Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (871)

Search Parameters:
Keywords = urban river basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1786 KiB  
Article
Simulation and Control of Water Pollution Load in the Xiaoxingkai Lake Basin Based on a System Dynamics Model
by Yaping Wu, Dan Chen, Fujia Li, Mingming Feng, Ping Wang, Lingang Hao and Chunnuan Deng
Sustainability 2025, 17(15), 7167; https://doi.org/10.3390/su17157167 (registering DOI) - 7 Aug 2025
Abstract
With the rapid development of the social economy, human activities have increasingly disrupted water environments, and the continuous input of pollutants poses significant challenges for water environment management. Taking the Xiaoxingkai Lake basin as the study area, this paper develops a social–economic–water environment [...] Read more.
With the rapid development of the social economy, human activities have increasingly disrupted water environments, and the continuous input of pollutants poses significant challenges for water environment management. Taking the Xiaoxingkai Lake basin as the study area, this paper develops a social–economic–water environment model based on the system dynamics methodology, incorporating subsystems for population, agriculture, and water pollution. The model focuses on four key indicators of pollution severity, namely, total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), and ammonia nitrogen (NH3-N), and simulates the changes in pollutant loads entering the river under five different scenarios from 2020 to 2030. The results show that agricultural non-point sources are the primary contributors to TN (79.5%) and TP (73.7%), while COD primarily originates from domestic sources (64.2%). NH3-N is mainly influenced by urban domestic activities (44.7%) and agricultural cultivation (41.2%). Under the status quo development scenario, pollutant loads continue to rise, with more pronounced increases under the economic development scenario, thus posing significant sustainability risks. The pollution control enhancement scenario is most effective in controlling pollutants, but it does not promote socio-economic development and has high implementation costs, failing to achieve coordinated socio-economic and environmental development in the region. The dual-reinforcement scenario and moderate-reinforcement scenario achieve a balance between pollution control and economic development, with the moderate-reinforcement scenario being more suitable for long-term regional development. The findings can provide a scientific basis for water resource management and planning in the Xiaoxingkai Lake basin. Full article
23 pages, 7494 KiB  
Article
Temporal and Spatial Evolution of Grey Water Footprint in the Huai River Basin and Its Influencing Factors
by Xi Wang, Yushuo Zhang, Qi Wang, Jing Xu, Fuju Xie and Weiying Xu
Sustainability 2025, 17(15), 7157; https://doi.org/10.3390/su17157157 (registering DOI) - 7 Aug 2025
Abstract
To evaluate water pollution status and sustainable development potential in the Huai River Basin, this study focused on the spatiotemporal evolution and influencing factors of the grey water footprint (GWF) across 35 cities in the basin from 2005 to 2020. This study quantifies [...] Read more.
To evaluate water pollution status and sustainable development potential in the Huai River Basin, this study focused on the spatiotemporal evolution and influencing factors of the grey water footprint (GWF) across 35 cities in the basin from 2005 to 2020. This study quantifies the GWF from agricultural, industrial, and domestic perspectives and analyzes its spatial disparities by incorporating spatial autocorrelation analysis. The Tapio decoupling model was applied to explore the relationship between pollution and economic growth, and geographic detectors along with the STIRPAT model were utilized to identify driving factors. The results revealed no significant global spatial clustering of GWF in the basin, but a pattern of “high in the east and west, low in the north and south” emerged, with high-value areas concentrated in southern Henan and northern Jiangsu. By 2020, 85.7% of cities achieved strong decoupling, indicating improved coordination between the environment and economy. Key driving factors included primary industry output, crop sown area, and grey water footprint intensity, with a notable interaction between agricultural output and grey water footprint intensity. The quantitative analysis based on the STIRPAT model demonstrated that seven factors, including grey water footprint intensity and total crop sown area, exhibited significant contributions to influencing variations. Ranked by importance, these factors were grey water footprint intensity > total crop sown area > urbanization rate > population size > secondary industry output > primary industry output > industrial wastewater discharge, collectively explaining 90.2% of the variability in GWF. The study provides a robust scientific basis for water pollution control and differentiated management in the river basin and holds significant importance for promoting sustainable development of the basin. Full article
Show Figures

