T Innovation Valley and [...] Read more.
The micro-scale interplay between the built environment and innovation has attracted increasing scholarly attention. However, discussions on how such microdynamics operate and vary across high-density cities remain insufficient. This study focuses on nine high-density urban centres along the G60 S&T Innovation Valley and employs a fine-grained grid unit, viz. 1 km × 1 km, combined with the gradient boosting decision tree (GBDT) model to address these issues. Results show that urban construction density-related variables, including the building density, floor area ratio, and transportation network density, generally rank higher than the amenity density and proximity-related variables. The former contributes 50.90% of the total relative importance in predicting invention patent application density (IPAD), while the latter two contribute 13.64% and 35.46%, respectively. Threshold effect analysis identifies optimal levels for enhancing IPAD. Specifically, the optimal building density is approximately 20%, floor area ratio is 5, and transportation network density is 8 km/km2. Optimal distances to universities, city centres, and transportation hubs are around 1 km, 17 km, and 9 km, respectively. Furthermore, significant city-level heterogeneity was observed: most density-related variables consistently have an overall positive association with IPAD, with metropolitan cities (e.g., Hangzhou and Suzhou) exhibiting notably higher optimal values compared to medium and small cities (e.g., Xuancheng and Huzhou). In contrast, the threshold effects of proximity-related variables on IPAD are more complex and diverse. These findings offer empirical support for enhancing innovation in high-density urban environments. Full article
Show Figures

Figure 1

21 pages, 15035 KiB  
Article
Birds, Bees, and Botany: Measuring Urban Biodiversity After Nature-Based Solutions Implementation
by Mónica Q. Pinto, Simone Varandas, Emmanuelle Cohen-Shacham and Edna Cabecinha
Diversity 2025, 17(7), 486; https://doi.org/10.3390/d17070486 - 16 Jul 2025
Viewed by 439
Abstract
Nature-based Solutions (NbS) are increasingly adopted in urban settings to restore ecological functions and enhance biodiversity. This study evaluates the effects of NbS interventions on bird, insect, and plant communities in the Cavalum Valley urban green area, Penafiel (northern Portugal). Over a three-year [...] Read more.
Nature-based Solutions (NbS) are increasingly adopted in urban settings to restore ecological functions and enhance biodiversity. This study evaluates the effects of NbS interventions on bird, insect, and plant communities in the Cavalum Valley urban green area, Penafiel (northern Portugal). Over a three-year period, systematic field surveys assessed changes in species richness, abundance, and ecological indicators following actions such as riparian restoration, afforestation, habitat diversification, and invasive species removal. Results revealed a marked increase in bird overall abundance from 538 to 941 individuals and in average pollinator population size from 9.25 to 12.20. Plant diversity also improved, with a rise in native and RELAPE-listed species (5.23%). Functional group analyses underscored the importance of vegetative structure in supporting varied foraging and nesting behaviours. These findings highlight the effectiveness of integrated NbS in enhancing biodiversity and ecological resilience in urban landscapes while reinforcing the need for long-term monitoring to guide adaptive management and conservation planning. Future work could evaluate ecological resilience thresholds and community participation in citizen science monitoring. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Graphical abstract

