Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,118)

Search Parameters:
Keywords = urban sustainability assessment methods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 2584 KiB  
Article
An Extended FullEX Method: An Application to the Selection of Online Orders Distribution Modes Based on the Shared Economy
by Milena Ninović, Momčilo Dobrodolac, Sara Bošković, Đorđije Dupljanin, Dragan Lazarević and Slaviša Dumnić
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 207; https://doi.org/10.3390/jtaer20030207 - 7 Aug 2025
Abstract
Urbanization and the rapid growth of e-commerce have significantly increased delivery volumes in cities, creating challenges in terms of cost, efficiency, and sustainability in last-mile delivery (LMD). To address these challenges, this paper proposes an innovative methodological framework for selecting optimal delivery strategies [...] Read more.
Urbanization and the rapid growth of e-commerce have significantly increased delivery volumes in cities, creating challenges in terms of cost, efficiency, and sustainability in last-mile delivery (LMD). To address these challenges, this paper proposes an innovative methodological framework for selecting optimal delivery strategies in urban environments, grounded in the principles of collaboration. The framework integrates an Extended FullEx method, developed to calculate criteria weights while accounting for expert reputation based on education and experience, with the MARCOS multi-criteria decision-making (MCDM) method used to rank delivery strategies. The Extended FullEx method proposed in this paper differs from the original FullEx by providing two improvements. The first concerns the introduction of the normalization procedure in the calculation of experts’ reputations, while the second addresses the different scoring of educational degrees, providing a more precise mathematical basis for the process. Four collaborative delivery strategies are evaluated against twelve sustainability-related criteria identified through an extensive literature review. The proposed framework is applied to a real-life case study in Novi Sad, Republic of Serbia. Results indicate that the most suitable delivery strategy is a hybrid model that combines the use of a consolidation center with smaller urban delivery hubs, providing practical insights for enhancing the sustainability and efficiency of urban delivery. This study contributes both methodologically, by advancing MCDM techniques, and practically, by offering decision-makers a comprehensive tool that integrates subjective expert knowledge and objective criteria assessment in the selection of sustainable LMD solutions. Full article
Show Figures

Figure 1

19 pages, 12670 KiB  
Article
Risk Assessment of Flood Disasters with Multi-Source Data and Its Spatial Differentiation Characteristics
by Wenxia Jing, Yinghua Song, Wei Lv and Junyi Yang
Sustainability 2025, 17(15), 7149; https://doi.org/10.3390/su17157149 - 7 Aug 2025
Abstract
The changing global climate and rapid urbanization make extreme rainstorm events frequent, and the flood disaster caused by rainstorm has become a prominent problem of urban public safety in China, which severely restricts the healthy and sustainable development of social economy. The weight [...] Read more.
The changing global climate and rapid urbanization make extreme rainstorm events frequent, and the flood disaster caused by rainstorm has become a prominent problem of urban public safety in China, which severely restricts the healthy and sustainable development of social economy. The weight calculation method of traditional risk assessment model is single and ignores the difference of multi-dimensional information space involved in risk analysis. This study constructs a flood risk assessment model by incorporating natural, social, and economic factors into an indicator system structured around four dimensions: hazard, exposure, vulnerability, and disaster prevention and mitigation capacity. A combination of the Analytic Hierarchy Process (AHP) and the entropy weight method is employed to optimize both subjective and objective weights. Taking the central urban area of Wuhan with a high flood risk as an example, based on the risk assessment values, spatial autocorrelation analysis, cluster analysis, outlier analysis, and hotspot analysis are applied to explore the spatial clustering characteristics of risks. The results show that the overall assessment level of flood hazard in central urban area of Wuhan is medium, the overall assessment level of exposure and vulnerability is low, and the overall disaster prevention and mitigation capability is medium. The overall flood risk levels in Wuchang and Jianghan are the highest, while some areas in Qingshan and Hanyang have the lowest levels. The spatial characteristics of each dimension evaluation index show obvious autocorrelation and spatial differentiation. These findings aim to provide valuable suggestions and references for reducing urban disaster risks and achieving sustainable urban development. Full article
(This article belongs to the Special Issue Sustainable Transport and Land Use for a Sustainable Future)
Show Figures

