Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (163)

Search Parameters:
Keywords = urea deposits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5269 KB  
Article
Sustainable Functionalization of Natural Fibers Using Biochar: Structural and Evaporation Studies
by Juan José Quiroz Ramírez, Reinier Abreu-Naranjo, Oscar M. Rodriguez-Narvaez, Sergio Alonso Romero and Alejandro Suarez Toriello
Processes 2026, 14(3), 415; https://doi.org/10.3390/pr14030415 - 24 Jan 2026
Viewed by 178
Abstract
The sustainable valorization of lignocellulosic biomass offers a promising route for developing low-cost photothermal materials for solar water purification. This study investigates natural fibers from Opuntia ficus-indica, Agave sisalana, and cellulose sponge, which were chemically purified through alkaline–peroxide pretreatment and subsequently functionalized with [...] Read more.
The sustainable valorization of lignocellulosic biomass offers a promising route for developing low-cost photothermal materials for solar water purification. This study investigates natural fibers from Opuntia ficus-indica, Agave sisalana, and cellulose sponge, which were chemically purified through alkaline–peroxide pretreatment and subsequently functionalized with biochar via immersion and crosslinking-assisted deposition. Structural analyses (SEM, FTIR, XRD, CHNS/O) confirmed the transition from heterogeneous lignocellulosic matrices to cellulose-rich scaffolds and finally to hierarchical composites in which crystalline cellulose cores are coated with amorphous carbon structures containing aromatic domains typically formed during biomass carbonization. The NaOH/urea/citric acid crosslinking system significantly improved biochar adhesion, producing uniform and mechanically stable photothermal layers. Under 500 W m−2 illumination, the biochar-modified fibers exhibited rapid thermal response and enhanced surface heating, resulting in increased water evaporation rates, with cellulose sponge achieving the highest performance (1.12–1.25 kg m−2 h−1). Water-quality analysis of the condensate showed >97% TDS removal, complete rejection of hardness, fluoride, nitrates, arsenic, and barium, and turbidity <0.2 NTU, meeting NOM-127-SSA1-2021 standards. Overall, the findings demonstrate that biochar-functionalized natural fibers constitute a scalable, environmentally benign strategy for efficient solar-driven purification, supporting their potential for sustainable clean-water technologies in resource-limited settings. Full article
(This article belongs to the Special Issue Advances in Biochar and Biobased Carbonaceous Materials)
Show Figures

Figure 1

14 pages, 5865 KB  
Article
Microwave Synthesis of Transition Metal (Fe, Co, Ni)-Supported Catalysts for CO2 Hydrogenation
by Anna A. Strekalova, Anastasiya A. Shesterkina, Kirill A. Beresnev, Petr V. Pribytkov, Gennadiy I. Kapustin, Igor V. Mishin, Leonid M. Kustov and Alexander L. Kustov
Catalysts 2026, 16(1), 111; https://doi.org/10.3390/catal16010111 - 22 Jan 2026
Viewed by 299
Abstract
To improve the efficiency of CO2 hydrogenation, it is essential to develop new catalysts as well as new methods of producing them. In our work, we propose a new Fe-, Co-, Cu-containing catalyst preparation technique based on depositing the active component through [...] Read more.
To improve the efficiency of CO2 hydrogenation, it is essential to develop new catalysts as well as new methods of producing them. In our work, we propose a new Fe-, Co-, Cu-containing catalyst preparation technique based on depositing the active component through urea hydrolysis using microwave heating. We also compare catalysts produced with microwave synthesis to samples obtained through traditional synthesis methods, including impregnation and thermal deposition. The obtained catalysts were characterized by XRD, low-temperature N2 adsorption, SEM., and UV-VIS methods. The catalytic properties of the catalysts depend not only on the nature of the active component, but also on the preparation method. The best results for CO2 hydrogenation were achieved with Ni-containing catalysts produced by the impregnation method and microwave synthesis. Full article
Show Figures