22 pages, 3917 KiB  
Article
Fragmented Habitats, Fragmented Functions: Unveiling the Role of Habitat Structure in Andean Bird Communities
by Valentina Ramos-Mosquera, Edwin López-Delgado and Miguel Moreno-Palacios
Ecologies 2025, 6(3), 52; https://doi.org/10.3390/ecologies6030052 - 11 Jul 2025
Viewed by 910
Abstract
Understanding the processes that shape biodiversity patterns is an important challenge in ecology. Land-use change is often recognized as a pivotal factor influencing biodiversity at large scales, with habitat heterogeneity being one of the most critical drivers of community composition and diversity. In [...] Read more.
Understanding the processes that shape biodiversity patterns is an important challenge in ecology. Land-use change is often recognized as a pivotal factor influencing biodiversity at large scales, with habitat heterogeneity being one of the most critical drivers of community composition and diversity. In this study, we evaluate the influence of landscape structure on the functional diversity of bird assemblages in the Upper Magdalena River Valley, Colombia. We used Generalized Linear Models to assess the effects of landscape structure on functional diversity, incorporating landscape metrics such as the number of patches, patch area and shape, and Shannon’s diversity and evenness indices. Additionally, we analyzed the influence of landscape structure on functional beta diversity—including its components of functional turnover and nestedness—using a distance-based redundancy analysis. We also examined the relationship between species traits and landscape metrics through a RLQ and fourth-corner analysis. We found a negative effect of habitat loss and fragmentation on functional diversity. Our results show that bird assemblages exhibit higher diversity in non-fragmented landscapes (>75% forest area; <1% urban cover), retaining greater functional richness and functional evenness (FRic > 0.24; FEve > 0.60). Moreover, non-fragmented landscapes seem to support a higher number of nectarivores and forest specialist species. In contrast, bird functional richness decreased with landscape fragmentation (FRic < 0.07). These findings highlight the importance of forest conservation for maintaining species persistence, ecological processes, and ecosystem services provided by birds. Full article
Show Figures

Figure 1

25 pages, 6484 KiB  
Article
Climate Warming in the Eastern Mediterranean: A Comparative Analysis of Beirut and Zahlé (Lebanon, 1992–2024)
by Rabih Zeinaldine and Salem Dahech
Urban Sci. 2025, 9(7), 247; https://doi.org/10.3390/urbansci9070247 - 30 Jun 2025
Viewed by 2212
Abstract
The Eastern Mediterranean region is experiencing accelerated climate warming, yet localized patterns remain poorly understood, particularly in areas with complex topography. This study examines long-term air temperature trends from 1992 to 2024 at two sites in Lebanon: Beirut Airport (urban–coastal) and Houch Al [...] Read more.
The Eastern Mediterranean region is experiencing accelerated climate warming, yet localized patterns remain poorly understood, particularly in areas with complex topography. This study examines long-term air temperature trends from 1992 to 2024 at two sites in Lebanon: Beirut Airport (urban–coastal) and Houch Al Oumaraa station in Zahlé (inland–valley). Using homogeneity testing, linear regression, and the Mann–Kendall trend test, we assess trends in minimum, maximum, and mean temperatures. The results show a strong and statistically significant warming trend in Beirut, with mean temperatures rising by +0.536 °C per decade and minimum temperatures showing the steepest increase (+0.575 °C/decade). In Zahlé, the warming trend is less pronounced, particularly for maximum temperatures (+0.369 °C/decade), while minimum temperatures increased by +0.528 °C/decade. Data from fixed stations and drone-based vertical profiling in Zahlé confirmed the presence of cold-air pooling and thermal inversions, which moderate air temperatures and may contribute to a subdued warming trend. The strongest inversion recorded in 2022 reached 6.7 °C between ground level and an altitude of 500 m. In contrast, the urban heat island (UHI) effect in Beirut and Zahlé appear to drive nighttime warming, particularly in summer and early autumn months. These findings highlight the roles of topography and urbanization in shaping local climate trends. Full article
Show Figures