Figure 1

24 pages, 6924 KiB  
Article
Long-Term Time Series Estimation of Impervious Surface Coverage Rate in Beijing–Tianjin–Hebei Urbanization and Vulnerability Assessment of Ecological Environment Response
by Yuyang Cui, Yaxue Zhao and Xuecao Li
Land 2025, 14(8), 1599; https://doi.org/10.3390/land14081599 - 6 Aug 2025
Abstract
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation [...] Read more.
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation methods to convert thirty years of 30 m resolution data into 1 km resolution spatiotemporal impervious surface coverage data, constructing a long-term time series annual impervious surface coverage dataset for the Beijing–Tianjin–Hebei region. Based on this dataset, we analyzed urban expansion processes and landscape pattern indices in the Beijing–Tianjin–Hebei region, exploring the spatiotemporal response relationships of ecological environment changes. Results revealed that the impervious surface area increased dramatically from 7579.3 km2 in 1985 to 37,484.0 km2 in 2020, representing a year-on-year growth of 88.5%. Urban expansion rates showed two distinct peaks: 800 km2/year around 1990 and approximately 1700 km2/year during 2010–2015. In high-density urbanized areas with impervious surfaces, the average forest area significantly increased from approximately 2500 km2 to 7000 km2 during 1985–2005 before rapidly declining, grassland patch fragmentation intensified, while in low-density areas, grassland area showed fluctuating decline with poor ecosystem stability. Furthermore, by incorporating natural and social factors such as Fractional Vegetation Coverage (FVC), Habitat Quality Index (HQI), Land Surface Temperature (LST), slope, and population density, we assessed the vulnerability of urbanization development in the Beijing–Tianjin–Hebei region. Results showed that high vulnerability areas (EVI > 0.5) in the Beijing–Tianjin core region continue to expand, while the proportion of low vulnerability areas (EVI < 0.25) in the northern mountainous regions decreased by 4.2% in 2020 compared to 2005. This study provides scientific support for the sustainable development of the Beijing–Tianjin–Hebei urban agglomeration, suggesting location-specific and differentiated regulation of urbanization processes to reduce ecological risks. Full article
Show Figures

Figure 1

15 pages, 1337 KiB  
Article
Application of Prefabricated Public Buildings in Rural Areas with Extreme Hot–Humid Climate: A Case Study of the Yongtai County Digital Industrial Park, Fuzhou, China
by Xin Wu, Jiaying Wang, Ruitao Zhang, Qianru Bi and Jinghan Pan
Buildings 2025, 15(15), 2767; https://doi.org/10.3390/buildings15152767 - 6 Aug 2025
Abstract
Accomplishing China’s national targets of carbon peaking and carbon neutrality necessitates proactive solutions, hinging critically on fundamentally transforming rural construction models. Current construction practices in rural areas are characterized by inefficiency, high resource consumption, and reliance on imported materials. These shortcomings not only [...] Read more.
Accomplishing China’s national targets of carbon peaking and carbon neutrality necessitates proactive solutions, hinging critically on fundamentally transforming rural construction models. Current construction practices in rural areas are characterized by inefficiency, high resource consumption, and reliance on imported materials. These shortcomings not only jeopardize the attainment of climate objectives, but also hinder equitable development between urban and rural regions. Using the Digital Industrial Park in Yongtai County, Fuzhou City, as a case study, this study focuses on prefabricated public buildings in regions with extreme hot–humid climate, and innovatively integrates BIM (Building Information Modeling)-driven carbon modeling with the Gaussian Two-Step Floating Catchment Area (G2SFCA) method for spatial accessibility assessment to investigate the carbon emissions and economic benefits of prefabricated buildings during the embodied stage, and analyzes the spatial accessibility of prefabricated building material suppliers in Fuzhou City and identifies associated bottlenecks, seeking pathways to promote sustainable rural revitalization. Compared with traditional cast-in-situ buildings, embodied carbon emissions of prefabricated during their materialization phase significantly reduced. This dual-perspective approach ensures that the proposed solutions possess both technical rigor and logistical feasibility. Promoting this model across rural areas sharing similar climatic conditions would advance the construction industry’s progress towards the dual carbon goals. Full article
Show Figures

