Spatiotemporal Evolution and Influencing Factors of Urban Ecological Resilience: Evidence from the Yellow River Basin, China
Abstract
1. Introduction
2. Conceptual Model and Methods
2.1. Theoretical Framework of UER in the YRB
2.1.1. Nonlinearity and Threshold Effects in UER
2.1.2. Complexity of Influencing UER
2.2. Determination of the Evaluation Indicator System
2.2.1. Study Area
2.2.2. Data Sources
2.2.3. Construction of UER Assessment Index System
2.3. Methodology
2.3.1. Catastrophe Progression Model
2.3.2. Dagum Gini Coefficient Decomposition
2.3.3. Kernel Density Estimation
2.3.4. STIRPAT Model
2.3.5. Random Forest Model
3. Results
3.1. Spatiotemporal Evolution Analysis Based on Catastrophe Theory
3.2. Natural Breaks Classification and Regional Disparities
3.3. Spatial Heterogeneity Analysis via Dagum Gini Coefficient
3.3.1. Overall and Intra-Regional Differences
3.3.2. Inter-Regional Disparities
3.3.3. Contributions to Spatial Heterogeneity
3.4. Dynamic Evolution of UER in the YRB
3.5. Analysis of Influencing Factors on UER in the YRB
3.5.1. STIRPAT Model Results
3.5.2. Random Forest Model Analysis
4. Discussion
4.1. Gradient Spatial Patterns
4.2. Multi-Scale Governance Implications
4.3. Determinants of Ecological Resilience
4.4. Research Limitations
4.4.1. Temporal and Spatial Data Constraints
4.4.2. Model Simplifications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UER | Urban ecological resilience |
YRB | Yellow River Basin |
KDE | Kernel density estimation |
References
- Sterk, M.; van de Leemput, I.A.; Peeters, E.T. How to conceptualize and operationalize resilience in socio-ecological systems? Curr. Opin. Environ. Sustain. 2017, 28, 108–113. [Google Scholar] [CrossRef]
- Alberti, M.; Marzluff, J.M. Ecological resilience in urban ecosystems: Linking urban patterns to human and ecological functions. Urban Ecosyst. 2004, 7, 241–265. [Google Scholar] [CrossRef]
- Yang, L.S.; Chen, Y.; Xie, H.Q. Spatiotemporal pattern and driving factors of urban agglomeration ecological resilience in the Yellow River Basin. Ecol. Econ. 2024, 40, 99–108. (In Chinese) [Google Scholar]
- Bush, J.; Doyon, A. Building urban resilience with nature-based solutions: How can urban planning contribute? Cities 2019, 95, 102483. [Google Scholar] [CrossRef]
- Li, H.S. Systematic identification and prospect of eco-environmental issues in the Yellow River Basin. Res. Environ. Sci. 2024, 37, 1–10. (In Chinese) [Google Scholar] [CrossRef]
- Guo, S.; Li, L.; Wang, S.; Huang, J.; Xie, X.; Wang, Y. What are the dominant drivers and optimal thresholds for a healthy ecosystem in the Yellow River Basin, China? From a perspective of nonlinear nexus. Ecol. Indic. 2024, 162, 111997. [Google Scholar] [CrossRef]
- Tong, L.; Luo, M. Spatiotemporal evolution characteristics and driving factors of water-energy-food-carbon system vulnerability: A case study of the Yellow River Basin, China. Sustainability 2024, 16, 1002. [Google Scholar] [CrossRef]
- Zhao, Z.N.; Ru, S.F.; Xue, F. Spatiotemporal pattern and dynamic evolution of ecological resilience in the Yellow River Basin: Analysis based on emergy ecological footprint model. China Popul. Resour. Environ. 2024, 34, 136–147. (In Chinese) [Google Scholar]
- Asadzadeh, A.; Khavarian-Garmsir, A.R.; Sharifi, A.; Salehi, P.; Kötter, T. Transformative resilience: An overview of its structure, evolution, and trends. Sustainability 2022, 14, 15267. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Alberti, M. Modeling the urban ecosystem: A conceptual framework. In Urban Ecology: An International Perspective on the Interaction Between Humans and Nature; Marzluff, J.M., Ed.; Springer: New York, NY, USA, 2008; pp. 623–646. [Google Scholar] [CrossRef]
- Alliance, R. Assessing Resilience in Social-Ecological Systems: Workbook for Practitioners; Resilience Alliance: Ontario, ON, Canada, 2010; Available online: http://www.resalliance.org (accessed on 10 October 2024).
