Characteristic Chemical Profile of Particulate Matter (PM2.5)—A Comparative Study Between Two Periods, Case Study in Medellín, Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Study Period
2.2. Sample Collection
2.3. Sample Analysis
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Air Pollution. 2019. Available online: https://www.who.int/health-topics/air-pollution#tab=tab_1 (accessed on 22 May 2025).
- Wang, Y.; Zhang, R.; Saravanan, R. Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis. Nat. Commun. 2014, 5, 3098. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Kim, E.; Woo, Y. The Relationship between Economic Growth and Air Pollution—A Regional Comparison between China and South Korea. Int. J. Environ. Res. Public Health 2020, 17, 2761. [Google Scholar] [CrossRef] [PubMed]
- Biagi, B.; Brattich, E.; Cintolesi, C.; Barbano, F.; Di Sabatino, S. Dynamical and chemical impacts of urban green areas on air pollution in a city environment. Urban Clim. 2025, 60, 102343. [Google Scholar] [CrossRef]
- Nakyai, T.; Santasnachok, M.; Thetkathuek, A.; Phatrabuddha, N. Influence of meteorological factors on air pollution and health risks: A comparative analysis of industrial and urban areas in Chonburi Province, Thailand. Environ. Adv. 2024, 19, 100608. [Google Scholar] [CrossRef]
- Franco, S.A.; Correa, M.A.; Aguiar, D.; Gómez, L.M.; Colorado, H.A. Characterization and source apportionment of ion and metals in PM10 in an urbanized valley in the American tropics using Principal Component Analysis and Positive Matrix Factorization. Eng. Sci. 2024, 30, 1154. [Google Scholar] [CrossRef]
- Trinh, T.T.; Trinh, T.T.; Le, T.T.; Nguyen, D.H.; Tu, B.M. Temperature inversion and air pollution relationship, and its effects on human health in Hanoi City, Vietnam. Environ. Geochem. Health 2018, 41, 929–937. [Google Scholar] [CrossRef]
- Niu, H.; Hu, W.; Pian, W.; Fan, J.; Wang, J. Evolution of atmospheric aerosol particles during a pollution accumulation process: A case study. World J. Eng. 2015, 12, 51–60. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R. Effects of atmospheric circulations on the interannual variation in PM2.5 concentrations over the Beijing–Tianjin–Hebei region in 2013–2018. Atmos. Chem. Phys. 2020, 20, 7667–7682. [Google Scholar] [CrossRef]
- Guo, W.; Yang, Y.; Zhang, J.; Han, K.; Yang, Y.; Chen, Q.; Li, S.; Zhu, Y. Effects of valley topography on ozone pollution in the Lanzhou valley: A numerical case study. Environ. Pollut. 2024, 363, 125225. [Google Scholar] [CrossRef]
- Rendón, A.M.; Salazar, J.F.; Wirth, V. Daytime air pollution transport mechanisms in stable atmospheres of narrow versus wide urban valleys. Environ. Fluid Mech. 2020, 20, 1101–1118. [Google Scholar] [CrossRef]
- Sha, T.; Ma, X.; Wang, J.; Tian, R.; Zhao, J.; Cao, F.; Zhang, Y. Improvement of inorganic aerosol component in PM2.5 by constraining aqueous-phase formation of sulfate in cloud with satellite retrievals: WRF-Chem simulations. Sci. Total Environ. 2021, 804, 150229. [Google Scholar] [CrossRef] [PubMed]
- González, C.; Aristizábal, B. Acid rain and particulate matter dynamics in a mid-sized Andean city: The effect of rain intensity on ion scavenging. Atmos. Environ. 2012, 60, 164–171. [Google Scholar] [CrossRef]
- Xu, J.; Hu, W.; Liang, D.; Gao, P. Photochemical impacts on the toxicity of PM2.5. Crit. Rev. Environ. Sci. Technol. 2020, 52, 130–156. [Google Scholar] [CrossRef]
- Correa-Ochoa, M.; Mejia-Sepulveda, J.; Saldarriaga-Molina, J.; Castro-Jiménez, C.; Aguiar-Gil, D. Evaluation of air pollution tolerance index and anticipated performance index of six plant species, in an urban tropical valley: Medellin, Colombia. Environ. Sci. Pollut. Res. 2021, 29, 7952–7971. [Google Scholar] [CrossRef]
- Luo, X.; Bing, H.; Luo, Z.; Wang, Y.; Jin, L. Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: A review. Environ. Pollut. 2019, 255, 113138. [Google Scholar] [CrossRef]