Figure 1

22 pages, 7977 KiB  
Article
Unlocking Coastal Insights: An Integrated Geophysical Study for Engineering Projects—A Case Study of Thorikos, Attica, Greece
by Stavros Karizonis and George Apostolopoulos
Geosciences 2025, 15(6), 234; https://doi.org/10.3390/geosciences15060234 - 19 Jun 2025
Viewed by 335
Abstract
Urban expansion in coastal areas involves infrastructure development, industrial growth, and mining activities. These coastal environments face various environmental and geological hazards that require geo-engineers to devise solutions. An integrated geophysical approach aims to address such complex challenges as sea level rise, sea [...] Read more.
Urban expansion in coastal areas involves infrastructure development, industrial growth, and mining activities. These coastal environments face various environmental and geological hazards that require geo-engineers to devise solutions. An integrated geophysical approach aims to address such complex challenges as sea level rise, sea water intrusion, shoreline erosion, landslides and previous anthropogenic activity in coastal settings. In this study, the proposed methodology involves the systematic application of geophysical methods (FDEM, 3D GPR, 3D ERT, seismic), starting with a broad-scale survey and then proceeding to a localized exploration, in order to identify lithostratigraphy, bedrock depth, sea water intrusion and detect anthropogenic buried features. The critical aspect is to leverage the unique strengths and limitations of each method within the coastal environment, so as to derive valuable insights for survey design (extension and orientation of measurements) and data interpretation. The coastal zone of Throrikos valley, Attica, Greece, serves as the test site of our geophysical investigation methodology. The planning of the geophysical survey included three phases: The application of frequency-domain electromagnetic (FDEM) and 3D ground penetrating radar (GPR) methods followed by a 3D electrical resistivity tomography (ERT) survey and finally, using the seismic refraction tomography (SRT) and multichannel analysis of surface waves (MASW). The FDEM method confirmed the geomorphological study findings by revealing the paleo-coastline, superficial layers of coarse material deposits and sea water preferential flow due to the presence of anthropogenic buried features. Subsequently, the 3D GPR survey was able to offer greater detail in detecting the remains of an old marble pier inland and top layer relief of coarse material deposits. The 3D ERT measurements, deployed in a U-shaped grid, successfully identified the anthropogenic feature, mapped sea water intrusion, and revealed possible impermeable formation connected to the bedrock. ERT results cannot clearly discriminate between limestone or deposits, as sea water intrusion lowers resistivity values in both formations. Finally, SRT, in combination with MASW, clearly resolves this dilemma identifying the lithostratigraphy and bedrock top relief. The findings provide critical input for engineering decisions related to foundation planning, construction feasibility, and preservation of coastal infrastructure. The methodology supports risk-informed design and sustainable development in areas with both natural and cultural heritage sensitivity. The applied approach aims to provide a complete information package to the modern engineer when faced with specific challenges in coastal settings. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

28 pages, 6036 KiB  
Article
Supply–Demand Assessment of Cultural Ecosystem Services in Urban Parks of Plateau River Valley City: A Case Study of Lhasa
by Shouhang Zhao, Yuqi Li, Ziqian Nie and Yunyuan Li
Land 2025, 14(6), 1301; https://doi.org/10.3390/land14061301 - 18 Jun 2025
Viewed by 535
Abstract
Cultural ecosystem services (CES) in urban parks, as a vital component of urban ecosystem services (ES), are increasingly recognized as an important tool for advancing urban sustainability and implementing nature-based solutions (NbS). The supply–demand relationship of CES in urban parks is strongly shaped [...] Read more.
Cultural ecosystem services (CES) in urban parks, as a vital component of urban ecosystem services (ES), are increasingly recognized as an important tool for advancing urban sustainability and implementing nature-based solutions (NbS). The supply–demand relationship of CES in urban parks is strongly shaped by sociocultural and spatial geographic factors, playing a crucial role in optimizing urban landscape structures and enhancing residents’ well-being. However, current research generally lacks adaptive evaluation frameworks and quantitative methods, particularly for cities with significant spatial and cultural diversity. To address this gap, this study examines the central district of Lhasa as a case study to develop a CES supply–demand evaluation framework suitable for plateau river valley cities. The study adopts the spatial integration analysis method to establish an indicator system centered on “recreational potential–recreational opportunities” and “social needs–material needs,” mapping the spatial distribution and matching characteristics of supply and demand at the community scale. The results reveal that: (1) in terms of supply–demand balance, 25.67% of communities experience undersupply, predominantly in the old city cluster, while 16.22% experience oversupply, mainly in key development zones, indicating a notable supply–demand imbalance; (2) in terms of supply–demand coupling coordination, 55.11% and 38.14% of communities are in declining and transitional stages, respectively. These communities are primarily distributed in near-mountainous and peripheral urban areas. Based on these findings, four urban landscape optimization strategies are proposed: culturally driven urban park development, demand-oriented park planning, expanding countryside parks along mountain ridges, and revitalizing existing parks. These results provide theoretical support and decision-making guidance for optimizing urban park green space systems in plateau river valley cities. Full article
Show Figures