Figure 1

20 pages, 876 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Urban Ecological Resilience: Evidence from the Yellow River Basin, China
by Zhongjie Zhang and Yu Wu
Sustainability 2025, 17(15), 7114; https://doi.org/10.3390/su17157114 - 6 Aug 2025
Abstract
Improving the ecological resilience in the Yellow River Basin is a crucial way to achieve ecological conservation and high-quality development in the region. Based on the panel data from 2011 to 2023 of 57 cities in the Yellow River Basin, the ecological resilience [...] Read more.
Improving the ecological resilience in the Yellow River Basin is a crucial way to achieve ecological conservation and high-quality development in the region. Based on the panel data from 2011 to 2023 of 57 cities in the Yellow River Basin, the ecological resilience of each city was measured by using the Catastrophe Progression Model, and its spatial differences and dynamic evolution characteristics were analyzed by the Dagum Gini coefficient and kernel density estimation. At the same time, the STIRPAT model was integrated with the random forest model to identify the key factors influencing urban ecological resilience. The results demonstrated the following: (1) The urban ecological resilience in the Yellow River Basin exhibited a slight upward trend during 2011–2020 and presented a gradient spatial pattern with “high in the east and low in the west”. (2) Hypervariation density is the main source of spatial difference in urban ecological resilience, with trailing and polarization phenomena across the entire basin and its three major subregions. (3) There was significant regional heterogeneity of influences in the urban ecological resilience, with upstream, midstream, and downstream regions characterized by low interference intensity, high sensitivity, and strong adaptability, respectively. Full article
Show Figures

Figure 1

20 pages, 5967 KiB  
Article
Inundation Modeling and Bottleneck Identification of Pipe–River Systems in a Highly Urbanized Area
by Jie Chen, Fangze Shang, Hao Fu, Yange Yu, Hantao Wang, Huapeng Qin and Yang Ping
Sustainability 2025, 17(15), 7065; https://doi.org/10.3390/su17157065 - 4 Aug 2025
Viewed by 114
Abstract
The compound effects of extreme climate change and intensive urban development have led to more frequent urban inundation, highlighting the urgent need for the fine-scale evaluation of stormwater drainage system performance in high-density urban built-up areas. A typical basin, located in Shenzhen, was [...] Read more.
The compound effects of extreme climate change and intensive urban development have led to more frequent urban inundation, highlighting the urgent need for the fine-scale evaluation of stormwater drainage system performance in high-density urban built-up areas. A typical basin, located in Shenzhen, was selected, and a pipe–river coupled SWMM was developed and calibrated via a genetic algorithm to simulate the storm drainage system. Design storm scenario analyses revealed that regional inundation occurred in the central area of the basin and the enclosed culvert sections of the midstream river, even under a 0.5-year recurrence period, while the downstream open river channels maintained a substantial drainage capacity under a 200-year rainfall event. To systematically identify bottleneck zones, two novel metrics, namely, the node cumulative inundation volume and the conduit cumulative inundation length, were proposed to quantify the local inundation severity and spatial interactions across the drainage network. Two critical bottleneck zones were selected, and strategic improvement via the cross-sectional expansion of pipes and river culverts significantly enhanced the drainage efficiency. This study provides a practical case study and transferable technical framework for integrating hydraulic modeling, spatial analytics, and targeted infrastructure upgrades to enhance the resilience of drainage systems in high-density urban environments, offering an actionable framework for sustainable urban stormwater drainage system management. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