- Da CSouza, I.; Morozesk, M.; Mansano, A.S.; Mendes, V.A.; Azevedo, V.C.; Matsumoto, S.T.; Elliott, M.; Monferrán, M.V.; Wunderlin, D.A.; Fernandes, M.N. Atmospheric particulate matter from an industrial area as a source of metal nanoparticle contamination in aquatic ecosystems. Sci. Total Environ. 2020, 753, 141976. [Google Scholar] [CrossRef]
- Jeong, J.I.; Seo, J.; Park, R.J. Compromised improvement of poor visibility due to PM chemical composition changes in South Korea. Remote Sens. 2022, 14, 5310. [Google Scholar] [CrossRef]
- Correa-Ochoa, M.A.; Bedoya, R.; Gómez, L.M.; Aguiar, D.; Palacio-Tobón, C.A.; Colorado, H.A. A review on the characterization and measurement of the carbonaceous fraction of particulate matter. Sustainability 2023, 15, 8717. [Google Scholar] [CrossRef]
- Hime, N.J.; Marks, G.B.; Cowie, C.T. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources. Int. J. Environ. Res. Public Health 2018, 15, 1206. [Google Scholar] [CrossRef]
- Estokova, A.; Stevulov, N. Investigation of Suspended and Settled Particulate Matter in Indoor Air; InTech eBooks: London, UK, 2012. [Google Scholar] [CrossRef]
- Giere, R.; Querol, X. Solid particulate matter in the atmosphere. Elements 2010, 6, 215–222. [Google Scholar] [CrossRef]
- Font, A.; De Brito, J.F.; Riffault, V.; Conil, S.; Jaffrezo, J.; Bourin, A. Long-term measurements of aerosol composition at rural background sites in France: Sources, seasonality and mass closure of PM2.5. Atmos. Environ. 2024, 334, 120724. [Google Scholar] [CrossRef]
- Romaszko-Wojtowicz, A.; Dragańska, E.; Doboszyńska, A.; Glińska-Lewczuk, K. Impact of seasonal biometeorological conditions and particulate matter on asthma and COPD hospital admissions. Sci. Rep. 2025, 15, 450. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, N.; Rai, A.; Kuniyal, J.C.; Srivastava, P.; Lata, R.; Dutta, M.; Ghosh, A.; Dey, S.; Sarkar, S.; Gupta, S.; et al. Chemical Characterization and Source Apportionment of PM10 Using Receptor Models over the Himalayan Region of India. Atmosphere 2023, 14, 880. [Google Scholar] [CrossRef]
- Correa-Ochoa, M.A.; Franco, S.A.; Gómez, L.M.; Aguiar, D.; Colorado, H.A. Characterization Methods of Ions and Metals in Particulate Matter Pollutants on PM2.5 and PM10 Samples from Several Emission Sources. Sustainability 2023, 15, 4402. [Google Scholar] [CrossRef]
- Massabò, D.; Prati, P. An overview of optical and thermal methods for the characterization of carbonaceous aerosol. Deleted J. 2021, 44, 145–192. [Google Scholar] [CrossRef]
- Salcedo, D.; Alvarez-Ospina, H.; Olivares-Salazar, S.E.; Liñan-Abanto, R.N.; Castro, T. PM chemical characterization at a semi-arid urban environment in Central Mexico. Urban Clim. 2023, 52, 101723. [Google Scholar] [CrossRef]
- Alexis, N.; Lay, J.; Zeman, K.; Bennett, W.; Peden, D.; Soukup, J.; Devlin, R.; Becker, S. Biological material on inhaled coarse fraction particulate matter activates airway phagocytes in vivo in healthy volunteers. J. Allergy Clin. Immunol. 2006, 117, 1396–1403. [Google Scholar] [CrossRef]
- Aguiar-Gil, D.; Gómez-Peláez, L.M.; Álvarez-Jaramillo, T.; Correa-Ochoa, M.A.; Saldarriaga-Molina, J.C. Evaluating the impact of PM2.5 atmospheric pollution on population mortality in an urbanized valley in the American tropics. Atmos. Environ. 2020, 224, 117343. [Google Scholar] [CrossRef]
- Miyata, R.; Van Eeden, S.F. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicol. Appl. Pharmacol. 2011, 257, 209–226. [Google Scholar] [CrossRef]