Figure 1

15 pages, 4446 KiB  
Article
Characteristic Chemical Profile of Particulate Matter (PM2.5)—A Comparative Study Between Two Periods, Case Study in Medellín, Colombia
by Mauricio A. Correa-Ochoa, Miriam Gómez-Marín, Kelly Viviana Patiño-López, David Aguiar and Santiago A. Franco
Sustainability 2025, 17(12), 5380; https://doi.org/10.3390/su17125380 - 11 Jun 2025
Viewed by 659
Abstract
Medellín, a densely populated city in the Colombian Andes, faces significant health and environmental risks due to poor air quality. This is linked to the atmospheric dynamics of the valley in which it is located (Aburrá Valley). The region is characterized by a [...] Read more.
Medellín, a densely populated city in the Colombian Andes, faces significant health and environmental risks due to poor air quality. This is linked to the atmospheric dynamics of the valley in which it is located (Aburrá Valley). The region is characterized by a narrow valley and one of the most polluted areas in South America. This is a comparative study of the chemical composition of PM2.5 (particles with diameter less than 2.5 µm) in Medellín between two periods (2014–2015 and 2018–2019) in which temporal trends and emission sources were evaluated. PM2.5 samples were collected from urban, suburban, and rural stations following standardized protocols and compositional analyses of metals (ICP-MS), ions (ion chromatography), and carbonaceous species (organic carbon (OC) and elemental carbon (EC) by thermo-optical methods) were performed. The results show a reduction in average PM2.5 concentrations for the two periods (from 26.74 µg/m3 to 20.10 µg/m3 in urban areas), although levels are still above WHO guidelines. Urban stations showed higher PM2.5 levels, with predominance of carbonaceous aerosols (Total Carbon—TC = OC + EC = 35–50% of PM2.5 mass) and secondary ions (sulfate > nitrate, 13–14% of PM2.5 mass). Rural areas showed lower PM2.5 concentrations but elevated OC/EC ratios, suggesting the influence of biomass burning as a major emission source. Metals were found to occupy fractions of less than 10% of the PM2.5 mass; however, they included important toxic species associated with respiratory and cardiovascular risks. This study highlights progress in reducing PM2.5 levels in the region, which has been impacted by local policies but emphasizes current and future challenges related mainly to secondary aerosol formation and carbonaceous aerosol emissions. Full article
Show Figures

