Long-Term Subsidence Assessment by LiCSBAS and Emerging Hot Spot Analysis in Kathmandu Valley
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Interferometric Synthetic Aperture Radar
2.3. Groundwater Level Data
2.4. Emerging Hot Spot Analysis
2.5. Geological Composition and Land-Use Data
3. Results
3.1. Land Subsidence Results
3.2. Cross-Validation
3.2.1. GNSS and Histogram Difference Technique
3.2.2. PS-InSAR Method
3.3. Temporal and Spatial Changes of Emerging Hot Spots (2017–2024)
3.4. Groundwater Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EHA | Emergency Hot Spot Analysis |
GACOS | Generic Atmospheric Correction Online Service for InSAR |
MWSP | Melamchi Water Supply Project |
KV | Kathmandu Valley |
DHM | Department of Hydrology and Meteorology |
KUKLLOS | Kathmandu Upatyaka Khanepani LimitedLine of Sight |
Appendix A
Orbit | Path | Period | Frame | Azimuth | Master | Total | Incidence | Sub Swath | |
---|---|---|---|---|---|---|---|---|---|
Asc | 85 | September 2023 | November 2024 | 88 | 350.92° | 28 March 2024 | 31 | 39.46° | IW2 |
References
- Kearns, T.J.; Wang, G.; Bao, Y.; Jiang, J.; Lee, D. Current Land Subsidence and Groundwater Level Changes in the Houston Metropolitan Area (2005–2012). J. Surv. Eng. 2015, 141, 05015002. [Google Scholar]
- Ge, L.; Ng, A.H.M.; Du, Z.; Chen, H.Y.; Li, X. Integrated Space Geodesy for Mapping Land Deformation over Choushui River Fluvial Plain, Taiwan. Int. J. Remote Sens. 2017, 38, 6319–6345. [Google Scholar] [CrossRef]
- Gao, M.; Gong, H.; Chen, B.; Li, X.; Zhou, C.; Shi, M.; Si, Y.; Chen, Z.; Duan, G. Regional Land Subsidence Analysis in Eastern Beijing Plain by InSAR Time Series and Wavelet Transforms. Remote Sens. 2018, 10, 365. [Google Scholar] [CrossRef]
- Yin, J.; Yu, D.; Wilby, R. Modelling the Impact of Land Subsidence on Urban Pluvial Flooding: A Case Study of Downtown Shanghai, China. Sci. Total Environ. 2016, 544, 744–753. [Google Scholar] [CrossRef]
- Wang, G.; Greuter, A.; Petersen, C.M.; Turco, M.J. Houston GNSS Network for Subsidence and Faulting Monitoring: Data Analysis Methods and Products. J. Surv. Eng. 2022, 148, 04022008. [Google Scholar]
- Li, Z.; Chen, Q.; Xue, Y.; Qiu, D.; Chen, H.; Kong, F.; Liu, Q. Numerical Investigation of Processes, Features, and Control of Land Subsidence Caused by Groundwater Extraction and Coal Mining: A Case Study from Eastern China. Environ. Earth Sci. 2023, 82, 82. [Google Scholar]
- Meng, D.; Chen, B.; Gong, H.; Zhang, S.; Ma, R.; Zhou, C.; Lei, K.; Xu, L.; Wang, X. Land Subsidence and Rebound Response to Groundwater Recovery in the Beijing Plain: A New Hydrological Perspective. J. Hydrol. Reg. Stud. 2025, 57, 102127. [Google Scholar]
- Tang, W.; Zhao, X.; Motagh, M.; Bi, G.; Li, J.; Chen, M.; Chen, H.; Liao, M. Land Subsidence and Rebound in the Taiyuan Basin, Northern China, in the Context of Inter-Basin Water Transfer and Groundwater Management. Remote Sens. Environ. 2022, 269, 112792. [Google Scholar]
- Wang, K.; Wang, G.; Bao, Y.; Su, G.; Wang, Y.; Shen, Q.; Zhang, Y.; Wang, H. Preventing Subsidence Reoccurrence in Tianjin: New Preconsolidation Head and Safe Pumping Buffer. Groundwater 2024, 62, 778–794. [Google Scholar]
- Zhang, W.; Zhang, T.; Fu, Z.; Ai, P.; Yao, G.; Qi, J. Emerging Spatio-Temporal Hot Spot Analysis of Beijing Subsidence Trend Detection Based on PS-InSAR. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, 48, 861–866. [Google Scholar]
- Lees, M.; Knight, R. Quantification of Record-Breaking Subsidence in California’s San Joaquin Valley. Commun. Earth Environ. 2024, 5, 677. [Google Scholar] [CrossRef]
- Davydzenka, T.; Tahmasebi, P.; Shokri, N. Unveiling the Global Extent of Land Subsidence: The Sinking Crisis. Geophys. Res. Lett. 2024, 51, e2023GL104497. [Google Scholar] [CrossRef]
- Tzampoglou, P.; Ilia, I.; Karalis, K.; Tsangaratos, P.; Zhao, X.; Chen, W. Selected Worldwide Cases of Land Subsidence Due to Groundwater Withdrawal. Water 2023, 15, 1094. [Google Scholar] [CrossRef]
- Mushrooming Concrete Houses in Kathmandu: Harms Are Visible, but a Solution Is Nowhere in Sight | Aζ South Asia. Available online: https://architexturez.net/pst/az-cf-219351-1618362841 (accessed on 14 March 2025).