41 pages, 4553 KiB  
Review
Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review
by Yue Li, Yihui Li, Siyuan Zhang, Tianyi Gao, Zhaoyi Gao, Chin Wei Lai, Ping Xiang and Fengqi Yang
Toxics 2025, 13(8), 616; https://doi.org/10.3390/toxics13080616 - 24 Jul 2025
Viewed by 771
Abstract
With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist [...] Read more.
With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist in understanding their spatiotemporal distribution, cross-media migration mechanisms, and cascading ecotoxicological consequences. This review systematically investigates the global distribution patterns of ECs in aquatic environments over the past five years and evaluates their potential ecological risks. Furthermore, it examines the performance of various treatment technologies, focusing on economic cost, efficiency, and environmental sustainability. Methodologically aligned with PRISMA 2020 guidelines, this study implements dual independent screening protocols, stringent inclusion–exclusion criteria (n = 327 studies). Key findings reveal the following: (1) Occurrences of ECs show geographical clustering in highly industrialized river basins, particularly in Asia (37.05%), Europe (24.31%), and North America (14.01%), where agricultural pharmaceuticals and fluorinated compounds contribute disproportionately to environmental loading. (2) Complex transboundary pollutant transport through atmospheric deposition and oceanic currents, coupled with compound-specific partitioning behaviors across water–sediment–air interfaces. (3) Emerging hybrid treatment systems (e.g., catalytic membrane bioreactors, plasma-assisted advanced oxidation) achieve > 90% removal for recalcitrant ECs, though requiring 15–40% cost reductions for scalable implementation. This work provides actionable insights for developing adaptive regulatory frameworks and advancing green chemistry principles in environmental engineering practice. Full article
Show Figures

Graphical abstract

27 pages, 18522 KiB  
Article
Summer Cooling Effect of Rivers in the Yangtze Basin, China: Magnitude, Threshold and Mechanisms
by Pan Xiong, Dongjie Guan, Yanli Su and Shuying Zeng
Land 2025, 14(8), 1511; https://doi.org/10.3390/land14081511 - 22 Jul 2025
Viewed by 254
Abstract
Under the dual pressures of global climate warming and rapid urbanization, the Yangtze River Basin, as the world’s largest urban agglomeration, is facing intensifying thermal environmental stress. Although river ecosystems demonstrate significant thermal regulation functions, their spatial thresholds of cooling effects and multiscale [...] Read more.
Under the dual pressures of global climate warming and rapid urbanization, the Yangtze River Basin, as the world’s largest urban agglomeration, is facing intensifying thermal environmental stress. Although river ecosystems demonstrate significant thermal regulation functions, their spatial thresholds of cooling effects and multiscale driving mechanisms have remained to be systematically elucidated. This study retrieved land surface temperature (LST) using the split window algorithm and quantitatively analyzed the changes in the river cold island effect and its driving mechanisms in the Yangtze River Basin by combining multi-ring buffer analysis and the optimal parameter-based geographical detector model. The results showed that (1) forest land is the main land use type in the Yangtze River Basin, with built-up land having the largest area increase. Affected by natural, socioeconomic, and meteorological factors, the summer temperatures displayed a spatial pattern of “higher in the east than the west, warmer in the south than the north”. (2) There are significant differences in the cooling magnitude among different land types. Forest land has the maximum daytime cooling distance (589 m), while construction land has the strongest cooling magnitude (1.72 °C). The cooling effect magnitude is most pronounced in upstream areas of the basin, reaching 0.96 °C. At the urban agglomeration scale, the Chengdu–Chongqing urban agglomeration shows the greatest temperature reduction of 0.90 °C. (3) Elevation consistently demonstrates the highest explanatory power for LST spatial variability. Interaction analysis shows that the interaction between socioeconomic factors and elevation is generally the strongest. This study provides important spatial decision support for formulating basin-scale ecological thermal regulation strategies based on refined spatial layout optimization, hierarchical management and control, and a “natural–societal” dual-dimensional synergistic regulation system. Full article
Show Figures