- He, Z.; Guo, Q.; Wang, Z.; Li, X. A hybrid Wavelet-Based deep learning model for accurate prediction of daily surface PM2.5 concentrations in Guangzhou city. Toxics 2025, 13, 254. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, Y.; Song, W.; Yang, X.; Fan, M. Specific sources of health risks caused by size-resolved PM-bound metals in a typical coal-burning city of northern China during the winter haze event. Sci. Total Environ. 2020, 734, 138651. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Lippmann, M. Effects of Metals within Ambient Air Particulate Matter (PM) on Human Health. Inhal. Toxicol. 2008, 21, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Olstrup, H.; Johansson, C.; Forsberg, B. The use of carbonaceous particle exposure metrics in health impact calculations. Int. J. Environ. Res. Public Health 2016, 13, 249. [Google Scholar] [CrossRef] [PubMed]
- Villa, J.R.; Correa, M.A.; Gómez, L.M.; Aguiar, D.; Colorado, H.A. Chemical and morphological characterization of PM10 in an urbanized valley in the American Tropics. Eng. Sci. 2024, 30, 1181. [Google Scholar] [CrossRef]
- Gómez, L.M.; Santos, J.M.; De Almeida Albuquerque, T.T.; Reis, N.C.; Andreão, W.L.; De Fátima Andrade, M. Air quality status and trends over large cities in South America. Environ. Sci. Policy 2020, 114, 422–435. [Google Scholar] [CrossRef]
- Duque La, M.; Acuña Ra, E.; Munn, T.; Muñoz, L.C.B.; Johnson, S.; Gilbert, M.R.; Hayes-Conroy, A. What Matters Beyond Particle Matter?: Examining Air Pollution’s Synergistic Effects on Bodies and Health through Bio3Science in Medellin. Soc. Sci. Med. 2024, 361, 117331. [Google Scholar] [CrossRef]
- Gómez, M.; Dawidowski, L.; Posada, E.; Correa, M.; Saldarriaga, J.C. Chemical composition of PM2.5 in three zones of the Aburrá Valley, Medellin, Colombia. In Proceedings of the Air and Waste Management Association’s Annual Conference and Exhibition, AWMA, Orlando, FL, USA, 21–24 June 2011; pp. 2534–2545. [Google Scholar]
- Palacio, L.C.; Durango-Giraldo, G.; Zapata-Hernandez, C.; Santa-González, G.A.; Uribe, D.; Saiz, J.; Buitrago-Sierra, R.; Tobón, C. Characterization of airborne particulate matter and its toxic and proarrhythmic effects: A case study in Aburrá Valley, Colombia. Environ. Pollut. 2023, 336, 122475. [Google Scholar] [CrossRef]
- Zapata-Hernandez, C.; Durango-Giraldo, G.; Tobón, C.; Buitrago-Sierra, R. Physicochemical Characterization of Airborne Particulate Matter in Medellín, Colombia, and its Use in an In Silico Study of Ventricular Action Potential. Water Air Soil Pollut. 2020, 231, 508. [Google Scholar] [CrossRef]
- Ramírez, O.; De La Campa, A.S.; Amato, F.; Catacolí, R.A.; Rojas, N.Y.; De La Rosa, J. Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia). Environ. Pollut. 2017, 233, 142–155. [Google Scholar] [CrossRef]
- Vargas Freddy, A.; Rojas Néstor, Y. Chemical composition and mass closure for airborne particulate matter in Bogotá. Ing. Investig. 2010, 30, 105–115. [Google Scholar] [CrossRef]
- Vanegas, S.; Trejos, E.M.; Aristizábal, B.H.; Pereira, G.M.; Hernández, J.M.; Murillo, J.H.; Ramírez, O.; Amato, F.; Silva, L.F.O.; Rojas, N.Y.; et al. Spatial distribution and chemical composition of road dust in two High-Altitude Latin American cities. Atmosphere 2021, 12, 1109. [Google Scholar] [CrossRef]
- Rojano, R.; Vengoechea, A.M.; Arregocés, H.A. Indoor/outdoor relationship of particulate matter (PM10) and its chemical composition in a coastal region of Colombia. Case Stud. Chem. Environ. Eng. 2023, 8, 100397. [Google Scholar] [CrossRef]
- Parra, A.Q.; Vargas, M.J.Q.; Martínez, J.A.H. Caracterización fisicoquímica del material particuladofracción respirable PM2.5 en Pamplona-Norte de Santander-Colombia. Bistua Rev. Fac. Cienc. Basicas 2010, 8, 1–20. [Google Scholar]
- Correa, M.; Zuluaga, C.; Palacio, C.; Perez, J.; Jimenez, J. Surface wind coupling from free atmosphere winds to local winds in a tropical region within complex terrain. Case of study: Aburra Valley Antioquia, Colombia. Dyna 2019, 76, 17–27. [Google Scholar]
- Alcaldía de Medellín. Informe de Gestión Alcaldía de Medelín. 2022. Available online: https://www.medellin.gov.co/es/departamento-administrativo-de-planeacion/informe-de-gestion/ (accessed on 25 March 2025).