- Census Nepal. 2021. Available online: https://censusnepal.cbs.gov.np/Home/Index/EN (accessed on 19 August 2024).
- Kathmandu Upatyaka Khanepani Limited (KUKL)—Water. Available online: https://kathmanduwater.org/ (accessed on 19 August 2024).
- Dahal, A.; Khanal, R.; Mishra, B.K. Identification of Critical Location for Enhancing Groundwater Recharge in Kathmandu Valley, Nepal. Groundw. Sustain. Dev. 2019, 9, 100253. [Google Scholar] [CrossRef]
- United Nations Development Programme, Bureau for Crisis Prevention and Recovery. Reducing Disaster Risk: A Challenge for Development: A Global Report. Disaster and Crisis Management; United Nations: New York, NY, USA, 2004; p. 143.
- Acharya, P.; Sharma, K.; Acharya, I.P. Seismic Liquefaction Risk Assessment of Critical Facilities in Kathmandu Valley, Nepal. GeoHazards 2021, 2, 153–171. [Google Scholar] [CrossRef]
- Bhattarai, R.; Alifu, H.; Maitiniyazi, A.; Kondoh, A. Detection of Land Subsidence in Kathmandu Valley, Nepal, Using DInSAR Technique. Land 2017, 6, 39. [Google Scholar] [CrossRef]
- Krishnan, P.V.S.; Kim, D.; Jung, J. Land Subsidence Monitoring in the Kathmandu Basin, Before and After MW 7.8 Gorkha Earthquake, Nepal by Sbas-Dinsar Technique. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: New York, NY, USA, 2018; pp. 525–528. [Google Scholar]
- Kumahara, Y.; Chamlagain, D.; Upreti, B.N. Geomorphic Features of Active Faults around the Kathmandu Valley, Nepal, and No Evidence of Surface Rupture Associated with the 2015 Gorkha Earthquake along the Faults. Earth Planets Space 2016, 68, 1–8. [Google Scholar] [CrossRef]
- Bhandari, S. Detecting Surface Displacement in Kathmandu Valley with Persistent Scatterer Interferometry. J. Geoinform. Nepal 2022, 21, 23–29. [Google Scholar] [CrossRef]
- Huang, J.; Sinclair, H.; Pokhrel, P.; Watson, C.S. Rapid Subsidence in the Kathmandu Valley Recorded Using Sentinel-1 InSAR. Int. J. Remote Sens. 2024, 45, 1–20. [Google Scholar] [CrossRef]
- Privileges Documentation Esri Developer. Documentation; Esri Developer: Redlands, CA, USA, 2025. [Google Scholar]
- Khan, S.D.; Faiz, M.I.; Gadea, O.C.A.; Ahmad, L. Study of Land Subsidence by Radar Interferometry and Hot Spot Analysis Techniques in the Peshawar Basin, Pakistan. Egypt. J. Remote Sens. Space Sci. 2023, 26, 173–184. [Google Scholar] [CrossRef]
- Sakai, H. Stratigraphic Division and Sedimentary Facies of the Kathmandu Basin Group, Central Nepal. J. Nepal Geol. Soc. 2001, 25, 19–32. [Google Scholar]
- Stocklin, J.; Bhattarai, K.D. Geology of Kathmandu Area and Central Mahabharat Range, Nepal Himalaya. HMG/UNDP Mineral Exploration Project; Technical Report; HMG/UNDP Mineral Exploration Project: Kathmandu, Nepal, 1977; 128p. [Google Scholar]
- Paudel, M.R.; Sakai, H. Stratigraphy and Depositional Environments of Basin-Fill Sediments in Southern Kathmandu Valley, Central Nepal. Bull. Dep. Geol. 2008, 11, 61–70. [Google Scholar]
- Yoshida, M. Neogene to Quartenery Lacustrine Sediments In The Kathmandu Valley, Nepal. J. Nepal Geol. Soc. Spec. Issue 1984, 4, 73–100. [Google Scholar]