- Shamsipour, A.; Jahanshahi, S.; Mousavi, S.S.; Shoja, F.; Golenji, R.A.; Tayebi, S.; Sharifi, A. Assessing and mapping urban ecological resilience using the loss-gain approach: A case study of Tehran, Iran. Sustain. Cities Soc. 2024, 103, 105252. [Google Scholar] [CrossRef]
- Suárez, M.; Gómez-Baggethun, E.; Benayas, J.; Tilbury, D. Towards an urban resilience index: A case study in 50 Spanish cities. Sustainability 2016, 8, 774. [Google Scholar] [CrossRef]
- Shi, C.; Zhu, X.; Wu, H.; Li, Z. Assessment of urban ecological resilience and its influencing factors: A case study of the Beijing-Tianjin-Hebei urban agglomeration of China. Land 2022, 11, 921. [Google Scholar] [CrossRef]
- Fu, S.; Liu, J.; Wang, J.; Tian, J.; Li, X. Enhancing urban ecological resilience through integrated green technology progress: Evidence from Chinese cities. Environ. Sci. Pollut. Res. 2024, 31, 36349–36366. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, L.C.; Yao, S.M. Evaluation of urban resilience in prefecture-level cities of Yangtze River Delta from social-ecological system perspective. China Popul. Resour. Environ. 2017, 27, 151–158. (In Chinese) [Google Scholar]
- Ingrisch, J.; Bahn, M. Towards a comparable quantification of resilience. Trends Ecol. Evol. 2018, 33, 251–259. [Google Scholar] [CrossRef]
- Dakos, V.; Kéfi, S. Ecological resilience: What to measure and how. Environ. Res. Lett. 2022, 17, 043003. [Google Scholar] [CrossRef]
- Lu, F.; Liu, Q.; Wang, P. Spatiotemporal characteristics of ecological resilience and its influencing factors in the Yellow River Basin of China. Sci. Rep. 2024, 14, 16988. [Google Scholar] [CrossRef]
- Walker, B.; Salt, D. Resilience Practice: Building Capacity to Absorb Disturbance and Maintain Function; Island Press: Washington, DC, USA, 2012. [Google Scholar] [CrossRef]
- Marini Govigli, V.; Healey, J.R.; Wong, J.L.; Stara, K.; Tsiakiris, R.; Halley, J.M. Exploring spatial and temporal resilience in socio-ecological systems: Evidence from sacred forests in Epirus, Greece. People Nat. 2024, 6, 1206–1219. [Google Scholar] [CrossRef]
- Holling, C.S. Engineering resilience versus ecological resilience. In Engineering Within Ecological Constraints; Schulze, P.C., Ed.; National Academies Press: Washington, DC, USA, 1996; pp. 31–44. [Google Scholar] [CrossRef]
- Folke, C. Resilience: The emergence of a perspective for social–ecological systems analyses. Glob. Environ. Change 2006, 16, 253–267. [Google Scholar] [CrossRef]
- Chen, J.; Lei, F.; Zeng, H.; Xie, L.; Ouyang, X. Estimating non-linear effects of natural and anthropogenic factors on ecological resilience: Evidence from the southern hilly areas. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Ma, S.J.; Wang, R.S. Social-economic-natural complex ecosystem. Acta Ecol. Sin. 1984, 4, 1–9. (In Chinese) [Google Scholar]
- Simmie, J.; Martin, R. The economic resilience of regions: Towards an evolutionary approach. Camb. J. Reg. Econ. Soc. 2010, 3, 27–43. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, Y.; Zhang, X.; Yin, L.; Zhang, B. Potential heterogeneity of urban ecological resilience and urbanization in multiple urban agglomerations from a landscape perspective. J. Environ. Manag. 2023, 342, 118129. [Google Scholar] [CrossRef]