Figure 1

11 pages, 1226 KiB  
Proceeding Paper
Assessment of Nature-Based Solutions’ Impact on Urban Air Quality Using Remote Sensing
by Paloma C. Toscan, Alcindo Neckel, Emanuelle Goellner, Marcos L. S. Oliveira and Eduardo N. B. Pereira
Eng. Proc. 2025, 94(1), 15; https://doi.org/10.3390/engproc2025094015 - 5 Aug 2025
Abstract
Urban air pollution poses a significant challenge to public health and sustainable development, particularly in mid-sized cities with limited monitoring capabilities. This study investigates the impact of Nature-Based Solutions (NBS) on air quality and Land Surface Temperature (LST) in Guimarães, Portugal. The first [...] Read more.
Urban air pollution poses a significant challenge to public health and sustainable development, particularly in mid-sized cities with limited monitoring capabilities. This study investigates the impact of Nature-Based Solutions (NBS) on air quality and Land Surface Temperature (LST) in Guimarães, Portugal. The first phase involves mapping pollutants and assessing European guidelines, traditional monitoring methods, and emerging tools such as sensors and satellite data. The findings indicate gaps in spatial coverage, emphasizing the importance of integrating data from Sentinel-3, Sentinel-5P, local sensors, and drones. These insights establish a foundation for the next phase, which involves predictive modeling of NBS, LST, and pollutants using machine learning techniques to support data-driven policy-making. Full article
Show Figures

Figure 1

15 pages, 412 KiB  
Article
Analysis of Risk Factors in the Renovation of Old Underground Commercial Spaces in Resource-Exhausted Cities: A Case Study of Fushun City
by Kang Wang, Meixuan Li and Sihui Dong
Sustainability 2025, 17(15), 7041; https://doi.org/10.3390/su17157041 - 3 Aug 2025
Viewed by 272
Abstract
Resource-exhausted cities have long played a key role in national energy development. Urban renewal projects, such as the renovation of old underground commercial spaces, can improve urban vitality and promote sustainable development. However, in resource-based cities, traditional industries dominate, while new industries such [...] Read more.
Resource-exhausted cities have long played a key role in national energy development. Urban renewal projects, such as the renovation of old underground commercial spaces, can improve urban vitality and promote sustainable development. However, in resource-based cities, traditional industries dominate, while new industries such as modern commerce develop slowly. This results in low economic dynamism and weak motivation for urban development. To address this issue, we propose a systematic method for analyzing construction risks during the decision-making stage of renovation projects. The method includes three steps: risk value assessment, risk factor identification, and risk weight calculation. First, unlike previous studies that only used SWOT for risk factor analysis, we also applied it for project value assessment. Then, using the Work Breakdown Structure–Risk Breakdown Structure framework method (WBS-RBS), we identified specific risk sources by analyzing key construction technologies throughout the entire lifecycle of the renovation project. Finally, to enhance expert consensus, we proposed an improved Delphi–Analytic Hierarchy Process method (Delphi–AHP) to calculate risk indicator weights for different construction phases. The risk analysis covered all lifecycle stages of the renovation and upgrading project. The results show that in the Fushun city renovation case study, the established framework—consisting of five first-level indicators and twenty s-level indicators—enables analysis of renovation projects. Among these, management factors and human factors were identified as the most critical, with weights of 0.3608 and 0.2017, respectively. The proposed method provides a structured approach to evaluating renovation risks, taking into account the specific characteristics of construction work. This can serve as a useful reference for ensuring safe and efficient implementation of underground commercial space renovation projects in resource-exhausted cities. Full article
Show Figures