- Pandey, V.P.; Chapagain, S.K.; Kazama, F. Evaluation of Groundwater Environment of Kathmandu Valley. Environ. Earth Sci. 2010, 60, 1329–1342. [Google Scholar] [CrossRef]
- JICA (Japan International Cooperation Agency). Groundwater Management Project in the Kathmandu Valley, Final; Japan International Cooperation Agency: Kathmandu, Nepal, 1990. [Google Scholar]
- Asahi, K. Thankot Active Fault in the Kathmandu Valley, Nepal Himalaya. J. Nepal Geol. Soc. 2003, 28, 1–8. [Google Scholar]
- Cresswell, R.G.; Bauld, J.; Jacobson, G.; Khadka, M.S.; Jha, M.G.; Shrestha, M.P.; Regmi, S. A First Estimate of Ground Water Ages for the Deep Aquifer of the Kathmandu Basin, Nepal, Using the Radioisotope Chlorine-36. Groundwater 2001, 39, 449–457. [Google Scholar]
- Ghimire, S.; Dwivedi, S.K.; Acharya, K.K. Pattern of Ground Deformation in Kathmandu Valley during 2015 Gorkha Earthquake, Central Nepal. In Proceedings of the AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2016; Volume 2016, p. S33D-2859. [Google Scholar]
- Morishita, Y.; Lazecky, M.; Wright, T.J.; Weiss, J.R.; Elliott, J.R.; Hooper, A. LiCSBAS: An Open-Source InSAR Time Series Analysis Package Integrated with the LiCSAR Automated Sentinel-1 InSAR Processor. Remote Sens. 2020, 12, 424. [Google Scholar]
- Wright, T.J.; Gonzalez, P.J.; Walters, R.J.; Hatton, E.L.; Spaans, K.; Hooper, A.J. LiCSAR: Tools for Automated Generation of Sentinel-1 Frame Interferograms. In Proceedings of the AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2016; Volume 2016, p. G23A-1037. [Google Scholar]
- Manzo, M.; Ricciardi, G.P.; Casu, F.; Ventura, G.; Zeni, G.; Borgström, S.; Berardino, P.; Del Gaudio, C.; Lanari, R. Surface Deformation Analysis in the Ischia Island (Italy) Based on Spaceborne Radar Interferometry. J. Volcanol. Geotherm. Res. 2006, 151, 399–416. [Google Scholar] [CrossRef]
- Pandey, V.P.; Kazama, F. Hydrogeologic Characteristics of Groundwater Aquifers in Kathmandu Valley, Nepal. Environ. Earth Sci. 2011, 62, 1723–1732. [Google Scholar] [CrossRef]
- Gurung, J.K.; Ishiga, H.; Khadka, M.S.; Shrestha, N.R. The Geochemical Study of Fluvio-Lacustrine Aquifers in the Kathmandu Basin (Nepal) and the Implications for the Mobilization of Arsenic. Environ. Geol. 2007, 52, 503–517. [Google Scholar]
- Metcalf & Eddy, Inc.; CEMAT Consultants Ltd. Urban Water Supply Reforms in the Kathmandu Valley; Asian Development Bank: Manila, Philippines, 2000. [Google Scholar]
- Shakya, B.M.; Nakamura, T.; Kamei, T.; Shrestha, S.D.; Nishida, K. Seasonal Groundwater Quality Status and Nitrogen Contamination in the Shallow Aquifer System of the Kathmandu Valley, Nepal. Water 2019, 11, 2184. [Google Scholar] [CrossRef]
- Devkota, P.; Dhakal, S.; Shrestha, S.; Shrestha, U.B. Land Use Land Cover Changes in the Major Cities of Nepal from 1990 to 2020. Environ. Sustain. Indic. 2023, 17, 100227. [Google Scholar] [CrossRef]
- Galloway, D.L.; Jones, D.R.; Ingebritsen, S.E. Land Subsidence in the United States; Geological Survey (USGS): Reston, VA, USA, 1999; Volume 1182, ISBN 0607926961.