Graphical abstract

18 pages, 3879 KB  
Article
7-Ketolithocholic Acid Exerts Anti-Renal Fibrotic Effects Through FXR-Mediated Inhibition of TGF-β/Smad and Wnt/β-Catenin Pathways
by Qicheng Guo, Lianye Peng, Jingyi Zhang, Junming Hu, Yinyin Wang, Jiali Wei and Zhihao Zhang
Pharmaceuticals 2026, 19(1), 15; https://doi.org/10.3390/ph19010015 - 21 Dec 2025
Viewed by 335
Abstract
Background/Objectives: To explore the protective effects of 7-Ketolithocholic acid (7-KLCA) against renal fibrosis and its mechanism, focusing on its interaction with farnesoid X receptor (FXR). Methods: In vitro, TGF-β-induced fibrosis in HK-2/NRK-49F cells and LPS-induced inflammation in HK-2 cells were detected by CCK-8, [...] Read more.
Background/Objectives: To explore the protective effects of 7-Ketolithocholic acid (7-KLCA) against renal fibrosis and its mechanism, focusing on its interaction with farnesoid X receptor (FXR). Methods: In vitro, TGF-β-induced fibrosis in HK-2/NRK-49F cells and LPS-induced inflammation in HK-2 cells were detected by CCK-8, Western blot, and qPCR. In vivo, unilateral ureteral obstruction (UUO) and adenine (Ade)-induced mouse models were treated with a low/high-dose 7-KLCA or losartan. Renal injury was evaluated via H&E/Masson staining, serum creatinine (SCR), and blood urea nitrogen (BUN) levels. The 7-KLCA-FXR interaction was verified by molecular docking, CETSA, and DARTS. FXR downstream genes and related proteins were measured by WB and qPCR. Results: 7-KLCA inhibited the expression of fibrotic proteins (fibronectin, collagen-I) and reduced the LPS-induced release of inflammatory factors (IL-1β, IL-6). In mice, it alleviated renal swelling, collagen deposition, and tubular damage, while lowering serum SCR and BUN levels. Mechanistically, 7-KLCA stably bound to the FXR ligand-binding domain, enhanced its thermal stability and degradation resistance. It upregulated FXR and its downstream genes SHP and FGF15, thereby inhibiting the activation of TGF-β/Smad and Wnt/β-catenin pathways. Conclusions: This is the first study to clarify the molecular mechanism through which 7-KLCA targets FXR and dually suppresses the key pro-fibrotic pathways TGF-β/Smad and Wnt/β-catenin, thereby exerting anti-renal fibrosis effects. Full article
(This article belongs to the Special Issue Novel Drug Candidates for the Treatment of Cardiac and Renal Diseases)
Show Figures

Graphical abstract

30 pages, 2947 KB  
Article
Male Rat Model of Chemical Androgen Deprivation and Estrogenization from the Perspective of Anthropometric, Histological, and Biochemical Parameters
by Pavle Ćosić, Milica Vukojević, Marko Miler, Branko Filipović, Milica Manojlović-Stojanoski and Vladimir Ajdžanović
Medicina 2026, 62(1), 8; https://doi.org/10.3390/medicina62010008 - 19 Dec 2025
Viewed by 303
Abstract
Background and Objectives: Chemical androgen deprivation and estrogenization are essential components of clinical treatment for advanced prostate cancer and male-to-female sex transition. The aim of this study was to determine the effects of these therapies on anthropometric parameters, liver histology, and biochemical [...] Read more.
Background and Objectives: Chemical androgen deprivation and estrogenization are essential components of clinical treatment for advanced prostate cancer and male-to-female sex transition. The aim of this study was to determine the effects of these therapies on anthropometric parameters, liver histology, and biochemical parameters, with the goal of establishing experimental models that accurately represent current clinical practice. Materials and Methods: Young adult Wistar rats were divided into nine groups: intact control (IC), control vehicle (CV), cyproterone acetate-treated (CA), flutamide-treated (F), control sesame oil (CO), estradiol valerate-treated (E), combined control (CC), flutamide + estradiol valerate (F + E), and cyproterone acetate + estradiol valerate (CA + E)-treated groups. Treatments were administered by subcutaneous injection for four weeks. Results: The administration of estradiol valerate, alone or combined with antiandrogens, reduced final body mass and white adipose tissue mass. Notable changes were observed in absolute and relative pituitary, liver, prostate, and testis mass in the E, F + E and CA + E groups. There were no significant changes in liver histology or glycogen deposition; however, the combined treatment groups showed an increased volume density of binucleated hepatocytes and fibrotic tissue. Regarding biochemical parameters, androgen deprivation and/or estrogenization caused marked changes in serum triglyceride, LDL (low-density lipoproteins), ALP (alkaline phosphatase), AST (aspartate aminotransferase), ALT (alanine aminotransferase), Bil-T (bilirubin), creatinine, and urea levels. Conclusions: Given the importance of these therapies in clinical practice, providing a model based on the evaluated parameters offers a solid platform for future research. Full article
(This article belongs to the Section Endocrinology)
Show Figures