Figure 1

24 pages, 10417 KiB  
Article
Landscape Ecological Risk Assessment of Peri-Urban Villages in the Yangtze River Delta Based on Ecosystem Service Values
by Yao Xiong, Yueling Li and Yunfeng Yang
Sustainability 2025, 17(15), 7014; https://doi.org/10.3390/su17157014 - 1 Aug 2025
Viewed by 219
Abstract
The rapid urbanization process has accelerated the degradation of ecosystem services (ESs) in peri-urban rural areas of the Yangtze River Delta (YRD), leading to increasing landscape ecological risks (LERs). Establishing a scientifically grounded landscape ecological risk assessment (LERA) system and corresponding control strategies [...] Read more.
The rapid urbanization process has accelerated the degradation of ecosystem services (ESs) in peri-urban rural areas of the Yangtze River Delta (YRD), leading to increasing landscape ecological risks (LERs). Establishing a scientifically grounded landscape ecological risk assessment (LERA) system and corresponding control strategies is therefore imperative. Using rural areas of Jiangning District, Nanjing as a case study, this research proposes an optimized dual-dimensional coupling assessment framework that integrates ecosystem service value (ESV) and ecological risk probability. The spatiotemporal evolution of LER in 2000, 2010, and 2020 and its key driving factors were further studied by using spatial autocorrelation analysis and geodetector methods. The results show the following: (1) From 2000 to 2020, cultivated land remained dominant, but its proportion decreased by 10.87%, while construction land increased by 26.52%, with minimal changes in other land use types. (2) The total ESV increased by CNY 1.67 × 109, with regulating services accounting for over 82%, among which water bodies contributed the most. (3) LER showed an overall increasing trend, with medium- to highest-risk areas expanding by 55.37%, lowest-risk areas increasing by 10.10%, and lower-risk areas decreasing by 65.48%. (4) Key driving factors include landscape vulnerability, vegetation coverage, and ecological land connectivity, with the influence of distance to road becoming increasingly significant. This study reveals the spatiotemporal evolution characteristics of LER in typical peri-urban villages. Based on the LERA results, combined with terrain features and ecological pressure intensity, the study area was divided into three ecological management zones: ecological conservation, ecological restoration, and ecological enhancement. Corresponding zoning strategies were proposed to guide rural ecological governance and support regional sustainable development. Full article
Show Figures

Figure 1

15 pages, 1071 KiB  
Article
A Synthetic Difference-in-Differences Approach to Assess the Impact of Shanghai’s 2022 Lockdown on Ozone Levels
by Yumin Li, Jun Wang, Yuntong Fan, Chuchu Chen, Jaime Campos Gutiérrez, Ling Huang, Zhenxing Lin, Siyuan Li and Yu Lei
Sustainability 2025, 17(15), 6997; https://doi.org/10.3390/su17156997 - 1 Aug 2025
Viewed by 242
Abstract
Promoting sustainable development requires a clear understanding of how short-term fluctuations in anthropogenic emissions affect urban environmental quality. This is especially relevant for cities experiencing rapid industrial changes or emergency policy interventions. Among key environmental concerns, variations in ambient pollutants like ozone (O [...] Read more.
Promoting sustainable development requires a clear understanding of how short-term fluctuations in anthropogenic emissions affect urban environmental quality. This is especially relevant for cities experiencing rapid industrial changes or emergency policy interventions. Among key environmental concerns, variations in ambient pollutants like ozone (O3) are closely tied to both public health and long-term sustainability goals. However, traditional chemical transport models often face challenges in accurately estimating emission changes and providing timely assessments. In contrast, statistical approaches such as the difference-in-differences (DID) model utilize observational data to improve evaluation accuracy and efficiency. This study leverages the synthetic difference-in-differences (SDID) approach, which integrates the strengths of both DID and the synthetic control method (SCM), to provide a more reliable and accurate analysis of the impacts of interventions on city-level air quality. Using Shanghai’s 2022 lockdown as a case study, we compare the deweathered ozone (O3) concentration in Shanghai to a counterfactual constructed from a weighted average of cities in the Yangtze River Delta (YRD) that did not undergo lockdown. The quasi-natural experiment reveals an average increase of 4.4 μg/m3 (95% CI: 0.24–8.56) in Shanghai’s maximum daily 8 h O3 concentration attributable to the lockdown. The SDID method reduces reliance on the parallel trends assumption and improves the estimate stability through unit- and time-specific weights. Multiple robustness checks confirm the reliability of these findings, underscoring the efficacy of the SDID approach in quantitatively evaluating the causal impact of emission perturbations on air quality. This study provides credible causal evidence of the environmental impact of short-term policy interventions, highlighting the utility of SDID in informing adaptive air quality management. The findings support the development of timely, evidence-based strategies for sustainable urban governance and environmental policy design. Full article
Show Figures