- GWRDB (Groundwater Resource Development Board). Vulnerability Study in Budhanilkantha and Sorrounding Area Kathmandu Nepal; Groundwater Resource Development Board: Kathmandu, Nepal, 2009. [Google Scholar]
- Khan, S.D.; Gadea, O.C.A.; Tello Alvarado, A.; Tirmizi, O.A. Surface Deformation Analysis of the Houston Area Using Time Series Interferometry and Emerging Hot Spot Analysis. Remote Sens. 2022, 14, 3831. [Google Scholar] [CrossRef]
- Mohamadi, B.; Balz, T.; Younes, A. Towards a PS-InSAR Based Prediction Model for Building Collapse: Spatiotemporal Patterns of Vertical Surface Motion in Collapsed Building Areas—Case Study of Alexandria, Egypt. Remote Sens. 2020, 12, 3307. [Google Scholar] [CrossRef]
- Emerging Hot Spot Analysis (Space Time Pattern Mining)—ArcGIS Pro Documentation. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/emerginghotspots.htm (accessed on 13 December 2024).
- Space-Time Cubes: Stack Time Like Lego—GIS Geography. Available online: https://gisgeography.com/space-time-cubes (accessed on 15 December 2024).
- Ekantipur. Available online: https://ekantipur.com (accessed on 21 December 2024).
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global Land Use/Land Cover with Sentinel 2 and Deep Learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; IEEE: New York, NY, USA, 2021; pp. 4704–4707. [Google Scholar]
- Shallow Aquifer Mapping of Kathmandu Valley. Available online: https://www.academia.edu/27155659/Shallow_Aquifer_Mapping_of_Kathmandu_Valley (accessed on 20 August 2024).
- Gilder, C.E.L.; Pokhrel, R.M.; Vardanega, P.J.; De Luca, F.; De Risi, R.; Werner, M.J.; Asimaki, D.; Maskey, P.N.; Sextos, A. The SAFER Geodatabase for the Kathmandu Valley: Geotechnical and Geological Variability. Earthq. Spectra 2020, 36, 1549–1569. [Google Scholar] [CrossRef]
- Blewitt, G.; Hammond, W.; Kreemer, C. Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos 2018, 99, e2020943118. [Google Scholar]
- Fuhrmann, T.; Garthwaite, M.C. Resolving Three-Dimensional Surface Motion with InSAR: Constraints from Multi-Geometry Data Fusion. Remote Sens. 2019, 11, 241. [Google Scholar] [CrossRef]
- UNAVCO. Available online: https://www.unavco.org/instrumentation/networks/status/other/overview/NAST (accessed on 22 January 2025).