- Wang, S.M.; Niu, J.L. Spatiotemporal evolution and influencing factors of urban ecological resilience in the Yellow River Basin. Acta Ecol. Sin. 2023, 43, 8309–8320. (In Chinese) [Google Scholar]
- Zhang, X.; Wang, L.; Fu, X.; Li, H.; Xu, C. Ecological vulnerability assessment based on PSSR in Yellow River Delta. J. Clean. Prod. 2017, 167, 1106–1111. [Google Scholar] [CrossRef]
- Zhao, R.; Fang, C.; Liu, H.; Liu, X. Evaluating urban ecosystem resilience using the DPSIR framework and the ENA model: A case study of 35 cities in China. Sustain. Cities Soc. 2021, 72, 102997. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, F.; Li, J.; Zhao, C.; Jiang, Q.; Cheng, Z. Ecosystem health assessment based on AHP-DPSR model and impacts of climate change and human disturbances: A case study of Liaohe River Basin in Jilin Province, China. Ecol. Indic. 2022, 142, 109171. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, T.; Xu, S. Assessment of urban ecological resilience based on PSR framework in the Pearl River Delta urban agglomeration, China. Land 2023, 12, 1089. [Google Scholar] [CrossRef]
- Su, J.; Wu, H.; Zhang, X.; Zhang, Z. Research on the impact of sand and dust weather on the social-ecological system resilience based on the DPWSIR model—Taking the arid cities of Northwest China as an example. Ecol. Indic. 2024, 166, 112314. [Google Scholar] [CrossRef]
- Lee, C.C.; Yan, J.; Li, T. Ecological resilience of city clusters in the middle reaches of Yangtze River. J. Clean. Prod. 2024, 443, 141082. [Google Scholar] [CrossRef]
- He, X.R.; Shi, C.X.; Peng, K.J. Spatio-temporal adaptation and interaction between new urbanization and ecological resilience in urban agglomerations of the middle Yangtze River. Resour. Environ. Yangtze Basin 2024, 33, 699–714. (In Chinese) [Google Scholar]
- Li, C.; Wang, Y.; Qing, W.; Li, C.; Yang, Y. Differential evaluation of ecological resilience in 45 cities along the Yangtze River in China: A new multidimensional analysis framework. Land 2024, 13, 1588. [Google Scholar] [CrossRef]
- Cui, C.S.; Qiu, C.C.; Wang, N.N.; Cao, Y.L.; Zang, Z.C. Research on the ecological protection status of the Yellow River Basin based on variable fuzzy sets. Manag. Rev. 2023, 35, 315–326. (In Chinese) [Google Scholar] [CrossRef]
- Thom, R. Stabilité structurelle et morphogenèse. Poetics 1974, 3, 7–19. [Google Scholar] [CrossRef]
- Stamovlasis, D. Catastrophe theory: Methodology, epistemology, and applications in learning science. In Complex Dynamical Systems in Education: Concepts, Methods and Applications; Koopmans, M., Stamovlasis, D., Eds.; Springer: Cham, Switzerland, 2016; pp. 141–175. [Google Scholar] [CrossRef]
- Dagum, C. A new approach to the decomposition of the Gini income inequality ratio. In Income Distribution, Inequality, and Poverty; Dagum, C., Zenga, M., Eds.; Physica-Verlag: Heidelberg, Germany, 1998; pp. 47–63. [Google Scholar] [CrossRef]
- Hunter, L.M. Population and Environment: A Complex Relationship; RAND Corporation: Santa Monica, CA, USA, 2000; Available online: https://www.rand.org/pubs/research_briefs/RB5045.html (accessed on 10 October 2024).