Figure 1

23 pages, 4581 KB  
Article
Carbonate Inhibition in Au-Cu/γ-Al2O3 Catalysts for CO Oxidation
by Karla López, Gamaliel Che-Galicia, Rodolfo Zanella, Jesús F. Guayaquil-Sosa and Alvaro Sampieri
Catalysts 2025, 15(11), 1080; https://doi.org/10.3390/catal15111080 - 14 Nov 2025
Viewed by 739
Abstract
Incorporating Cu into gold-based catalysts effectively reduced nanoparticle sintering and free carbonate accumulation, promoting long-term preservation of catalytic surface area over time. This study explores the catalytic activity of monometallic Au and bimetallic AuCu catalysts with varying Au:Cu atomic ratios (1:0.5, 1:1, and [...] Read more.
Incorporating Cu into gold-based catalysts effectively reduced nanoparticle sintering and free carbonate accumulation, promoting long-term preservation of catalytic surface area over time. This study explores the catalytic activity of monometallic Au and bimetallic AuCu catalysts with varying Au:Cu atomic ratios (1:0.5, 1:1, and 1:1.5) that were synthesized on γ-Al2O3 via sequential deposition–precipitation with urea. The catalysts were pretreated in either air or H2 and evaluated for CO oxidation activity and stability. A comprehensive characterization (EDS, BET, TEM, H2-TPR, O2-TPO, XPS, DRIFTS, and UV–Vis) was used to investigate particle size, metal oxidation states, and redox properties. Among all materials, the AuCu 1:1 catalyst exhibited the highest low-temperature CO conversion (>90% at 0 °C) and improved stability during 24 h tests, reflecting minimal nanoparticle sintering as confirmed by TEM analysis. In situ DRIFTS revealed that the presence of Cu+ and Cu2+ minimizes the accumulation of free carbonates (one of the main deactivation pathways in Au/γ-Al2O3) while promoting the formation of reactive intermediates that facilitate CO2 production. Notably, air pretreatment at moderate temperature proved as effective as H2 pretreatment in activating both monometallic and bimetallic catalysts. These findings highlight the role of Cu as a structural and electronic promoter of gold, offering practical guidelines for designing durable, cost-effective catalysts for low-temperature CO oxidation on non-reducible supports. Full article
Show Figures

Graphical abstract

11 pages, 4227 KB  
Article
Electrochemical Urea Oxidation on Porous Ni and Ni–M (M = Ir, Pt) Electrodes Obtained via Molten-Salt Treatment Technique
by Dawid Kutyła, Michihisa Fukumoto, Hiroki Takahashi, Ryuu Takahashi, Katarzyna Skibińska and Piotr Żabiński
Materials 2025, 18(22), 5069; https://doi.org/10.3390/ma18225069 - 7 Nov 2025
Cited by 1 | Viewed by 715
Abstract
Porous Ni, Ni–Ir, and Ni–Pt electrodes were prepared on Ni substrates by molten-salt Al co-deposition followed by dealloying. SEM/EDS and XRD confirmed a Raney-type porous network with Ir or Pt present across the layer. A urea oxidation reaction (UOR) was tested in 1 [...] Read more.
Porous Ni, Ni–Ir, and Ni–Pt electrodes were prepared on Ni substrates by molten-salt Al co-deposition followed by dealloying. SEM/EDS and XRD confirmed a Raney-type porous network with Ir or Pt present across the layer. A urea oxidation reaction (UOR) was tested in 1 M NaOH + 0.33 M urea by cyclic voltammetry and chronoamperometry at +0.40 V vs. SCE (60 min). Smooth Ni showed near-zero current. Porous Ni resulted in ~11 mA cm−2 initially and ~9 mA cm−2 after 60 min. Porous Ni–Ir started at ~7 mA cm−2 and fell to ~2 mA cm−2 within 5 min, indicating fast deactivation, likely due to Ir-oxide formation that suppresses the Ni2+/Ni3+ redox couple. Porous Ni–Pt remained at ~11 mA cm−2 over 60 min, consistent with a stable Ni–Pt effect in which Pt aids urea adsorption/activation while Ni provides the redox path for oxidation. Overall, Pt improves UOR performance, whereas Ir lowers it under these conditions. Full article
(This article belongs to the Special Issue Advances in Electrodeposition of Thin Films and Alloys)
Show Figures