Graphical abstract

16 pages, 2024 KiB  
Article
Spatiotemporal Dynamics and Driving Factors of Phytoplankton Community Structure in the Liaoning Section of the Liao River Basin in 2010, 2015, and 2020
by Kang Peng, Zhixiong Hu, Rui Pang, Mingyue Li and Li Liu
Water 2025, 17(15), 2182; https://doi.org/10.3390/w17152182 - 22 Jul 2025
Viewed by 234
Abstract
This study aimed to analyse the spatiotemporal evolution of phytoplankton community dynamics and its underlying mechanisms in the Liaoning section of the Liao River Basin in 2010, 2015, and 2020. Phytoplankton species diversity increased significantly, with an increase from three phyla and 31 [...] Read more.
This study aimed to analyse the spatiotemporal evolution of phytoplankton community dynamics and its underlying mechanisms in the Liaoning section of the Liao River Basin in 2010, 2015, and 2020. Phytoplankton species diversity increased significantly, with an increase from three phyla and 31 species in 2010 to six phyla and 74 species in 2020. Concurrent increases in α-diversity indicated continuous improvements in habitat heterogeneity. The community structure shifted from a diatom-dominated assemblage to a green algae–diatom co-dominated configuration, contributing to an enhanced water purification capacity. The upstream agricultural zone (Tieling section) had elevated biomass and low diversity, indicating persistent non-point-source pollution stress. The midstream urban–industrial zone (Shenyang–Anshan section) emerged as a phytoplankton diversity hotspot, likely due to expanding niche availability in response to point-source pollution control. The downstream wetland zone (Panjin section) exhibited significant biomass decline and delayed diversity recovery, shaped by the dual pressures of resource competition and habitat filtering. The driving mechanism of community succession shifted from nutrient-dominated factors (NH3-N, TN) to redox-sensitive factors (DO, pH). These findings support a ‘zoned–graded–staged’ ecological restoration strategy for the Liao River Basin and inform the use of phytoplankton as bioindicators in watershed monitoring networks. Full article
(This article belongs to the Special Issue Water Environment Pollution and Control, 4th Edition)
Show Figures

Figure 1

22 pages, 13221 KiB  
Article
Multi-Scenario Simulation of Ecosystem Service Value in Xiangjiang River Basin, China, Based on the PLUS Model
by Lisha Tang, Jingzhi Li, Chenmei Xie and Miao Wang
Land 2025, 14(7), 1482; https://doi.org/10.3390/land14071482 - 17 Jul 2025
Viewed by 278
Abstract
With rapid socio-economic development, excessive anthropogenic consumption and the exploitation of natural resources have impaired the self-healing, supply, and carrying capacities of ecosystems. The assessment and prediction of ecosystem service values (ESVs) are crucial for the coordinated development of ecology and economy. This [...] Read more.
With rapid socio-economic development, excessive anthropogenic consumption and the exploitation of natural resources have impaired the self-healing, supply, and carrying capacities of ecosystems. The assessment and prediction of ecosystem service values (ESVs) are crucial for the coordinated development of ecology and economy. This research examines the Xiangjiang River Basin and combines land use data from 1995 to 2020, Landsat images, meteorological data, and socio-economic data. These data are incorporated into the PLUS model to simulate land use patterns in 2035 under the following five scenarios: natural development, economic development, farmland protection, ecological protection, and coordinated development. Additionally, this research analyzes the dynamics of land use and changes in ESVs in the Xiangjiang River Basin. The results show that between 1995 and 2020 in the Xiangjiang River Basin, urbanization accelerated, human activities intensified, and the construction land area expanded significantly, while the areas of forest, farmland, and grassland decreased continuously. Based on multi-scenario simulations, the ESV showed the largest and smallest declines under economic development and ecological protection scenarios, respectively. This results from the economic development scenario inducing a rapid expansion in construction land. In contrast, construction land expansion was restricted under the ecological protection scenario, because the ecological functions of forests and water bodies were prioritized. This research proposes land use strategies to coordinate ecological protection and economic development to provide a basis for sustainable development in the Xiangjiang River Basin and constructing a national ecological security barrier, as well as offer Chinese experience and local cases for global ecological environment governance. Full article
Show Figures