- Weber, H.; Sciubba, J.D. The effect of population growth on the environment: Evidence from European regions. Eur. J. Popul. 2019, 35, 379–402. [Google Scholar] [CrossRef] [PubMed]
- Bagan, H.; Yamagata, Y. Analysis of urban growth and estimating population density using satellite images of nighttime lights and land-use and population data. GISci. Remote Sens. 2015, 52, 765–780. [Google Scholar] [CrossRef]
- Chen, J.; Gao, J.; Yuan, F. Growth type and functional trajectories: An empirical study of urban expansion in Nanjing, China. PLoS ONE 2016, 11, e0148389. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Y.; Xu, X.; Li, X.; Li, X.; Ciais, P.; Zeng, Z. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 2020, 3, 564–570. [Google Scholar] [CrossRef]
- Meng, Z.; He, M.; Li, X.; Li, H.; Tan, Y.; Li, Z.; Wei, Y. Spatio-temporal analysis and driving forces of urban ecosystem resilience based on land use: A case study in the Great Bay Area. Ecol. Indic. 2024, 159, 111769. [Google Scholar] [CrossRef]
- Farley, J.; Voinov, A. Economics, socio-ecological resilience and ecosystem services. J. Environ. Manag. 2016, 183, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Dam, M.M.; Kaya, F.; Bekun, F.V. How does technological innovation affect the ecological footprint? Evidence from E-7 countries in the background of the SDGs. J. Clean. Prod. 2024, 443, 141020. [Google Scholar] [CrossRef]
- Chen, S.Y.; Chen, D.K. Haze pollution, government governance, and high-quality economic development. Econ. Res. J. 2018, 53, 20–34. (In Chinese) [Google Scholar]
- Deng, H.H.; Zhao, J.L. Herd behavior in local government economic decision-making. China Ind. Econ. 2018, 4, 59–78. (In Chinese) [Google Scholar] [CrossRef]
- Yin, L.H.; Wu, C.Q. Environmental regulation and ecological efficiency of pollution-intensive industries in the Yangtze River Economic Belt. China Soft Sci. 2021, 8, 181–192. (In Chinese) [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Huang, J.; Zhong, P.; Zhang, J.; Zhang, L. Spatial-temporal differentiation and driving factors of ecological resilience in the Yellow River Basin, China. Ecol. Indic. 2023, 154, 110763. [Google Scholar] [CrossRef]
- Wang, S.M.; Ning, W.P.; Niu, J.L.; An, K. Spatiotemporal differentiation and convergence of urban ecological resilience in the Yellow River Basin: An empirical analysis based on 61 cities in seven major urban agglomerations. Arid Land Geography. 2024, 47, 93–103. (In Chinese) [Google Scholar]
Dimension | Indicators | Indicator Interpretation |
---|---|---|
Resistance (A) | Rainfall A1 (mm) | Potential threats of soil erosion and flood disasters (−) |
Industrial wastewater discharge A2 (tons) | Intensity of pollutant emission impacts (−) | |
Population density A3 (persons/km2) | Human activity disturbances (−) | |
Normalized difference vegetation index A4 | Soil conservation capacity (+) | |
Adaptability (B) | Wastewater treatment rate B1 (%) | Pollution control capability for wastewater (+) |