- AMVA. Diseño y Operacion SVCA Valle de Aburra. Área Metropolitana Valle de Aburrá. 2019. Available online: https://www.metropol.gov.co/ambiental/calidad-del-aire/Biblioteca-aire/Estudios-calidad-del-aire/Diseno-y-Operacion-SVCA-Valle-de-Aburra.pdf (accessed on 25 March 2025).
- NTC ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. Colombian Institute of Technical Standards and Certification: Bogotá, Columbia, 2017.
- US-EPA. Appendix L to Part 50—Reference Method for the Determination of Fine Particulate Matter as PM2.5 in the Atmosphere. 2017. Available online: https://www.law.cornell.edu/cfr/text/40/appendix-L_to_part_50 (accessed on 25 March 2025).
- Rovelli, S.; Cattaneo, A.; Binda, G.; Borghi, F.; Spinazzè, A.; Campagnolo, D.; Keller, M.; Fanti, G.; Ferrari, L.; Biggeri, A.; et al. How to obtain large amounts of location- and time-specific PM2.5 with homogeneous mass and composition? A possible approach, from particulate collection to chemical characterization. Atmos. Pollut. Res. 2021, 12, 101193. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. 3125 A y B: “Metals Inductively Coupled Plasma-Mass Spectrometry”. In Standard Methods for the Examination of Water and Wastewater, 22nd ed.; APHA Press: Washington, DC, USA, 2012. [Google Scholar]
- US-EPA. Compendium Method IO-3.5 Determination of Metals in Ambient Particulate Matter Using Inductively Coupled Plasma/ Mass Spectrometry (ICP/MS). Determination of Metals in Ambient Particulate Matter Using Atomic Absorption (Aa) Spectroscopy; EPA: Washington, DC, USA, 1999; pp. 1–35. [Google Scholar]
- APHA; AWWA; WEF. 4110 B: “Cromatografía de aniones con supresión química de la conductividad del disolvente”. In Standard Methods for the Examination of Water and Wastewater, 22nd ed.; APHA Press: Washington, DC, USA, 2012. [Google Scholar]
- NIOSH. Elemental Carbon (Diesel Particulate): Method 5040; Manual of Analytical Methods; NIOSH: Washington, DC, USA, 1999; pp. 1–9. [Google Scholar]
- Andrews, E.; Saxena, P.; Musarra, S.; Hildemann, L.M.; Koutrakis, P.; McMurry, P.H.; Olmez, I.; White, W.H. Concentration and composition of atmospheric aerosols from the 1995 SEAVS Experiment and a review of the closure between chemical and gravimetric measurements. J. Air Waste Manag. Assoc. 2000, 50, 648–664. [Google Scholar] [CrossRef]
- Matei, E.; Râpă, M.; Mateș, I.M.; Popescu, A.; Bădiceanu, A.; Balint, A.I.; Covaliu-Mierlă, C.I. Heavy Metals in Particulate Matter—Trends and Impacts on Environment. Molecules 2025, 30, 1455. [Google Scholar] [CrossRef]
- Rahat, M.M.R.; Rumman, R.; Ferdousi, F.K.; Zhao, S.; Siddique, M.a.B.; Zhang, G.; Liu, G.; Habib, A. Heavy Metals in Atmospheric Fine Particulate Matter (PM2.5) in Dhaka, Bangladesh: Source apportionment and associated health risks. Environ. Res. 2025, 271, 121071. [Google Scholar] [CrossRef]
- Hama, S.; Ouchen, I.; Wyche, K.P.; Cordell, R.L.; Monks, P.S. Carbonaceous aerosols in five European cities: Insights into primary emissions and secondary particle formation. Atmos. Res. 2022, 274, 106180. [Google Scholar] [CrossRef]
- Chow Judith, C.; Watson, J.G.; Kuhns, H.; Etyemezian, V.; Lowenthal, D.H.; Crow, D.; Kohl, S.D.; Engelbrecht, J.P.; Green, M.C. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere 2004, 54, 185–208. [Google Scholar] [CrossRef]