Figure 1

23 pages, 5120 KiB  
Article
Diagnosis of Performance and Obstacles of Integrated Management of Three-Water in Chaohu Lake Basin
by Jiangtao Kong, Yongchao Liu, Jialin Li and Hongbo Gong
Water 2025, 17(14), 2135; https://doi.org/10.3390/w17142135 - 17 Jul 2025
Viewed by 229
Abstract
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower [...] Read more.
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower reaches of the Yangtze River, undertaking such functions as agricultural irrigation, urban water supply, and flood control and storage. Studying the performance of “three-water” in the Chaohu Lake Basin will help to understand the pollution mechanism and governance dilemma in the lake basin. It also provides practical experience and policy references for the ecological protection and high-quality development of the Yangtze River Basin. We used the DPSIR-TOPSIS model to analyze the performance of the river–lake system in the Chaohu Lake Basin and employed an obstacle model to identify factors influencing “three-water.” The results indicated that overall governance and performance of the “three-water” in the Chaohu Lake Basin exhibited an upward trend from 2011 to 2022. Specifically, the obstacle degree of driving force decreased by 19.6%, suggesting that economic development enhanced governance efforts. Conversely, the obstacle degree of pressure increased by 34.4%, indicating continued environmental stress. The obstacle degree of state fluctuated, showing a decrease of 13.2% followed by an increase of 3.8%, demonstrating variability in the effectiveness of water resource, environmental, and ecological management. Additionally, the obstacle degree of impact declined by 12.8%, implying the reduced efficacy of governmental measures in later stages. Response barriers decreased by 5.8%. Variations in the obstacle degree of response reflected differences in response capacities. Spatially, counties and districts at the origins of major rivers and their lake outlets showed lower performance levels in “three-water” management compared to other regions in the basin. Notably, Wuwei City and Feidong County exhibited better governance performance, while Feixi County and Chaohu City showed lower performance levels. Despite significant progress in water resource management, environmental improvement, and ecological restoration, further policy support and targeted countermeasures remain necessary. Counties and districts should pursue coordinated development, leverage the radiative influence of high-performing areas, deepen regional collaboration, and optimize, governance strategies to promote sustainable development. Full article
Show Figures

Figure 1

20 pages, 8902 KiB  
Article
Spatiotemporal Variation Patterns of and Response Differences in Water Conservation in China’s Nine Major River Basins Under Climate Change
by Qian Zhang and Yuhai Bao
Atmosphere 2025, 16(7), 837; https://doi.org/10.3390/atmos16070837 - 10 Jul 2025
Viewed by 238
Abstract
As a crucial manifestation of ecosystem water regulation and supply functions, water conservation plays a vital role in regional ecosystem development and sustainable water resource management. This study investigates nine major Chinese river basins (Songliao, Haihe, Huaihe, Yellow, Yangtze, Pearl, Southeast Rivers, Southwest [...] Read more.
As a crucial manifestation of ecosystem water regulation and supply functions, water conservation plays a vital role in regional ecosystem development and sustainable water resource management. This study investigates nine major Chinese river basins (Songliao, Haihe, Huaihe, Yellow, Yangtze, Pearl, Southeast Rivers, Southwest Rivers, and Inland Rivers) through integrated application of the InVEST model and geographical detector model. We systematically examine the spatiotemporal heterogeneity of water conservation capacity and its driving mechanisms from 1990 to 2020. The results reveal a distinct northwest–southeast spatial gradient in water conservation across China, with lower values predominating in northwestern regions. Minimum conservation values were recorded in the Inland River Basin (15.88 mm), Haihe River Basin (42.07 mm), and Yellow River Basin (43.55 mm), while maximum capacities occurred in the Pearl River Basin (483.68 mm) and Southeast Rivers Basin (517.21 mm). Temporal analysis showed interannual fluctuations, peaking in 2020 at 130.98 mm and reaching its lowest point in 2015 at 113.04 mm. Precipitation emerged as the dominant factor governing spatial patterns, with higher rainfall correlating strongly with enhanced conservation capacity. Land cover analysis revealed superior water retention in vegetated areas (forests, grasslands, and cultivated land) compared to urbanized and bare land surfaces. Our findings demonstrate that water conservation dynamics result from synergistic interactions among multiple factors rather than single-variable influences. Accordingly, we propose that future water resource policies adopt an integrated management approach addressing climate patterns, land use optimization, and socioeconomic factors to develop targeted conservation strategies. Full article
Show Figures