Harmless disposal rate of domestic waste B2 (%) | Pollution control capability for solid waste (+) | |
Air quality excellence rate B3 (%) | Pollution control capability for air quality (+) | |
Comprehensive utilization rate of general industrial solid waste B4 (%) | Resource recycling capacity (+) | |
Recovery (C) | Greening coverage of built-up areas C1 (%) | Urban ecological greening level (+) |
Per capita park green space area C2 (m2/person) | Urban ecological environment quality (+) | |
Per capita water resources availability C3 (m3/person) | Water supply capacity (+) | |
Total authorized green patents C4 (item) | Green technology innovation capacity (+) | |
Proportion of environmental protection in fiscal expenditure C5 (%) | Investment in ecological governance (+) |
City | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Haidong | 0.853 | 0.823 | 0.857 | 0.821 | 0.866 | 0.648 | 0.652 | 0.759 | 0.645 | 0.591 | 0.793 | 0.846 | 0.764 |
Xining | 0.841 | 0.820 | 0.852 | 0.817 | 0.884 | 0.837 | 0.863 | 0.576 | 0.759 | 0.910 | 0.826 | 0.613 | 0.775 |
Lanzhou | 0.855 | 0.812 | 0.766 | 0.719 | 0.627 | 0.783 | 0.891 | 0.860 | 0.905 | 0.908 | 0.799 | 0.848 | 0.799 |
Tianshui | 0.831 | 0.809 | 0.711 | 0.836 | 0.901 | 0.875 | 0.877 | 0.851 | 0.867 | 0.922 | 0.823 | 0.853 | 0.875 |
Dingxi | 0.539 | 0.702 | 0.619 | 0.894 | 0.937 | 0.911 | 0.946 | 0.891 | 0.898 | 0.927 | 0.881 | 0.909 | 0.884 |
Pingliang | 0.708 | 0.544 | 0.814 | 0.753 | 0.881 | 0.878 | 0.816 | 0.833 | 0.880 | 0.920 | 0.894 | 0.873 | 0.800 |
Qingyang | 0.793 | 0.867 | 0.907 | 0.873 | 0.659 | 0.865 | 0.813 | 0.886 | 0.851 | 0.654 | 0.836 | 0.861 | 0.788 |
Wuwei | 0.840 | 0.880 | 0.922 | 0.895 | 0.943 | 0.922 | 0.918 | 0.853 | 0.836 | 0.878 | 0.848 | 0.861 | 0.837 |
Baiyin | 0.790 | 0.796 | 0.882 | 0.831 | 0.836 | 0.868 | 0.820 | 0.818 | 0.838 | 0.875 | 0.762 | 0.781 | 0.671 |
Longnan | 0.767 | 0.592 | 0.723 | 0.618 | 0.666 | 0.739 | 0.769 | 0.594 | 0.893 | 0.763 | 0.772 | 0.647 | 0.469 |
Zhongwei | 0.795 | 0.704 | 0.840 | 0.754 | 0.839 | 0.840 | 0.786 | 0.738 | 0.836 | 0.841 | 0.815 | 0.797 | 0.766 |
Wuzhong | 0.807 | 0.730 | 0.596 | 0.720 | 0.833 | 0.754 | 0.792 | 0.795 | 0.763 | 0.533 | 0.748 | 0.832 | 0.766 |
Guyuan | 0.796 | 0.790 | 0.909 | 0.725 | 0.870 | 0.828 | 0.871 | 0.834 | 0.909 | 0.903 | 0.848 | 0.844 | 0.580 |
Shizuishan | 0.834 | 0.820 | 0.890 | 0.808 | 0.844 | 0.814 | 0.836 | 0.836 | 0.830 | 0.851 | 0.848 | 0.875 | 0.843 |
Yinchuan | 0.654 | 0.555 | 0.852 | 0.713 | 0.844 | 0.855 | 0.807 | 0.805 | 0.761 | 0.784 | 0.674 | 0.821 | 0.779 |
Ulanqab | 0.867 | 0.850 | 0.932 | 0.816 | 0.867 | 0.908 | 0.878 | 0.899 | 0.917 | 0.857 | 0.885 | 0.866 | 0.801 |
Wuhai | 0.744 | 0.684 | 0.734 | 0.670 | 0.795 | 0.786 | 0.797 | 0.749 | 0.801 | 0.798 | 0.812 | 0.819 | 0.778 |
Baotou | 0.823 | 0.761 | 0.858 | 0.592 | 0.861 | 0.848 | 0.813 | 0.832 | 0.851 | 0.831 | 0.821 | 0.779 | 0.677 |