- Radman, A.; Akhoondzadeh, M.; Hosseiny, B. Integrating InSAR and Deep-Learning for Modeling and Predicting Subsidence over the Adjacent Area of Lake Urmia, Iran. GIScience Remote Sens. 2021, 58, 1413–1433. [Google Scholar]
- Wang, Y.; Guo, Y.; Hu, S.; Li, Y.; Wang, J.; Liu, X.; Wang, L. Ground Deformation Analysis Using InSAR and Backpropagation Prediction with Influencing Factors in Erhai Region, China. Sustainability 2019, 11, 2853. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar]
- Ciampalini, A.; Raspini, F.; Lagomarsino, D.; Catani, F.; Casagli, N. Landslide Susceptibility Map Refinement Using PSInSAR Data. Remote Sens. Environ. 2016, 184, 302–315. [Google Scholar] [CrossRef]
- Delgado Blasco, J.M.; Ziemer, J.; Foumelis, M.; Dubois, C. SNAP2StaMPS v2: Increasing Features and Supported Sensors in the Open Source SNAP2StaMPS Processing Scheme; Zenodo: Stordalen Mire, Sweden, 2025. [Google Scholar] [CrossRef]
- Hooper, A.; Spaans, K.; Bekaert, D.; Cuenca, M.C.; Arıkan, M.; Oyen, A. StaMPS/MTI Manual. Delft Institute of Earth Observation and Space Systems; Delft University of Technology, Kluyverweg: Delft, The Netherlands, 2010; Volume 1, p. 2629. [Google Scholar]
- ChangeKathmandu. Available online: https://x.com/ChangeKathmandu (accessed on 19 December 2024).
- ICIMOD. Available online: https://geoapps.icimod.org/ktmbeforeafter (accessed on 10 January 2025).
- Bagheri-Gavkosh, M.; Hosseini, S.M.; Ataie-Ashtiani, B.; Sohani, Y.; Ebrahimian, H.; Morovat, F.; Ashrafi, S. Land Subsidence: A Global Challenge. Sci. Total Environ. 2021, 778, 146193. [Google Scholar] [CrossRef] [PubMed]
- Malla, R.; Shrestha, S.; Chapagain, S.K.; Shakya, M.; Nakamura, T.; Malla, R.; Shrestha, S.; Chapagain, S.K.; Shakya, M.; Nakamura, T. Physico-Chemical and Oxygen-Hydrogen Isotopic Assessment of Bagmati and Bishnumati Rivers and the Shallow Groundwater along the River Corridors in Kathmandu Valley, Nepal. J. Water Resour. Prot. 2015, 7, 1435–1448. [Google Scholar] [CrossRef]
- Prajapati, R.; Overkamp, N.N.; Moesker, N.; Happee, K.; van Bentem, R.; Danegulu, A.; Manandhar, B.; Devkota, N.; Thapa, A.B.; Upadhyay, S.; et al. Streams, Sewage, and Shallow Groundwater: Stream-Aquifer Interactions in the Kathmandu Valley, Nepal. Sustain. Water Resour. Manag. 2021, 7, 1–18. [Google Scholar]
- Bajracharya, R.; Nakamura, T.; Shakya, B.M.; Nishida, K.; Das Shrestha, S.; Tamrakar, N.K. Identification of River Water and Groundwater Interaction at Central Part of the Kathmandu Valley, Nepal Using Stable Isotope Tracers. Int. J. Adv. Sci. Tech. Res. 2018, 8, 29–41. [Google Scholar] [CrossRef]
- Martinelli, G.; Chahoud, A.; Dadomo, A.; Fava, A. Isotopic Features of Emilia-Romagna Region (North Italy) Groundwaters: Environmental and Climatological Implications. J. Hydrol. 2014, 519, 1928–1938. [Google Scholar] [CrossRef]
- Shakya, B.M.; Nakamura, T.; Das Shrestha, S.; Nishida, K. Identifying the Deep Groundwater Recharge Processes in an Intermountain Basin Using the Hydrogeochemical and Water Isotope Characteristics. Hydrol. Res. 2019, 50, 1216–1229. [Google Scholar] [CrossRef]
- Shrestha, G.; Shakya, B.M.; Shrestha, M.B.; Khadka, U.R. Water Infiltration Rate in the Kathmandu Valley of Nepal amidst Present Urbanization and Land-Use Change. H2Open J. 2023, 6, 1–14. [Google Scholar] [CrossRef]