- Janssen, N.A.; Hoek, G.; Simic-Lawson, M.; Fischer, P.; Van Bree, L.; Brink, H.T.; Keuken, M.; Atkinson, R.W.; Anderson, H.R.; Brunekreef, B.; et al. Black Carbon as an Additional Indicator of the Adverse Health Effects of Airborne Particles Compared with PM10 and PM2.5. Environ. Health Perspect. 2011, 119, 1691–1699. [Google Scholar] [CrossRef] [PubMed]
- Pant, P.; Shi, Z.; Pope, F.D.; Harrison, R.M. Characterization of Traffic-Related particulate matter emissions in a road tunnel in Birmingham, UK: Trace metals and organic molecular markers. Aerosol Air Qual. Res. 2016, 17, 117–130. [Google Scholar] [CrossRef]
- Pervez, S.; Bano, S.; Watson, J.G.; Chow, J.C.; Matawle, J.L.; Shrivastava, A.; Tiwari, S.; Pervez, Y.F. Source profiles for PM10-2.5 resuspended dust and vehicle exhaust emissions in central India. Aerosol Air Qual. Res. 2018, 18, 1660–1672. [Google Scholar] [CrossRef]
- Aswini, A.; Hegde, P.; Nair, P.R.; Aryasree, S. Seasonal changes in carbonaceous aerosols over a tropical coastal location in response to meteorological processes. Sci. Total Environ. 2018, 656, 1261–1279. [Google Scholar] [CrossRef]
- Alcaldía de Medellín. Aire en el Valle de Aburrá y su Transición del Clima. Alcaldía De Medellín. Available online: https://www.medellin.gov.co/es/secretaria-medio-ambiente/calidad-del-aire/aire-en-el-valle-de-aburra/#:~:text=Durante%20%C3%A9pocas%20secas%20la%20interacci%C3%B3n,es%20transportada%20fuera%20del%20mismo (accessed on 6 April 2025).
- Pineda, B.E.; Muñoz, C.H.; Gil, H. Relevant aspects of the mobility and its relation with environment in the Valle de Aburrá: A review. Ing. Desarro. 2018, 36, 489–508. [Google Scholar] [CrossRef]
- Ecopetrol. Calidad de Combustibles. 2022. Available online: https://www.ecopetrol.com.co/wps/portal/Home/sostecnibilidad/ambiental/aire-limpio/calidad-combustibles#:~:text=En%20este%20combustible%2C%20indispensable%20para,en%20la%20oferta%20y%20demanda (accessed on 6 April 2025).
- Área Metropolitana del Valle de Aburrá. Acuerdo Metropolitano N.° 15: Por el cual se Aprueba y se Adopta el Protocolo del Plan Operacional para Enfrentar Episodios Críticos de Contaminación Atmosférica en la jurisdicción del Área Metropolitana del Valle de Aburrá (28 de Noviembre de 2016). 2016. Available online: https://www.siclas.org/wp-content/uploads/2017/02/AcuerdoProtocoloPOECA_FINAL.pdf (accessed on 6 April 2025).
- Área Metropolitana del Valle de Aburrá. Resolución Metropolitana 912 de 2017 por la Cual se Establece el Plan Integral de la Gestión de la Calidad del Aire. 2017. Available online: https://www.metropol.gov.co/GacetaVirtual/2017/Mayo%202017/Resoluci%C3%B3n%20%202017%20%20000912.pdf (accessed on 6 April 2025).
- República de Colombia. Decreto 1076 de 2015: Decreto Único Reglamentario del Sector Ambiente y Desarrollo Sostenible. (Updated Version April 2024). 2015. Available online: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=78153 (accessed on 6 April 2025).
- Área Metropolitana del Valle de Aburrá. Resolución Metropolitana N.° 2231 de 2018: Por Medio de la cual se Declaran unas Zonas Urbanas de Aire Protegido (ZUAP) Dentro de la Jurisdicción del Área Metropolitana del Valle de Aburrá. 2018. Available online: https://www.metropol.gov.co/ambiental/calidad-del-aire/Documents/Normatividad/Resolucion-metropolitana-2231-2018-ZUAP.pdf (accessed on 6 April 2025).