Figure 1

19 pages, 2183 KiB  
Systematic Review
Mercury Scenario in Fish from the Amazon Basin: Exploring the Interplay of Social Groups and Environmental Diversity
by Thaís de Castro Paiva, Inácio Abreu Pestana, Lorena Nascimento Leite Miranda, Gabriel Oliveira de Carvalho, Wanderley Rodrigues Bastos and Daniele Kasper
Toxics 2025, 13(7), 580; https://doi.org/10.3390/toxics13070580 - 10 Jul 2025
Viewed by 478
Abstract
The Amazon faces significant challenges related to mercury contamination, including naturally elevated concentrations and gold mining activities. Due to mercury’s toxicity and the importance of fish as a protein source for local populations, assessing mercury levels in regional fish is crucial. However, there [...] Read more.
The Amazon faces significant challenges related to mercury contamination, including naturally elevated concentrations and gold mining activities. Due to mercury’s toxicity and the importance of fish as a protein source for local populations, assessing mercury levels in regional fish is crucial. However, there are gaps in knowledge regarding mercury concentrations in many areas of the Amazon basin. This study aims to synthesize the existing literature on mercury concentrations in fish and the exposure of urban and traditional social groups through fish consumption. A systematic review (1990–2022) was conducted for six fish genera (Cichla spp., Hoplias spp. and Plagioscion spp., Leporinus spp., Semaprochilodus spp., and Schizodon spp.) in the Web of Science (Clarivate Analytics) and Scopus (Elsevier) databases. The database consisted of a total of 46 studies and 455 reports. The distribution of studies in the region was not homogeneous. The most studied regions were the Madeira River sub-basin, while the Paru–Jari basin had no studies. Risk deterministic and probabilistic assessments based on Joint FAO/WHO Expert Committee on Food Additives (JECFA, 2007) guidelines showed high risk exposure, especially for traditional communities. Carnivorous fish from lakes and hydroelectric reservoirs, as well as fish from black-water ecosystems, exhibited higher mercury concentrations. In the Amazon region, even if mercury levels in fish muscle do not exceed regulatory limits, the high fish consumption can still elevate health risks for local populations. Monitoring mercury levels across a broader range of fish species, including both carnivorous and non-carnivorous species, especially in communities heavily reliant on fish for their diet, will enable a more accurate risk assessment and provide an opportunity to recommend fish species with lower mercury exposure risk for human consumption. The present study emphasizes the need to protect regions that already exhibit higher levels of mercury—such as lakes, hydroelectric reservoirs, and black-water ecosystems—to ensure food safety and safeguard public health. Full article
(This article belongs to the Special Issue Mercury Cycling and Health Effects—2nd Edition)
Show Figures