Figure 1

21 pages, 14313 KB  
Article
Experimental Study and Practical Application of Existing Crack Repair in Concrete Dam Tunnels Using MICP and EICP
by Xu Zhang, Yu Zhang, Huiheng Luo, Bo Peng, Yongzhi Zhang, Jiahui Yao and Mateusz Jan Jedrzejko
Buildings 2025, 15(18), 3275; https://doi.org/10.3390/buildings15183275 - 10 Sep 2025
Viewed by 1240
Abstract
Cracks in concrete dam tunnels compromise structural safety, watertightness, and durability, while conventional repair materials such as epoxy and cement impose environmental burdens. This study investigates biomineralization methods, namely Microbially Induced Calcium Carbonate Precipitation (MICP) and Enzyme-Induced Carbonate Precipitation (EICP), for repairing fine [...] Read more.
Cracks in concrete dam tunnels compromise structural safety, watertightness, and durability, while conventional repair materials such as epoxy and cement impose environmental burdens. This study investigates biomineralization methods, namely Microbially Induced Calcium Carbonate Precipitation (MICP) and Enzyme-Induced Carbonate Precipitation (EICP), for repairing fine cracks in a large hydropower dam tunnel. Laboratory tests and field applications were conducted by injecting urea–calcium solutions with Sporosarcina pasteurii for MICP and soybean-derived urease for EICP, applied twice daily over three days. Both techniques achieved effective sealing, with precipitation efficiencies of 93.75% for MICP and 84.17% for EICP. XRD analysis revealed that MICP produced a mixture of vaterite and calcite, reflecting biologically influenced crystallization, whereas EICP yielded predominantly calcite, the thermodynamically stable phase. SEM confirmed that MICP generated irregular layered clusters shaped by microbial activity, while EICP formed smoother spherical and more uniform deposits under enzyme-driven conditions. The results demonstrate that MICP provides higher efficiency and localized nucleation control, while EICP offers faster kinetics and more uniform deposition. Both methods present eco-friendly and field-applicable alternatives to conventional repair, combining technical performance with environmental sustainability for hydraulic infrastructure maintenance. Full article
Show Figures

Figure 1

22 pages, 8536 KB  
Article
Evaluation of the Effects of High Uric Acid on Glucolipid Metabolism, Renal Injury and the Gut Microbiota in Diabetic Male Hamsters with Dyslipidemia
by Liang He, Miao Miao, Qingxiangzi Li, Jufen Cheng and Rui Li
Toxics 2025, 13(9), 751; https://doi.org/10.3390/toxics13090751 - 4 Sep 2025
Cited by 1 | Viewed by 1322
Abstract
The prevalence of hyperuricemia with elevated serum uric acid is increasing worldwide. However, the effects of high uric acid on diabetic patients with dyslipidemia and the mechanisms underlying these effects remain unexplored. This study aimed to develop a novel diabetic model of hyperuricemia [...] Read more.
The prevalence of hyperuricemia with elevated serum uric acid is increasing worldwide. However, the effects of high uric acid on diabetic patients with dyslipidemia and the mechanisms underlying these effects remain unexplored. This study aimed to develop a novel diabetic model of hyperuricemia and dyslipidemia in male hamsters to evaluate the effects of high uric acid on glucolipid metabolism, renal injury and the gut microbiota. Twelve healthy hamsters were randomly divided into two groups and fed with a normal diet and high-fat/cholesterol diet (HFCD), respectively. Twenty-four diabetic hamsters were randomly divided into four groups receiving a normal diet; HFCD; potassium oxonate (PO) treatment (intragastric PO at doses of 350 mg/kg and adenine at doses of 150 mg/kg with 5% fructose water); and PO treatment with HFCD, respectively. After 4 weeks, all animals were dissected for determining serum biochemical indicators, tissue antioxidant parameters, renal pathological changes, target gene expressions, fecal short-chain fatty acids content, and the gut microbiota composition. The results showed that a hamster model with hyperuricemia and dyslipidemia was successively established by the combination of PO treatment and HFCD, in which serum uric acid, glucose, triglyceride and total cholesterol levels reached 499.5 ± 61.96 μmol/L, 16.88 ± 2.81 mmol/L, 119.88 ± 27.14 mmol/L and 72.92 ± 16.62 mmol/L, respectively. PO treatment and HFCD had synergistic effects on increasing uric acid, urea nitrogen, creatinine levels, liver xanthine oxidase activity, plasminogen activator inhibitor-1 and transforming growth factor-β expressions, and the relative abundance of Lleibacterium (p < 0.05); in addition, they caused glomerular mesangial cells and matrix proliferation, protein casts and urate deposition. High uric acid was closely related to decreased antioxidant capacity; decreased renal vascular endothelial growth factor expression; increased acetic acid content; decreased butyric, propanoic, and isobutyric acid levels; decreased Firmicutes to Bacteroidetes ratios (p < 0.05); and altered epithelial integrity and structure of the gut microbiota in diabetic hamsters. The findings indicate that high uric acid affects the glucolipid metabolism, accelerates renal damage, and disrupts the balance of intestinal flora in diabetic animals, which provides a scientific basis for metabolic syndrome prevention and control in diabetes. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Figure 1