- Thapa, B.R.; Ishidaira, H.; Gusyev, M.; Pandey, V.P.; Udmale, P.; Hayashi, M.; Shakya, N.M. Implications of the Melamchi Water Supply Project for the Kathmandu Valley Groundwater System. Water Policy 2019, 21, 120–137. [Google Scholar] [CrossRef]
- Shrestha, P.K.; Shakya, N.M.; Pandey, V.P.; Birkinshaw, S.J.; Shrestha, S. Model-Based Estimation of Land Subsidence in Kathmandu Valley, Nepal. Geomat. Nat. Hazards Risk 2017, 8, 974–996. [Google Scholar] [CrossRef]
- Luitel, S.; Ghimire, S.; Chaulagain, S.; Sah, S.; Khatri Thapa, D.; Lamichhane, S.; Civil, B.E. Assessment of Land Subsidence Pattern in Pokhara Valley Using Sentinel-1 InSAR Processing. J. Eng. Technol. Plan. 2024, 5, 27–37. [Google Scholar]
Hydrogeological Units | Geological Formations | Region | Age | Sediment Types |
---|---|---|---|---|
Shallow Aquifer | Itaiti | Southern | 1 myr–present | Gravel, sand, silty sand |
Patan | Central | 19 kyr–11 kyr | Sand, gravel, sand clay, gravelly clay | |
Thimi and Gokarna | Northern | Thimi (29 kyr–19 kyr), Gokarna (1 myr–29 kyr) | Sand, sandy silt | |
Aquitard | Lukundol | Southern | 2.8 myr–1 myr | Clay, clayey sand, silty clay |
Kalimati | Central | 2.8 myr–30 kyr | Clay, clayey sand, lignite, silt, gravelly clay | |
Deep Aquifer | Tarebhir | Southern | Older than 2.8 myr | Sand, sandy gravel, sandy silt |
Bagmati | Central | Older than 2.8 myr | Sand, gravel, gravelly clay, sand, gravelly silt |
S.N | EHA Pattern | Observation |
---|---|---|
1. | Intensifying hot spot | High subsidence rate, increasing overtime |
2. | Persistent hot | High subsidence rate, constant over time |
3. | Diminishing hot | High subsidence rate, decreasing over time |
4. | Oscillating hot spot | Alternates between high and low subsidence phases with less than 90% high rate |
5. | Sporadic hot spot | Random subsidence rate with no fixed pattern |
6. | Diminishing hot spot | Subsidence rate decreasing over time |
7. | New hot spot | Recently emerged as a high subsidence area |
8. | Consecutive hot spot | Continuous presence of high subsidence rate |
S.N | Name | Area (ha) | Max (cm/yr) | Min (cm/yr) | Mean (cm/yr) | PCT 90 (cm/yr) |
---|---|---|---|---|---|---|
1 | Imadol | 1142 | −13.4 | −1.8 | −9.2 | −4.8 |
2 | Kaushaltar, Lokanthali | 494.7 | −12.6 | −2.3 | −8.6 | −4.9 |
3 | Patan, Satdobato | 606.92 | −13.1 | −2.6 | −9.2 | −5.7 |
4 | Kathmandu Medical College | 473.42 | −10.6 | −1.3 | −5.4 | −2.4 |
5 | Baluwatar, Lazimpat Lainchaur | 1212.73 | −21.1 | −1.5 | −10.7 | −3.6 |
6 | Koteshwor | 159.3 | −10.8 | −2.9 | −7.4 | −4.8 |
7 | Naya Baneshwor | 326.46 | −8.4 | −3.1 | −5.8 | −4.1 |
8 | Dhungedhara, SanoBharyang | 250.17 | −11.2 | −2 | −5.2 | −3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rawal, S.; Wang, G. Long-Term Subsidence Assessment by LiCSBAS and Emerging Hot Spot Analysis in Kathmandu Valley. Land 2025, 14, 700. https://doi.org/10.3390/land14040700
Rawal S, Wang G. Long-Term Subsidence Assessment by LiCSBAS and Emerging Hot Spot Analysis in Kathmandu Valley. Land. 2025; 14(4):700. https://doi.org/10.3390/land14040700
Chicago/Turabian StyleRawal, Sagar, and Guoquan Wang. 2025. "Long-Term Subsidence Assessment by LiCSBAS and Emerging Hot Spot Analysis in Kathmandu Valley" Land 14, no. 4: 700. https://doi.org/10.3390/land14040700
APA StyleRawal, S., & Wang, G. (2025). Long-Term Subsidence Assessment by LiCSBAS and Emerging Hot Spot Analysis in Kathmandu Valley. Land, 14(4), 700. https://doi.org/10.3390/land14040700