Figure 1

26 pages, 5129 KiB  
Article
HEC-RAS-Based Evaluation of Water Supply Reliability in the Dry Season of a Cold-Region Reservoir in Mudanjiang, Northeast China
by Peng-Fei Lu, Chang-Lei Dai, Yuan-Ming Wang, Xiao Yang and Xin-Yu Wang
Sustainability 2025, 17(14), 6302; https://doi.org/10.3390/su17146302 - 9 Jul 2025
Viewed by 339
Abstract
Under the influence of global climate change, water conservancy projects located in the high-latitude cold regions of the world are facing severe challenges. This study addresses the contradiction between water supply stability and ecological flow during the dry season in cold regions. Taking [...] Read more.
Under the influence of global climate change, water conservancy projects located in the high-latitude cold regions of the world are facing severe challenges. This study addresses the contradiction between water supply stability and ecological flow during the dry season in cold regions. Taking Linhai Reservoir as the core, it integrates the HEC-RAS hydrodynamic model with multi-source data such as basin topography, hydro-meteorological data, and water conservancy project parameters to construct a multi-scenario water supply scheduling model during the dry season. The aim is to provide scientific recommendations for different reservoir operation strategies in response to varying frequencies of upstream inflow, based on simulations conducted after the reservoir’s completion. Taking into account winter runoff reduction characteristics and engineering parameters, we simulated the relationships between water level and flow, ecological flow requirements, and urban water shortages. The results indicate that in both flood and normal years, dynamic coordination of storage and discharge can achieve a daily water supply of 120,000 cubic meters, with 100% compliance for the ecological flow rate. For mild and moderate drought years, additional water diversion becomes necessary to achieve 93.5% and 89% supply reliability, respectively. During severe and extreme droughts, significantly reduced reservoir inflows lower ecological compliance rates, necessitating emergency measures, such as utilizing dead storage capacity and exploring alternative water sources. The study proposes operational strategies tailored to different drought intensities: initiating storage adjustments in September for mild droughts and implementing peak-shifting measures by mid-October for extreme droughts. These approaches enhance storage efficiency and mitigate ice blockage risks. This research supports the water supply security and river ecological health of urban and rural areas in Mudanjiang City and Hailin City and provides a certain scientific reference basis for the multi-objective coordinated operation of reservoirs in the same type of high-latitude cold regions. Full article
Show Figures

Figure 1

23 pages, 11464 KiB  
Article
Characterization of Water Quality and the Relationship Between WQI and Benthic Macroinvertebrate Communities as Ecological Indicators in the Ghris Watershed, Southeast Morocco
by Ali El Mansour, Saida Ait Boughrous, Ismail Mansouri, Abdellali Abdaoui, Wafae Squalli, Asmae Nouayti, Mohamed Abdellaoui, El Mahdi Beyouda, Christophe Piscart and Ali Ait Boughrous
Water 2025, 17(14), 2055; https://doi.org/10.3390/w17142055 - 9 Jul 2025
Viewed by 454
Abstract
The Ghris watershed in southern Morocco is a significant ecological and agricultural area. However, due to the current impacts of climate change, farming activities, and pollution, data on its quality and biological importance need to be updated. Therefore, this study aimed to evaluate [...] Read more.
The Ghris watershed in southern Morocco is a significant ecological and agricultural area. However, due to the current impacts of climate change, farming activities, and pollution, data on its quality and biological importance need to be updated. Therefore, this study aimed to evaluate the physico-chemical and biological quality of surface water in the Ghris River. The Water Quality Index (WQI) and the Iberian Biological Monitoring Working Group (IBMWP) index were used to assess water quality along four sampling sites in 2024. The collected data were analyzed with descriptive and multivariate statistics. In total, 424 benthic macroinvertebrates belonging to seven orders were identified in the surface waters of the Ghris basin. These microfauna were significantly variable among the studied sites (p < 0.05). Station S4 is significantly rich in species, including seven orders and nine families of macroinvertebrates, followed by Station S2, with seven orders and eight families. Stations S3 and S1 showed less species diversity, with three orders and one family, respectively. The Insecta comprised 95.9% of the abundance, while the Crustacea constituted just 4.1%. The physico-chemical parameters significantly surpassed (p < 0.05) the specified norms of surface water in Morocco. This indicates a decline in the water quality of the studied sites. The findings of the principal component analysis (PCA) demonstrate that the top two axes explain 87% of the cumulative variation in the data. Stations 2 and 3 are closely associated with high concentrations of pollutants, notably Cl, SO42−, NO3, and K+ ions. Dissolved oxygen (DO) showed a slight correlation with S2 and S3, while S4 was characterized by high COD and PO4 concentrations, low levels of mineral components (except Cl), and average temperature conditions. Bioindication scores for macroinvertebrate groups ranging from 1 to 10 enabled the assessment of pollution’s influence on aquatic biodiversity. The IBMWP biotic index indicated discrepancies in water quality across the sites. This study gives the first insight and updated data on the biological and chemical quality of surface water in the Ghris River and the entire aquatic ecosystem in southeast Morocco. These data are proposed as a reference for North African and Southern European rivers. However, more investigations are needed to evaluate the impacts of farming, mining, and urbanization on the surface and ground waters in the study zone. Similarly, it is vital to carry out additional research in arid and semi-arid zones since there is a paucity of understanding regarding taxonomic and functional diversity, as well as the physico-chemical factors impacting water quality. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