Figure 1

17 pages, 37086 KiB  
Article
The Discovery of Buried Archaeological Structures at Saepinum and the Villa of Neratii (Valley of Tammaro River, Italy) Through Data-Adaptive Probability-Based Electrical Resistivity Tomography Using the Tensorial Acquisition Mode
by Andrea Capozzi, Marilena Cozzolino, Federica Fasano, Vincenzo Gentile and Paolo Mauriello
Appl. Sci. 2025, 15(10), 5346; https://doi.org/10.3390/app15105346 - 10 May 2025
Viewed by 532
Abstract
The Valley of Tammaro River lies between the regions of Molise and Campania in central southern Italy. The area has been inhabited since ancient times due to its fertile soil and plentiful water resources. The interest in this region is enhanced by the [...] Read more.
The Valley of Tammaro River lies between the regions of Molise and Campania in central southern Italy. The area has been inhabited since ancient times due to its fertile soil and plentiful water resources. The interest in this region is enhanced by the many urban centers and the isolated and rural building complexes that date back to the Samnite era and are connected by a road system that is still in use today. Saepinum, regarded as the symbol of Roman civilization in the Molise area (Italy), is one of these. Before becoming a Roman municipium and then a medieval and contemporary rural community, it was a Samnite trade forum and service center. A suburban villa belonging to the Gens Neratia, a family originally from the Roman municipality of Saepinum, is connected to it approximately 2 km northeast. Both sites were partially excavated, and much more can be learned from the material still available. To this end, geoelectrical studies using the tensor acquisition mode were used to conduct geophysical surveys in certain sectors. The data were processed using Data-Adaptive Probability-Based Electrical Resistivity Tomography, here adapted for the first time to Apparent Resistivity Tensor Analysis. The trace of the apparent resistivity tensor provides distortion-free maps and demonstrates that the anomalies are closely constrained on the source bodies. Full article
(This article belongs to the Special Issue Applied Geophysical Imaging and Data Processing)
Show Figures

Figure 1

20 pages, 17673 KiB  
Article
Green Infrastructure for Climate Change Mitigation: Assessment of Carbon Sequestration and Storage in the Urban Forests of Budapest, Hungary
by Éva Király, Gábor Illés and Attila Borovics
Urban Sci. 2025, 9(5), 137; https://doi.org/10.3390/urbansci9050137 - 23 Apr 2025
Viewed by 1658
Abstract
The effects of climate change are particularly pronounced in cities, where urban green infrastructure—such as trees, parks, and green spaces—plays a vital role in both climate adaptation and mitigation. This study assesses the carbon sequestration potential of urban forests in Budapest, the capital [...] Read more.
The effects of climate change are particularly pronounced in cities, where urban green infrastructure—such as trees, parks, and green spaces—plays a vital role in both climate adaptation and mitigation. This study assesses the carbon sequestration potential of urban forests in Budapest, the capital city of Hungary, which lies at the intersection of the Great Hungarian Plain and the Buda Hills, and is traversed by the Danube River. The city is characterized by a temperate climate with hot summers and cold winters, and a diverse range of soil types, including shallow Leptosols and Cambisols in the limestone and dolomite hills of Buda, well-developed Luvisols and Regosols in the valleys, Fluvisols and Arenosols in the flood-affected areas of Pest, and Technosols found on both sides of the city. The assessment utilizes data from the National Forestry Database and the Copernicus Land Monitoring Service High Resolution Layer Tree Cover Density. The results show that Budapest’s urban forests and trees contribute an estimated annual carbon offset of −41,338 tCO2, approximately 1% of the city’s total emissions. The urban forests on the Buda and Pest sides of the city exhibit notable differences in carbon sequestration and storage, age class structure, tree species composition, and naturalness. On the Buda side, older semi-natural forests dominated by native species primarily act as in situ carbon reservoirs, with limited additional sequestration capacity due to their older age, slower growth, and longer rotation periods. In contrast, the Pest-side forests, which are primarily extensively managed introduced forests and tree plantations, contain a higher proportion of non-native species such as black locust (Robinia pseudoacacia) and hybrid poplars (Populus × euramericana). Despite harsher climatic conditions, Pest-side forests perform better in carbon sink capacity compared to those on the Buda side, as they are younger, with lower carbon stocks but higher sequestration rates. Our findings provide valuable insights for the development of climate-resilient urban forestry and planning strategies, emphasizing the importance of enhancing the long-term carbon sequestration potential of urban forests. Full article
Show Figures