- Galindo, N.; Varea, M.; Gil-Moltó, J.; Yubero, E.; Nicolás, J. The influence of meteorology on particulate matter concentrations at an urban Mediterranean location. Water Air Soil Pollut. 2010, 215, 365–372. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Xu, X.; Xu, J.; Meng, W.; Pu, W. Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing. Atmos. Environ. 2009, 43, 2893–2900. [Google Scholar] [CrossRef]
- World Health Organization. What Are the WHO Air Quality Guidelines? 2021. Available online: https://www.who.int/news-room/feature-stories/detail/what-are-the-who-air-quality-guidelines (accessed on 6 April 2025).
- Velásquez, A.M. Air Quality Spatial Distribution Analysis: Particulate Matter Exposure Inequality in Bogotá, Colombia. Repositorio Institucional Séneca. 2019. Available online: http://hdl.handle.net/1992/44292 (accessed on 6 April 2025).
- Vergara-Vásquez, E.; Beleño, L.M.H.; Castrillo-Borja, T.T.; Bolaño-Ortíz, T.R.; Camargo-Caicedo, Y.; Vélez-Pereira, A.M. Airborne particulate matter integral assessment in Magdalena department, Colombia: Patterns, health impact, and policy management. Heliyon 2024, 10, e36284. [Google Scholar] [CrossRef]
- Murillo, J.H.; Ramos, A.C.; García, F.Á.; Jiménez, S.B.; Cárdenas, B.; Mizohata, A. Chemical composition of PM2.5 particles in Salamanca, Guanajuato Mexico: Source apportionment with receptor models. Atmos. Res. 2011, 107, 31–41. [Google Scholar] [CrossRef]
- Serafeim, E.; Besis, A.; Kouras, A.; Farias, C.N.; Yera, A.B.; Pereira, G.M.; Samara, C.; De Castro Vasconcellos, P. Oxidative potential of ambient PM2.5 from São Paulo, Brazil: Variations, associations with chemical components and source apportionment. Atmos. Environ. 2023, 298, 119593. [Google Scholar] [CrossRef]
- Ministerio de Ambiente y Desarrollo Sostenible. Resolución 2254 de 2017: Por la cual se Adopta la Norma de Calidad del Aire Ambiente y se Dictan Otras Disposiciones; Ministerio de Ambiente y Desarrollo Sostenible: Bogotá, Columbia, 2017. [Google Scholar]
- Li, X.; Xu, Z.; Guan, C.; Huang, Z. Particle size distributions and OC, EC emissions from a diesel engine with the application of in-cylinder emission control strategies. Fuel 2013, 121, 20–26. [Google Scholar] [CrossRef]
- Wu, B.; Shen, X.; Cao, X.; Yao, Z.; Wu, Y. Characterization of the chemical composition of PM2.5 emitted from on-road China III and China IV diesel trucks in Beijing, China. Sci. Total Environ. 2016, 551–552, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Geng, G.; Liang, F.; Wang, X.; Lv, Z.; Lei, Y.; Huang, X.; Zhang, Q.; Liu, Y.; He, K. Changes in spatial patterns of PM2.5 pollution in China 2000–2018: Impact of clean air policies. Environ. Int. 2020, 141, 105776. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Liu, S.L.; Zhang, Z.; Du, J.; Zhou, Y.; Meng, F. Evaluating the meteorological normalized PM2.5 trend (2014–2019) in the “2+26” region of China using an ensemble learning technique. Environ. Pollut. 2020, 266 Pt 3, 115346. [Google Scholar] [CrossRef]
- Guo, Q.; He, Z.; Wang, Z. Change in Air Quality during 2014–2021 in Jinan City in China and Its Influencing Factors. Toxics 2023, 11, 210. [Google Scholar] [CrossRef]