21 pages, 4829 KiB  
Article
Quantification of MODIS Land Surface Temperature Downscaled by Machine Learning Algorithms
by Qi Su, Xiangchen Meng, Lin Sun and Zhongqiang Guo
Remote Sens. 2025, 17(14), 2350; https://doi.org/10.3390/rs17142350 - 9 Jul 2025
Viewed by 400
Abstract
Land Surface Temperature (LST) is essential for understanding the interactions between the land surface and the atmosphere. This study presents a comprehensive evaluation of machine learning (ML)-based downscaling algorithms to enhance the spatial resolution of MODIS LST data from 960 m to 30 [...] Read more.
Land Surface Temperature (LST) is essential for understanding the interactions between the land surface and the atmosphere. This study presents a comprehensive evaluation of machine learning (ML)-based downscaling algorithms to enhance the spatial resolution of MODIS LST data from 960 m to 30 m, leveraging auxiliary variables including vegetation indices, terrain parameters, and land surface reflectance. By establishing non-linear relationships between LST and predictive variables through eXtreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms, the proposed framework was rigorously validated using in situ measurements across China’s Heihe River Basin. Comparative analyses demonstrated that integrating multiple vegetation indices (e.g., NDVI, SAVI) with terrain factors yielded superior accuracy compared to factors utilizing land surface reflectance or excessive variable combinations. While slope and aspect parameters marginally improved accuracy in mountainous regions, including them degraded performance in flat terrain. Notably, land surface reflectance proved to be ineffective in snow/ice-covered areas, highlighting the need for specialized treatment in cryospheric environments. This work provides a reference for LST downscaling, with significant implications for environmental monitoring and urban heat island investigations. Full article
Show Figures

Graphical abstract

25 pages, 4876 KiB  
Article
“Metropolitan Parks” in Southern Barcelona: Key Nodes at the Intersection of Green Infrastructure and the Polycentric Urban Structure
by Joan Florit-Femenias, Carles Crosas and Aleix Saura-Vallverdú
Land 2025, 14(7), 1432; https://doi.org/10.3390/land14071432 - 8 Jul 2025
Viewed by 620
Abstract
Contemporary urban planning faces the ongoing challenge of developing Green Infrastructure capable of providing vital ecosystem services. Within this framework, the Barcelona metropolitan area has advanced a network of parks that, while serving local neighborhoods, also aim for metropolitan relevance. This study offers [...] Read more.
Contemporary urban planning faces the ongoing challenge of developing Green Infrastructure capable of providing vital ecosystem services. Within this framework, the Barcelona metropolitan area has advanced a network of parks that, while serving local neighborhoods, also aim for metropolitan relevance. This study offers a forward-looking analysis of selected parks in the southern Llobregat River basin—an area shaped by historic villages and working-class settlements—to evaluate their contribution to both Green Infrastructure and the region’s polycentric structure. Building on previous landmark studies and multidisciplinary perspectives, the research examines eight parks through four spatial and scalar lenses, assessing their territorial role and accessibility, ecological connectivity, urban integration and permeability, and landscape design with both qualitative and quantitative data. Using a comparative framework alongside research-by-design methods tested in urban design studios, the research links analytical insights to design-based strategies. The outcome is a set of actionable guidelines aimed at enhancing local park performance, with broader implications for over 50 ‘Metropolitan Parks’ spread in more than 30 municipalities. These insights contribute to shaping a more integrated, livable, and resilient metropolitan region. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

Back to TopTop