24 pages, 4002 KB  
Article
CFD Simulation-Based Development of a Multi-Platform SCR Aftertreatment System for Heavy-Duty Compression Ignition Engines
by Łukasz Jan Kapusta, Bartosz Kaźmierski, Rohit Thokala, Łukasz Boruc, Jakub Bachanek, Rafał Rogóż, Łukasz Szabłowski, Krzysztof Badyda, Andrzej Teodorczyk and Sebastian Jarosiński
Energies 2025, 18(14), 3697; https://doi.org/10.3390/en18143697 - 13 Jul 2025
Cited by 1 | Viewed by 1144
Abstract
Combustion processes in compression ignition engines lead to the inevitable generation of nitrogen oxides, which cannot be limited to the currently desired levels just by optimising the in-cylinder processes. Therefore, simulation-based engine development needs to include all engine-related aspects which contribute to tailpipe [...] Read more.
Combustion processes in compression ignition engines lead to the inevitable generation of nitrogen oxides, which cannot be limited to the currently desired levels just by optimising the in-cylinder processes. Therefore, simulation-based engine development needs to include all engine-related aspects which contribute to tailpipe emissions. Among them, the SCR (selective catalytic reduction) aftertreatment-related processes, such as urea–water solution injection, urea decomposition, mixing, NOx catalytic reduction, and deposits’ formation, are the most challenging, and require as much attention as the processes taking place inside the cylinder. Over the last decade, the urea-SCR aftertreatment systems have evolved from underfloor designs to close-coupled (to the engine) architecture, characterised by the short mixing length. Therefore, they need to be tailor-made for each application. This study presents the CFD-based development of a multi-platform SCR system with a short mixing length for mobile non-road applications, compliant with Stage V NRE-v/c-5 emission standard. It combines multiphase dispersed flow, including wall wetting and urea decomposition kinetic reaction modelling to account for the critical aspects of the SCR system operation. The baseline system’s design was characterised by the severe deposit formation near the mixer’s outlet, which was attributed to the intensive cooling in the mounting area. Moreover, as the simulations suggested, the spray was not appropriately mixed with the surrounding gas in its primary zone. The proposed measures to reduce the wall film formation needed to account for the multi-platform application (ranging from 56 to 130 kW) and large-scale production capability. The performed simulations led to the system design, providing excellent UWS–exhaust gas mixing without a solid deposit formation. The developed system was designed to be manufactured and implemented in large-scale series production. Full article
Show Figures