Hohhot | 0.850 | 0.810 | 0.844 | 0.832 | 0.837 | 0.891 | 0.776 | 0.861 | 0.859 | 0.828 | 0.643 | 0.856 | 0.800 |
Bayan Nur | 0.828 | 0.720 | 0.916 | 0.835 | 0.894 | 0.902 | 0.874 | 0.849 | 0.869 | 0.845 | 0.832 | 0.790 | 0.741 |
Ordos | 0.919 | 0.887 | 0.894 | 0.870 | 0.893 | 0.925 | 0.896 | 0.905 | 0.939 | 0.901 | 0.910 | 0.932 | 0.915 |
Linfen | 0.775 | 0.780 | 0.795 | 0.827 | 0.876 | 0.870 | 0.769 | 0.726 | 0.773 | 0.876 | 0.784 | 0.833 | 0.815 |
Lüliang | 0.789 | 0.766 | 0.864 | 0.823 | 0.865 | 0.871 | 0.858 | 0.870 | 0.875 | 0.837 | 0.817 | 0.540 | 0.705 |
Datong | 0.823 | 0.829 | 0.835 | 0.862 | 0.885 | 0.887 | 0.812 | 0.866 | 0.806 | 0.820 | 0.495 | 0.823 | 0.715 |
Taiyuan | 0.870 | 0.749 | 0.832 | 0.833 | 0.876 | 0.861 | 0.846 | 0.840 | 0.864 | 0.825 | 0.857 | 0.834 | 0.809 |
Xinzhou | 0.773 | 0.772 | 0.842 | 0.838 | 0.844 | 0.844 | 0.846 | 0.858 | 0.890 | 0.835 | 0.817 | 0.848 | 0.688 |
Jinzhong | 0.812 | 0.861 | 0.745 | 0.875 | 0.910 | 0.887 | 0.881 | 0.877 | 0.864 | 0.905 | 0.811 | 0.855 | 0.658 |
Jincheng | 0.882 | 0.896 | 0.883 | 0.875 | 0.915 | 0.864 | 0.860 | 0.818 | 0.833 | 0.877 | 0.893 | 0.866 | 0.856 |
Shuozhou | 0.846 | 0.840 | 0.880 | 0.833 | 0.856 | 0.828 | 0.838 | 0.858 | 0.857 | 0.891 | 0.845 | 0.831 | 0.755 |
Yuncheng | 0.900 | 0.812 | 0.902 | 0.845 | 0.858 | 0.844 | 0.822 | 0.802 | 0.810 | 0.782 | 0.799 | 0.751 | 0.598 |
Changzhi | 0.837 | 0.855 | 0.860 | 0.852 | 0.864 | 0.800 | 0.552 | 0.818 | 0.829 | 0.876 | 0.886 | 0.869 | 0.803 |
Yangquan | 0.787 | 0.746 | 0.680 | 0.544 | 0.332 | 0.503 | 0.778 | 0.526 | 0.498 | 0.606 | 0.775 | 0.792 | 0.564 |
Xianyang | 0.848 | 0.903 | 0.919 | 0.861 | 0.887 | 0.872 | 0.847 | 0.842 | 0.840 | 0.872 | 0.785 | 0.747 | 0.694 |
Shangluo | 0.751 | 0.851 | 0.907 | 0.852 | 0.826 | 0.896 | 0.827 | 0.857 | 0.849 | 0.899 | 0.899 | 0.872 | 0.731 |
Baoji | 0.874 | 0.706 | 0.917 | 0.838 | 0.872 | 0.884 | 0.898 | 0.885 | 0.884 | 0.856 | 0.885 | 0.826 | 0.816 |
Yan’an | 0.902 | 0.881 | 0.925 | 0.876 | 0.923 | 0.883 | 0.898 | 0.890 | 0.895 | 0.859 | 0.814 | 0.859 | 0.786 |
Yulin | 0.912 | 0.888 | 0.931 | 0.871 | 0.940 | 0.895 | 0.861 | 0.909 | 0.886 | 0.883 | 0.874 | 0.865 | 0.818 |
Weinan | 0.869 | 0.864 | 0.905 | 0.865 | 0.907 | 0.887 | 0.760 | 0.842 | 0.859 | 0.808 | 0.785 | 0.845 | 0.850 |
Xian | 0.874 | 0.880 | 0.884 | 0.783 | 0.926 | 0.873 | 0.911 | 0.878 | 0.761 | 0.892 | 0.857 | 0.752 | 0.859 |
Tongchuan | 0.856 | 0.864 | 0.934 | 0.831 | 0.900 | 0.859 | 0.864 | 0.828 | 0.858 | 0.900 | 0.807 | 0.832 | 0.755 |
Sanmenxia | 0.871 | 0.842 | 0.844 | 0.847 | 0.774 | 0.853 | 0.860 | 0.816 | 0.874 | 0.862 | 0.867 | 0.848 | 0.804 |
Anyang | 0.870 | 0.822 | 0.865 | 0.806 | 0.844 | 0.808 | 0.829 | 0.791 | 0.815 | 0.698 | 0.799 | 0.831 | 0.718 |
Kaifeng | 0.732 | 0.735 | 0.815 | 0.797 | 0.862 | 0.857 | 0.843 | 0.819 | 0.807 | 0.873 | 0.822 | 0.836 | 0.820 |
Xinxiang | 0.862 | 0.789 | 0.867 | 0.851 | 0.832 | 0.831 | 0.853 | 0.828 | 0.857 | 0.895 | 0.853 | 0.840 | 0.781 |