Figure 1

26 pages, 4949 KiB  
Article
Sustainable Mobility in Barcelona: Trends, Challenges and Policies for Urban Decarbonization
by Carolina Sifuentes-Muñoz, Blanca Arellano and Josep Roca
Sustainability 2025, 17(15), 6964; https://doi.org/10.3390/su17156964 - 31 Jul 2025
Viewed by 206
Abstract
The Barcelona Metropolitan Area (AMB) has implemented various policies to reduce car use and promote more sustainable mobility. Initiatives such as superblocks, Low Emission Zones (LEZs), and the Bicivia network aim to transform the urban model in response to environmental and congestion challenges. [...] Read more.
The Barcelona Metropolitan Area (AMB) has implemented various policies to reduce car use and promote more sustainable mobility. Initiatives such as superblocks, Low Emission Zones (LEZs), and the Bicivia network aim to transform the urban model in response to environmental and congestion challenges. However, the high reliance on private vehicles for intermunicipal travel, uneven infrastructure, and social resistance to certain changes remain significant issues. This study examines the evolution of mobility patterns and assesses the effectiveness of the above policies in fostering real and sustainable change. A mixed-methods approach was adopted, which combined an exploratory factor analysis (EFA) of 2011–2024 data, trend linear regression, and a comparative international analysis. The EFA identified four key structural dimensions: traditional transport infrastructure, active mobility and bus lines, public bicycles and mixed use, and transport efficiency and punctuality. The findings reveal a clear reduction in private car use and an increase in sustainable modes of transport. This indicates that there are prospects for future transformation. Nonetheless, challenges persist in intermunicipal mobility and the public acceptance of the measures. This study provides empirical and comparative evidence and emphasizes the need for integrated metropolitan governance to achieve a resilient and sustainable urban model. Full article
Show Figures

Figure 1

24 pages, 11280 KiB  
Article
Identifying Landscape Character in Multi-Ethnic Areas in Southwest China: The Case of the Miao Frontier Corridor
by Yanjun Liu, Xiaomei Li, Shangjun Lu, Liyun Xie and Zongsheng Huang
Land 2025, 14(8), 1571; https://doi.org/10.3390/land14081571 - 31 Jul 2025
Viewed by 353
Abstract
The landscapes of China’s multi-ethnic areas are rich in natural and cultural value, but they are threatened by homogenization and urbanization. This study aims to establish a method for identifying and classifying the landscape characters in China’s multi-ethnic areas to support the protection [...] Read more.
The landscapes of China’s multi-ethnic areas are rich in natural and cultural value, but they are threatened by homogenization and urbanization. This study aims to establish a method for identifying and classifying the landscape characters in China’s multi-ethnic areas to support the protection and sustainable development of the landscape in these areas. Taking the Miao Frontier Corridor as an example, the study optimized a parameterization method of landscape character assessment (LCA), integrated relevant cultural and natural elements, and used the K-means clustering algorithm to determine the landscape character types and regions of the Miao Frontier Corridor. The results show that (1) the natural conditions, ethnic exchanges, and historical institutions of the Miao Frontier Corridor have had a significant impact on its overall landscape; and (2) using ethnic group culture as a cultural element in LCA helps to reveal the unique cultural value of areas with different landscape characters. This study expands the LCA framework and applies it to multi-ethnic areas in China, thereby establishing a database that can serve as the basis for cross-regional landscape protection, management, and development planning in these areas. The research methods can be widely used in other multi-ethnic areas in China. Full article
Show Figures

Figure 1

26 pages, 6390 KiB  
Article
The Impact of Land Use Patterns on Nitrogen Dioxide: A Case Study of Klaipėda City and Lithuanian Resort Areas
by Aistė Andriulė, Erika Vasiliauskienė, Remigijus Dailidė and Inga Dailidienė
Sustainability 2025, 17(15), 6939; https://doi.org/10.3390/su17156939 - 30 Jul 2025
Viewed by 313
Abstract
Urban air pollution remains a significant environmental and public health issue, especially in European coastal cities such as Klaipėda. However, there is still a lack of local-scale knowledge on how land use structure influences pollutant distribution, highlighting the need to address this gap. [...] Read more.
Urban air pollution remains a significant environmental and public health issue, especially in European coastal cities such as Klaipėda. However, there is still a lack of local-scale knowledge on how land use structure influences pollutant distribution, highlighting the need to address this gap. This study addresses this by examining the spatial distribution of nitrogen dioxide (NO2) concentrations in Klaipėda’s seaport city and several inland and coastal resort towns in Lithuania. The research specifically asks how different land cover types and demographic factors affect NO2 variability and population exposure risk. Data were collected using passive sampling methods and analyzed within a GIS environment. The results revealed clear air quality differences between industrial/port zones and greener resort areas, confirmed by statistically significant associations between land cover types and pollutant levels. Based on these findings, a Land Use Pollution Pressure index (LUPP) and its population-weighted variant (PLUPP) were developed to capture demographic sensitivity. These indices provide a practical decision-support tool for sustainable urban planning, enabling the assessment of pollution risks and the forecasting of air quality changes under different land use scenarios, while contributing to local climate adaptation and urban environmental governance. Full article
(This article belongs to the Special Issue Sustainable Land Use and Management, 2nd Edition)
Show Figures