Figure 1

14 pages, 3894 KB  
Article
Self-Supported Tailoring of Nickel Sulfide/CuCo Nanosheets into Hierarchical Heterostructures for Boosting Urea Oxidation Reaction
by Prince J. J. Sagayaraj, Aravind Senthilkumar, Juwon Lee, Eunkyeong Byeon, Hyoung-il Kim, Sulakshana Shenoy and Karthikeyan Sekar
Catalysts 2025, 15(7), 664; https://doi.org/10.3390/catal15070664 - 7 Jul 2025
Cited by 1 | Viewed by 1532
Abstract
Electro-oxidation of urea (UOR) in alkaline medium is one of the most effective alternative ways of producing green hydrogen, as the oxidation potential in UOR is less and thermodynamically more favorable than conventional water oxidation. The development of cost-effective materials in catalyzing UOR [...] Read more.
Electro-oxidation of urea (UOR) in alkaline medium is one of the most effective alternative ways of producing green hydrogen, as the oxidation potential in UOR is less and thermodynamically more favorable than conventional water oxidation. The development of cost-effective materials in catalyzing UOR is recently seeking more attention in the research hotspot. Suitably modifying the Ni-based catalysts towards active site creation and preventing surface passivation is much important in this context, following which we reported the synthesis of Ni3S2 (NS) supported with CuCo (CC) bimetallic (NSCC). A simple hydrothermal route for NS synthesis and the electrodeposition method for CuCo (CC) deposition is adapted in a self-supported manner. The NS and CC catalysts exhibited sheet-like morphology, as confirmed by SEM and TEM analysis. The bimetallic CC deposition prevented the surface passivation of nickel sulfide (NS) over oxygen evolution reaction (OER) and improved the charge-transfer kinetics. The NSCC catalyst catalyzed UOR in an alkaline medium, which required a lower potential of 1.335 V vs. RHE to attain the current density of 10 mAcm−2, with a lower Tafel slope value of 131 mVdec−1. In addition, a two-electrode cell setup is constructed with an operating cell voltage of 1.512 V for delivering 10 mAcm−2 current density. This study illustrates the new strategy of designing heterostructure catalysts for electrocatalytic UOR. Full article
(This article belongs to the Special Issue Homogeneous and Heterogeneous Catalytic Oxidation and Reduction)
Show Figures

Figure 1

21 pages, 2314 KB  
Article
Urea Fertilization Buffered Acid-Inhibiting Effect on Litter Decomposition in Subtropical Plantation Forests of Southern China
by Yonghui Lin, Xiangshi Kong, Zaihua He and Xingbing He
Forests 2025, 16(7), 1110; https://doi.org/10.3390/f16071110 - 4 Jul 2025
Viewed by 578
Abstract
Acid deposition, a major environmental issue causing soil acidification and microbial suppression, impacts forest nutrient cycling. Meanwhile, nitrogen (N) fertilization is widely applied in subtropical forests, yet its interaction with acid deposition on litter decomposition is unclear. We conducted a field experiment using [...] Read more.
Acid deposition, a major environmental issue causing soil acidification and microbial suppression, impacts forest nutrient cycling. Meanwhile, nitrogen (N) fertilization is widely applied in subtropical forests, yet its interaction with acid deposition on litter decomposition is unclear. We conducted a field experiment using two common tree species, Cunninghamia lanceolata and Cinnamomum camphora, and applied three acid deposition levels (0, 0.25, and 0.50 g H+ m−2 month−1) and four N fertilization levels (0, 3, 6, and 9 g N m−2 year−1) in a factorial design. Our results showed that acid deposition alone significantly reduced litter decomposition rates, with maximum mass loss decreasing by 23.6% for Cunninghamia and 36.3% for Cinnamomum (p < 0.05). Urea fertilization alone also suppressed decomposition, reducing maximum mass loss by 27.3% for Cunninghamia and 37.3% for Cinnamomum (p < 0.05). However, when combined, urea fertilization mitigated the suppressive effect of acid deposition, particularly under severe acid conditions, where maximum mass loss increased by 18.5% for Cunninghamia and 43.1% for Cinnamomum (p < 0.05). Acid deposition reduced microbial respiration and enzyme activities related to carbon cycling, while urea fertilization showed both positive and negative effects depending on the acid levels (p < 0.05). Urea can enhance the litter layer’s acid-buffering capacity, offering potential management insights for acid deposition-affected forests. Further research on microbial mechanisms across ecosystems is recommended. Full article
Show Figures