Luoyang | 0.838 | 0.877 | 0.901 | 0.856 | 0.866 | 0.813 | 0.873 | 0.843 | 0.865 | 0.919 | 0.880 | 0.864 | 0.819 |
Puyang | 0.875 | 0.864 | 0.891 | 0.807 | 0.850 | 0.783 | 0.836 | 0.821 | 0.832 | 0.859 | 0.852 | 0.821 | 0.782 |
Jiaozuo | 0.830 | 0.835 | 0.873 | 0.822 | 0.799 | 0.838 | 0.839 | 0.843 | 0.854 | 0.848 | 0.822 | 0.871 | 0.858 |
Zhengzhou | 0.593 | 0.787 | 0.514 | 0.592 | 0.481 | 0.580 | 0.564 | 0.584 | 0.701 | 0.772 | 0.624 | 0.697 | 0.600 |
Dongying | 0.927 | 0.942 | 0.895 | 0.874 | 0.868 | 0.888 | 0.889 | 0.928 | 0.942 | 0.621 | 0.920 | 0.903 | 0.964 |
Dezhou | 0.943 | 0.938 | 0.900 | 0.863 | 0.777 | 0.866 | 0.879 | 0.895 | 0.926 | 0.927 | 0.903 | 0.917 | 0.913 |
Tai’an | 0.907 | 0.885 | 0.911 | 0.891 | 0.904 | 0.859 | 0.891 | 0.906 | 0.890 | 0.902 | 0.895 | 0.921 | 0.912 |
Jinan | 0.977 | 0.972 | 0.769 | 0.878 | 0.852 | 0.929 | 0.933 | 0.932 | 0.947 | 0.936 | 0.944 | 0.939 | 0.939 |
Jining | 0.834 | 0.876 | 0.822 | 0.862 | 0.854 | 0.814 | 0.908 | 0.892 | 0.910 | 0.908 | 0.896 | 0.849 | 0.857 |
Zibo | 0.838 | 0.604 | 0.837 | 0.548 | 0.829 | 0.857 | 0.893 | 0.895 | 0.887 | 0.882 | 0.890 | 0.887 | 0.901 |
Binzhou | 0.910 | 0.927 | 0.823 | 0.828 | 0.806 | 0.705 | 0.759 | 0.758 | 0.605 | 0.879 | 0.818 | 0.575 | 0.739 |
Liaocheng | 0.790 | 0.736 | 0.807 | 0.869 | 0.809 | 0.857 | 0.846 | 0.883 | 0.889 | 0.880 | 0.837 | 0.891 | 0.862 |
Heze | 0.858 | 0.870 | 0.809 | 0.839 | 0.825 | 0.848 | 0.850 | 0.858 | 0.877 | 0.912 | 0.850 | 0.827 | 0.727 |
Mean | 0.828 | 0.807 | 0.840 | 0.807 | 0.836 | 0.838 | 0.834 | 0.826 | 0.841 | 0.842 | 0.825 | 0.826 | 0.779 |
Upstream | 0.780 | 0.750 | 0.809 | 0.785 | 0.829 | 0.828 | 0.830 | 0.795 | 0.831 | 0.817 | 0.811 | 0.817 | 0.760 |
Midstream | 0.841 | 0.818 | 0.865 | 0.816 | 0.856 | 0.855 | 0.830 | 0.835 | 0.839 | 0.846 | 0.816 | 0.819 | 0.759 |
Downstream | 0.850 | 0.841 | 0.832 | 0.813 | 0.814 | 0.823 | 0.844 | 0.841 | 0.852 | 0.857 | 0.851 | 0.842 | 0.823 |
Typology | Upstream Region (15) | Midstream Region (25) | Downstream Region (17) |
---|---|---|---|
Excellent (13) | Wuwei (1) | Ulanqab, Ordos, Jincheng, Baoji, Yan’an, Yulin (6) | Luoyang, Dongying, Dezhou, Tai’an, Jinan, Jining (6) |
Good (27) | Lanzhou, Tianshui, Dingxi, Pingliang, Qingyang, Guyuan, Shizuishan (7) | Hohhot, Bayan Nur, Taiyuan, Xinzhou, Jinzhong, Shuozhou, Changzhi, Xianyang, Shangluo, Weinan, Xi’an, Tongchuan (12) | Sanmenxia, Kaifeng, Xinxiang, Puyang, Jiaozuo, Zibo, Liaocheng, Heze (8) |
Medium (15) | Xining, Baiyin, Longnan, Zhongwei, Wuzhong, Yinchuan, Haidong (7) | Wuhai, Baotou, Linfen, Luliang, Datong, Yuncheng (6) | Anyang, Binzhou (2) |
Poor (2) | Yangquan (1) | Zhengzhou (1) |
Year | Overall | Intra-Regional (Gw) | Inter-Regional (Gnb) | Contribution Rate (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Up | Mid | Down | Up-Mid | Up-Down | Mid-Down | Intra | Inter | Hypervariation | ||
2011 | 0.047 | 0.052 | 0.033 | 0.051 | 0.050 | 0.064 | 0.044 | 30.440 | 34.914 | 34.646 |
2012 | 0.061 | 0.076 | 0.044 | 0.057 | 0.069 | 0.081 | 0.053 | 30.596 | 36.744 | 32.661 |