Figure 1

21 pages, 1456 KiB  
Article
Life Cycle Assessment of Land Use Trade-Offs in Indoor Vertical Farming
by Ana C. Cavallo, Michael Parkes, Ricardo F. M. Teixeira and Serena Righi
Appl. Sci. 2025, 15(15), 8429; https://doi.org/10.3390/app15158429 - 29 Jul 2025
Viewed by 239
Abstract
Urban agriculture (UA) is emerging as a promising strategy for sustainable food production in response to growing environmental pressures. Indoor vertical farming (IVF), combining Controlled Environment Agriculture (CEA) with Building-Integrated Agriculture (BIA), enables efficient resource use and year-round crop cultivation in urban settings. [...] Read more.
Urban agriculture (UA) is emerging as a promising strategy for sustainable food production in response to growing environmental pressures. Indoor vertical farming (IVF), combining Controlled Environment Agriculture (CEA) with Building-Integrated Agriculture (BIA), enables efficient resource use and year-round crop cultivation in urban settings. This study assesses the environmental performance of a prospective IVF system located on a university campus in Portugal, focusing on the integration of photovoltaic (PV) energy as an alternative to the conventional electricity grid (GM). A Life Cycle Assessment (LCA) was conducted using the Environmental Footprint (EF) method and the LANCA model to account for land use and soil-related impacts. The PV-powered system demonstrated lower overall environmental impacts, with notable reductions across most impact categories, but important trade-offs with decreased soil quality. The LANCA results highlighted cultivation and packaging as key contributors to land occupation and transformation, while also revealing trade-offs associated with upstream material demands. By combining EF and LANCA, the study shows that IVF systems that are not soil-based can still impact soil quality indirectly. These findings contribute to a broader understanding of sustainability in urban farming and underscore the importance of multi-dimensional assessment approaches when evaluating emerging agricultural technologies. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
Show Figures

Figure 1

19 pages, 1844 KiB  
Article
Urban Expansion and the Loss of Agricultural Lands and Forest Cover in Limbe, Cameroon
by Lucy Deba Enomah, Joni Downs, Michael Acheampong, Qiuyan Yu and Shirley Tanyi
Remote Sens. 2025, 17(15), 2631; https://doi.org/10.3390/rs17152631 - 29 Jul 2025
Viewed by 289
Abstract
Using LULC change detection analysis, it is possible to identify changes due to urbanization, deforestation, or a natural disaster in an area. As population growth and urbanization increase, real-time solutions for the effects of urbanization on land use are required to assess its [...] Read more.
Using LULC change detection analysis, it is possible to identify changes due to urbanization, deforestation, or a natural disaster in an area. As population growth and urbanization increase, real-time solutions for the effects of urbanization on land use are required to assess its implications for food security and livelihood. This study seeks to identify and quantify recent LULC changes in Limbe, Cameroon, and to measure rates of conversion between agricultural, forest, and urban lands between 1986 and 2020 using remote sensing and GIS. Also, there is a deficiency of research employing these data to evaluate the efficiency of LULC satellite data and a lack of awareness by local stakeholders regarding the impact on LULC change. The changes were identified in four classes utilizing maximum supervised classification in ENVI and ArcGIS environments. The classification result reveals that the 2020 image has the highest overall accuracy of 94.6 while the 2002 image has an overall accuracy of 89.2%. The overall gain for agriculture was approximately 4.6 km2, urban had an overall gain of nearly 12.7 km2, while the overall loss for forest was −16.9 km2 during this period. Much of the land area previously occupied by forest is declining as pressures for urban areas and new settlements increase. This study’s findings have significant policy implications for sustainable land use and food security. It also provides a spatial method for monitoring LULC variations that can be used as a framework by stakeholders who are interested in environmentally conscious development and sustainable land use practices. Full article
Show Figures