- Shi, Y.; Li, N.; Li, Z.; Chen, M.; Chen, Z.; Wan, X. Impact of comprehensive air pollution control policies on six criteria air pollutants and acute myocardial infarction morbidity, Weifang, China: A quasi-experimental study. Sci. Total Environ. 2024, 922, 171206. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Wang, Q.; Qin, Q.; Ren, H.; Cao, J. Impacts of natural and socioeconomic factors on PM2.5 from 2014 to 2017. J. Environ. Manag. 2021, 284, 112071. [Google Scholar] [CrossRef]
- Boogaard, H.; Janssen, N.; Fischer, P.; Kos, G.; Weijers, E.; Cassee, F.; Van Der Zee, S.; De Hartog, J.; Meliefste, K.; Wang, M.; et al. Impact of low emission zones and local traffic policies on ambient air pollution concentrations. Sci. Total Environ. 2012, 435–436, 132–140. [Google Scholar] [CrossRef]
- Yabueng, N.; Wiriya, W.; Chantara, S. Influence of zero-burning policy and climate phenomena on ambient PM2.5 patterns and PAHs inhalation cancer risk during episodes of smoke haze in Northern Thailand. Atmos. Environ. 2020, 232, 117485. [Google Scholar] [CrossRef]
Period (p) | Station | Start Date | End Date | n | Location (W, N) |
---|---|---|---|---|---|
p1 | Poblado fp 1 | October 2014 | April 2015 | 25 | 75.577, 6.20897 |
Laureles | December 2014 | May 2015 | 25 | 75.591, 6.24169 | |
Robledo | January 2015 | June 2015 | 25 | 75.592, 6.27388 | |
Santa Elena 2 | January 2015 | January 2015 | 6 | 75.498, 6.23636 | |
Jardín 3 | June 2015 | June 2015 | 6 | 75.815, 5.59751 | |
p2 | Girardota 3 | April 2019 | May 2019 | 11 | 75.450, 6.37904 |
Belén | April 2019 | March 2020 | 118 | 75.612, 6.24321 | |
La Ye | April 2019 | May 2019 | 10 | 75.550, 6.18254 | |
Poblado sp 1 | April 2019 | May 2019 | 10 | 75.577, 6.20897 |
p | Station | (µg/m3) | ||||
---|---|---|---|---|---|---|
PM2.5 | Metals | Anion | OC | EC | ||
p1 | Poblado fp | 27.690 | 2.379 | 3.874 | 7.889 | 7.974 |
Laureles | 25.290 | 0.346 | 3.974 | 5.938 | 5.250 | |
Robledo | 27.247 | 1.123 | 3.953 | 9.426 | 9.674 | |
Santa Elena | 8.053 | 0.180 | 1.135 | 0.726 | 0.898 | |
Jardín | 14.435 | 0.295 | 2.874 | 2.781 | 1.238 | |
p2 | Girardota | 16.716 | 1.141 | 2.258 | 6.826 | 3.970 |
Belén | 21.729 | 2.337 | 2.600 | 7.286 | 0.896 | |
La Ye | 17.337 | 0.810 | 1.980 | 7.661 | 2.995 | |
Poblado sp | 21.247 | 1.286 | 2.575 | 8.132 | 4.395 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa-Ochoa, M.A.; Gómez-Marín, M.; Patiño-López, K.V.; Aguiar, D.; Franco, S.A. Characteristic Chemical Profile of Particulate Matter (PM2.5)—A Comparative Study Between Two Periods, Case Study in Medellín, Colombia. Sustainability 2025, 17, 5380. https://doi.org/10.3390/su17125380
Correa-Ochoa MA, Gómez-Marín M, Patiño-López KV, Aguiar D, Franco SA. Characteristic Chemical Profile of Particulate Matter (PM2.5)—A Comparative Study Between Two Periods, Case Study in Medellín, Colombia. Sustainability. 2025; 17(12):5380. https://doi.org/10.3390/su17125380
Chicago/Turabian StyleCorrea-Ochoa, Mauricio A., Miriam Gómez-Marín, Kelly Viviana Patiño-López, David Aguiar, and Santiago A. Franco. 2025. "Characteristic Chemical Profile of Particulate Matter (PM2.5)—A Comparative Study Between Two Periods, Case Study in Medellín, Colombia" Sustainability 17, no. 12: 5380. https://doi.org/10.3390/su17125380
APA StyleCorrea-Ochoa, M. A., Gómez-Marín, M., Patiño-López, K. V., Aguiar, D., & Franco, S. A. (2025). Characteristic Chemical Profile of Particulate Matter (PM2.5)—A Comparative Study Between Two Periods, Case Study in Medellín, Colombia. Sustainability, 17(12), 5380. https://doi.org/10.3390/su17125380