Figure 1

19 pages, 5983 KB  
Article
Fabrication of CoP@P, N-CNTs-Deposited Nickel Foam for Energy-Efficient Hydrogen Generation via Electrocatalytic Urea Oxidation
by Hany M. Youssef, Maged N. Shaddad, Saba A. Aladeemy and Abdullah M. Aldawsari
Catalysts 2025, 15(7), 652; https://doi.org/10.3390/catal15070652 - 4 Jul 2025
Cited by 2 | Viewed by 1568
Abstract
The simultaneous generation of hydrogen fuel and wastewater remediation via electrocatalytic urea oxidation has emerged as a promising approach for sustainable energy and environmental solutions. However, the practical application of this process is hindered by the limited active sites and high charge-transfer resistance [...] Read more.
The simultaneous generation of hydrogen fuel and wastewater remediation via electrocatalytic urea oxidation has emerged as a promising approach for sustainable energy and environmental solutions. However, the practical application of this process is hindered by the limited active sites and high charge-transfer resistance of conventional anode materials. In this work, we introduce a novel CoP@P, N-CNTs/NF electrocatalyst, fabricated through a facile one-step thermal annealing technique. Comprehensive characterizations confirm the successful integration of CoP nanoparticles and phosphorus/nitrogen co-doped carbon nanotubes (P, N-CNTs) onto nickel foam, yielding a unique hierarchical structure that offers abundant active sites and accelerated electron transport. As a result, the CoP@P, N-CNTs/NF electrode achieves outstanding urea oxidation reaction (UOR) performance, delivering current densities of 158.5 mA cm−2 at 1.5 V and 232.95 mA cm−2 at 1.6 V versus RHE, along with exceptional operational stability exceeding 50 h with negligible performance loss. This innovative, multi-element-doped electrode design marks a significant advancement in the field, enabling highly efficient UOR and energy-efficient hydrogen production. Our approach paves the way for scalable, cost-effective solutions that couple renewable energy generation with effective wastewater treatment. Full article
Show Figures

Figure 1

14 pages, 3070 KB  
Article
Immunosensor Enhanced with Silver Nanocrystals for On-Chip Prostate-Specific Antigen Detection
by Timothy A. Okhai, Kefilwe V. Mokwebo, Marlon Oranzie, Usisipho Feleni and Lukas W. Snyman
Biosensors 2025, 15(7), 428; https://doi.org/10.3390/bios15070428 - 3 Jul 2025
Viewed by 843
Abstract
An electrochemical immunosensor for the quantification of prostate-specific antigens (PSAs) using silver nanocrystals (AgNCs) is reported. The silver nanocrystals were synthesized using a conventional citrate reduction protocol. The silver nanocrystals were characterized using scanning electron microscopy (SEM) and field effect scanning electron microscopy [...] Read more.
An electrochemical immunosensor for the quantification of prostate-specific antigens (PSAs) using silver nanocrystals (AgNCs) is reported. The silver nanocrystals were synthesized using a conventional citrate reduction protocol. The silver nanocrystals were characterized using scanning electron microscopy (SEM) and field effect scanning electron microscopy (FESEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, and small-angle X-ray scattering (SAXS). The proposed immunosensor was fabricated on a glassy carbon electrode (GCE), sequentially, by drop-coating AgNCs, the electro-deposition of EDC-NHS, the immobilization of anti-PSA antibody (Ab), and dropping of bovine serum albumin (BSA) to prevent non-specific binding sites. Each stage of the fabrication process was characterized by cyclic voltammetry (CV). Using square wave voltammetry (SWV), the proposed immunosensor displayed high sensitivity in detecting PSA over a concentration range of 1 to 10 ng/mL with a detection limit of 1.14 ng/mL and R2 of 0.99%. The immunosensor was selective in the presence of interfering substances like glucose, urea, L-cysteine, and alpha-methylacyl-CoA racemase (AMACR) and it showed good stability and repeatability. These results compare favourably with some previously reported results on similar or related technologies for PSA detection. Full article
(This article belongs to the Special Issue Photonics for Bioapplications: Sensors and Technology—2nd Edition)
Show Figures