Figure 1

31 pages, 1247 KiB  
Review
A Review of Water Quality Forecasting and Classification Using Machine Learning Models and Statistical Analysis
by Amar Lokman, Wan Zakiah Wan Ismail and Nor Azlina Ab Aziz
Water 2025, 17(15), 2243; https://doi.org/10.3390/w17152243 - 28 Jul 2025
Viewed by 488
Abstract
The prediction and management of water quality are critical to ensure sustainable water resources, particularly in regions like Malaysia, where rivers face increasing pollution from industrialisation, agriculture, and urban expansion. This review aims to provide a comprehensive analysis of machine learning (ML) models [...] Read more.
The prediction and management of water quality are critical to ensure sustainable water resources, particularly in regions like Malaysia, where rivers face increasing pollution from industrialisation, agriculture, and urban expansion. This review aims to provide a comprehensive analysis of machine learning (ML) models and statistical methods applied in forecasting and classification of water quality. A particular focus is given to hybrid models that integrate multiple approaches to improve predictive accuracy and robustness. This study also reviews water quality standards and highlights the environmental context that necessitates advanced predictive tools. Statistical techniques such as residual analysis, principal component analysis (PCA), and feature importance assessment are also explored to enhance model interpretability and reliability. Comparative tables of model performance, strengths, and limitations are presented alongside real-world applications. Despite recent advancements, challenges remain in data quality, model interpretability, and integration of spatio-temporal and fuzzy logic techniques. This review identifies key research gaps and proposes future directions for developing transparent, adaptive, and accurate models. The findings can also guide researchers and policymakers towards the development of smart water quality management systems that enhance decision-making and ecological sustainability. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

19 pages, 88349 KiB  
Article
Dynamic Assessment of Street Environmental Quality Using Time-Series Street View Imagery Within Daily Intervals
by Puxuan Zhang, Yichen Liu and Yihua Huang
Land 2025, 14(8), 1544; https://doi.org/10.3390/land14081544 - 27 Jul 2025
Viewed by 317
Abstract
Rapid urbanization has intensified global settlement density, significantly increasing the importance of urban street environmental quality, which profoundly affects residents’ physical and psychological well-being. Traditional methods for evaluating urban environmental quality have largely overlooked dynamic perceptual changes occurring throughout the day, resulting in [...] Read more.
Rapid urbanization has intensified global settlement density, significantly increasing the importance of urban street environmental quality, which profoundly affects residents’ physical and psychological well-being. Traditional methods for evaluating urban environmental quality have largely overlooked dynamic perceptual changes occurring throughout the day, resulting in incomplete assessments. To bridge this methodological gap, this study presents an innovative approach combining advanced deep learning techniques with time-series street view imagery (SVI) analysis to systematically quantify spatio-temporal variations in the perceived environmental quality of pedestrian-oriented streets. It further addresses two central questions: how perceived environmental quality varies spatially across sections of a pedestrian-oriented street and how these perceptions fluctuate temporally throughout the day. Utilizing Golden Street, a representative living street in Shanghai’s Changning District, as the empirical setting, street view images were manually collected at 96 sampling points across multiple time intervals within a single day. The collected images underwent semantic segmentation using the DeepLabv3+ model, and emotional scores were quantified through the validated MIT Place Pulse 2.0 dataset across six subjective indicators: “Safe,” “Lively,” “Wealthy,” “Beautiful,” “Depressing,” and “Boring.” Spatial and temporal patterns of these indicators were subsequently analyzed to elucidate their relationships with environmental attributes. This study demonstrates the effectiveness of integrating deep learning models with time-series SVI for assessing urban environmental perceptions, providing robust empirical insights for urban planners and policymakers. The results emphasize the necessity of context-sensitive, temporally adaptive urban design strategies to enhance urban livability and psychological well-being, ultimately contributing to more vibrant, secure, and sustainable pedestrian-oriented urban environments. Full article
(This article belongs to the Special Issue Planning for Sustainable Urban and Land Development, Second Edition)
Show Figures

Figure 1

Back to TopTop