Graphical abstract

23 pages, 38496 KiB  
Article
A Study on Spatial and Temporal Changes and Synergies/Trade-Offs of the Production-Living-Ecological Functions in Mountainous Areas Based on the Niche Width Model
by Yaling Li, Ruoying Song and Ping Ren
Land 2025, 14(4), 743; https://doi.org/10.3390/land14040743 - 31 Mar 2025
Viewed by 391
Abstract
As a typical ecologically fragile mountainous area, Liangshan Yi Autonomous Prefecture in Sichuan Province faces challenges of irrational land resource allocation and uncoordinated urbanization. This study employs an ecological niche width model to quantify the functional status of “production-living-ecological” functions (PLEFs) between 2010–2020. [...] Read more.
As a typical ecologically fragile mountainous area, Liangshan Yi Autonomous Prefecture in Sichuan Province faces challenges of irrational land resource allocation and uncoordinated urbanization. This study employs an ecological niche width model to quantify the functional status of “production-living-ecological” functions (PLEFs) between 2010–2020. Methodologically, we integrated spatial autocorrelation analysis and Spearman’s correlation coefficients to systematically evaluate spatiotemporal synergies and trade-offs among PLEFs. Based on this, spatial clustering patterns were further analyzed using Maxwell’s triangle and K-means algorithms to delineate functional zones. Key findings include: (1) Production function (PF) and living function (LF) exhibit a “core-periphery” spatial pattern (high-value clusters in the south, low-value contiguous areas in the north), while ecological function (EF) displays a “high-low-high” ring-shaped pattern (high values in the northwest and southeast, declining in the central region due to development pressure); (2) synergy and trade-off relationships coexist in the study area. Synergies and trade-offs coexist among PLEFs. The synergistic effect between PF and EF strengthens significantly, the trade-off relationship between PF and LF weakens slightly, and the trade-off between LF and EF remains prominent; high-low (HL) clusters and low-high (LH) clusters exceed 55%; (3) based on synergy/trade-off relationships, the study area is divided into six functional zones (e.g., economic priority zones, ecological protection zones), with proposed optimization strategies such as “intensive valley development, eco-cultural tourism in border areas, and urban-rural coordination in central regions,” providing scientific support for sustainable territorial spatial utilization in mountainous areas. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

25 pages, 10825 KiB  
Article
Long-Term Subsidence Assessment by LiCSBAS and Emerging Hot Spot Analysis in Kathmandu Valley
by Sagar Rawal and Guoquan Wang
Land 2025, 14(4), 700; https://doi.org/10.3390/land14040700 - 26 Mar 2025
Viewed by 2674
Abstract
Rapid urbanization in Kathmandu Valley has strained its aquifer system, causing significant land subsidence. This study employs LiCSBAS for InSAR processing of Sentinel-1 data (2017–2024) to map subsidence-prone areas. The significant subsidence was found in northwest (Baluwatar, Samakhusi, and Manmaiju), southern (Gwarko, Patan, [...] Read more.
Rapid urbanization in Kathmandu Valley has strained its aquifer system, causing significant land subsidence. This study employs LiCSBAS for InSAR processing of Sentinel-1 data (2017–2024) to map subsidence-prone areas. The significant subsidence was found in northwest (Baluwatar, Samakhusi, and Manmaiju), southern (Gwarko, Patan, and Koteshwor), and northeast (Madhapur Thimi and Gathhaghar) regions with a maximum subsidence rate ~21 cm/yr. Subsidence has also expanded towards the outskirts and open areas in the eastern and southern parts of Lalitpur and Bhaktapur districts. Emerging hot spot analysis reveals a slowing subsidence trend in high-risk zones, possibly linked to the MWSP project reducing groundwater extraction from 58 MLD (2021) to 26 MLD (2024). Many subsidence-affected areas are located over the Kalimati and Gokarna Formations in highly urbanized areas. The key contributing factors to subsidence are soil compaction, excessive groundwater use, and urban sprawl encroaching open areas and recharge zones. These findings underscore the urgent need for sustainable groundwater management and land-use planning to promote urban resilience. Full article
(This article belongs to the Special Issue Assessing Land Subsidence Using Remote Sensing Data)
Show Figures

Figure 1

Back to TopTop