Figure 1

28 pages, 20644 KB  
Article
Mechanisms of Cisplatin-Induced Acute Kidney Injury: The Role of NRF2 in Mitochondrial Dysfunction and Metabolic Reprogramming
by Jihan Liu, Yiming Wang, Panshuang Qiao, Yi Ying, Simei Lin, Feng Lu, Cai Gao, Min Li, Baoxue Yang and Hong Zhou
Antioxidants 2025, 14(7), 775; https://doi.org/10.3390/antiox14070775 - 24 Jun 2025
Cited by 5 | Viewed by 4687
Abstract
Cisplatin (Cis) is a widely used chemotherapy drug, but its nephrotoxicity limits its clinical application. Acute kidney injury (AKI) is a common complication, restricting long-term use. This study investigates the mechanisms of cisplatin-induced AKI and explores potential therapeutic targets. C57BL/6J mice were intraperitoneally [...] Read more.
Cisplatin (Cis) is a widely used chemotherapy drug, but its nephrotoxicity limits its clinical application. Acute kidney injury (AKI) is a common complication, restricting long-term use. This study investigates the mechanisms of cisplatin-induced AKI and explores potential therapeutic targets. C57BL/6J mice were intraperitoneally injected with 20 mg/kg cisplatin to establish an AKI model. Serum creatinine, urea nitrogen, and tubular injury biomarkers (NGAL, KIM-1) progressively increased, indicating kidney dysfunction. Mitochondrial ATP levels significantly decreased, along with reduced mitochondrial fission and fusion, suggesting mitochondrial dysfunction. Increased oxidases and reduced antioxidants indicated redox imbalance, and metabolic reprogramming was observed, with lipid deposition, impaired fatty acid oxidation (FAO), and enhanced glycolysis in proximal tubular epithelial cells (PTECs). Nuclear factor erythroid 2-related factor 2 (NRF2) is a key transcriptional regulator of redox homeostasis and mitochondrial function. We found NRF2 levels increased early in AKI, followed by a decrease in vivo and in vitro, suggesting activation in the stress response. Nfe2l2 knockout mice showed aggravated kidney injury, characterized by worsened kidney function and histopathological damage. Mechanistically, Nfe2l2 knockout resulted in redox imbalance, reduced ATP synthesis, mitochondrial dysfunction and metabolic dysregulation. Furthermore, we activated NRF2 using dimethyl fumarate (DMF), observing a reduction in kidney damage and lipid deposition in mice. In conclusion, activating NRF2-dependent antioxidant pathways plays a crucial role in protecting against cisplatin-induced AKI. NRF2 may serve as a potential target for developing therapeutic strategies to prevent cisplatin nephrotoxicity. Full article
(This article belongs to the Special Issue Oxidative Stress and NRF2 in Health and Disease—2nd Edition)
Show Figures

Graphical abstract

10 pages, 2895 KB  
Communication
Amorphous Co-NiB@NF as an Efficient Electrocatalyst for Urea Oxidation Reaction
by Shuai Geng, Bo Hai and Heping Shi
Catalysts 2025, 15(7), 612; https://doi.org/10.3390/catal15070612 - 21 Jun 2025
Viewed by 1225
Abstract
Transition metal-based catalysts designed for efficient urea oxidation reactions (UOR) are essential for hydrogen production via urea-assisted water electrolysis. A series of amorphous nickel–cobalt boride catalysts supported on nickel foam were in situ synthesized via a stepwise chemical deposition method (SCDM). The systematic [...] Read more.
Transition metal-based catalysts designed for efficient urea oxidation reactions (UOR) are essential for hydrogen production via urea-assisted water electrolysis. A series of amorphous nickel–cobalt boride catalysts supported on nickel foam were in situ synthesized via a stepwise chemical deposition method (SCDM). The systematic investigation focused on the relationships between synthesis parameters (deposition cycles, reactant feed ratio), morphological characteristics, and UOR performance. Notably, the optimized Co-NiB@NF catalyst exhibits a porous hierarchical architecture composed of metallic nanoparticles encapsulated by surface-wrinkled nanosheets, forming abundant exposed active sites. Electrochemical measurements demonstrate that this catalyst requires a low cell potential of 1.29 V to achieve a current density of 10 mA cm−2. Moreover, it maintains 83% of the initial current density after 10 h of continuous electrolysis, highlighting its superior durability. The structural-property relationship revealed here provides valuable insights into the rational design of efficient amorphous boride catalysts for urea-assisted hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

Back to TopTop