2013 | 0.052 | 0.067 | 0.039 | 0.047 | 0.059 | 0.060 | 0.047 | 31.884 | 28.740 | 39.375 |
2014 | 0.052 | 0.054 | 0.044 | 0.050 | 0.057 | 0.060 | 0.048 | 32.276 | 14.616 | 53.108 |
2015 | 0.052 | 0.059 | 0.045 | 0.045 | 0.056 | 0.056 | 0.054 | 31.815 | 22.715 | 45.470 |
2016 | 0.043 | 0.045 | 0.035 | 0.044 | 0.044 | 0.045 | 0.044 | 32.262 | 21.536 | 46.202 |
2017 | 0.043 | 0.044 | 0.041 | 0.043 | 0.043 | 0.046 | 0.042 | 33.863 | 7.860 | 58.277 |
2018 | 0.049 | 0.058 | 0.040 | 0.047 | 0.053 | 0.057 | 0.045 | 32.695 | 22.093 | 45.212 |
2019 | 0.046 | 0.044 | 0.041 | 0.049 | 0.044 | 0.049 | 0.047 | 33.702 | 10.772 | 55.526 |
2020 | 0.051 | 0.078 | 0.033 | 0.046 | 0.061 | 0.065 | 0.042 | 30.923 | 18.432 | 50.646 |
2021 | 0.045 | 0.036 | 0.049 | 0.039 | 0.044 | 0.045 | 0.047 | 34.075 | 22.592 | 43.333 |
2022 | 0.046 | 0.047 | 0.040 | 0.049 | 0.045 | 0.050 | 0.048 | 33.218 | 13.489 | 53.293 |
2023 | 0.067 | 0.070 | 0.060 | 0.061 | 0.067 | 0.074 | 0.070 | 32.361 | 25.547 | 42.092 |
Mean | 0.050 | 0.056 | 0.042 | 0.048 | 0.053 | 0.058 | 0.049 | 32.316 | 21.542 | 46.142 |
Variable | Observations | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Re | 741 | 5.698 | 3.731 | 0.691 | 29.267 |
P | 741 | 9.058 | 10.912 | 0.190 | 68.950 |
A | 741 | 0.427 | 0.105 | 0.188 | 0.687 |
T | 741 | 7.143 | 8.669 | 0.066 | 69.266 |
In | 741 | 0.289 | 0.096 | 0.065 | 0.738 |
ER | 741 | 5.698 | 3.731 | 0.691 | 29.267 |
Variable | Overall | Upstream | Midstream | Downstream |
---|---|---|---|---|
P | −0.006 (1.560) | 0.009 (0.900) | −0.009 (−1.810) | −0.049 *** (−3.660) |
A | 0.002 (0.20) | −0.069 (−1.76) | −0.003 (−0.25) | −0.061 ** (−2.600) |
T | 0.016 ** (2.730) | 0.039 * (2.460) | 0.006 (0.770) | 0.042 ** (3.260) |
In | −0.057 ** (−3.200) | −0.004 (−0.170) | −0.041 (−1.740) | −0.106 ** (−2.940) |
ER | −0.033 ** (−2.740) | −0.060 (−0.300) | −0.053 ** (−2.890) | −0.028 (−1.260) |
_cons | −0.044 (−0.630) | −0.060 (−0.300) | −0.097 (−1.150) | 0.307 (1.890) |
N | 741 | 195 | 325 | 221 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wu, Y. Spatiotemporal Evolution and Influencing Factors of Urban Ecological Resilience: Evidence from the Yellow River Basin, China. Sustainability 2025, 17, 7114. https://doi.org/10.3390/su17157114
Zhang Z, Wu Y. Spatiotemporal Evolution and Influencing Factors of Urban Ecological Resilience: Evidence from the Yellow River Basin, China. Sustainability. 2025; 17(15):7114. https://doi.org/10.3390/su17157114
Chicago/Turabian StyleZhang, Zhongjie, and Yu Wu. 2025. "Spatiotemporal Evolution and Influencing Factors of Urban Ecological Resilience: Evidence from the Yellow River Basin, China" Sustainability 17, no. 15: 7114. https://doi.org/10.3390/su17157114
APA StyleZhang, Z., & Wu, Y. (2025). Spatiotemporal Evolution and Influencing Factors of Urban Ecological Resilience: Evidence from the Yellow River Basin, China. Sustainability, 17(15), 7114. https://doi.org/10.3390/su17157114