Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (249)

Search Parameters:
Keywords = urban heat island mitigation strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6507 KiB  
Article
Sustainable Urban Heat Island Mitigation Through Machine Learning: Integrating Physical and Social Determinants for Evidence-Based Urban Policy
by Amatul Quadeer Syeda, Krystel K. Castillo-Villar and Adel Alaeddini
Sustainability 2025, 17(15), 7040; https://doi.org/10.3390/su17157040 - 3 Aug 2025
Viewed by 303
Abstract
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to [...] Read more.
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to UHI mitigation by integrating Machine Learning (ML) with physical and socio-demographic data for sustainable urban planning. Using high-resolution spatial data across five functional zones (residential, commercial, industrial, official, and downtown), we apply three ML models, Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosting Machine (GBM), to predict land surface temperature (LST). The models incorporate both environmental variables, such as imperviousness, Normalized Difference Vegetation Index (NDVI), building area, and solar influx, and social determinants, such as population density, income, education, and age distribution. SVM achieved the highest R2 (0.870), while RF yielded the lowest RMSE (0.488 °C), confirming robust predictive performance. Key predictors of elevated LST included imperviousness, building area, solar influx, and NDVI. Our results underscore the need for zone-specific strategies like more greenery, less impervious cover, and improved building design. These findings offer actionable insights for urban planners and policymakers seeking to develop equitable and sustainable UHI mitigation strategies aligned with climate adaptation and environmental justice goals. Full article
Show Figures

Figure 1

35 pages, 10235 KiB  
Article
GIS-Driven Spatial Planning for Resilient Communities: Walkability, Social Cohesion, and Green Infrastructure in Peri-Urban Jordan
by Sara Al-Zghoul and Majd Al-Homoud
Sustainability 2025, 17(14), 6637; https://doi.org/10.3390/su17146637 - 21 Jul 2025
Viewed by 459
Abstract
Amman’s rapid population growth and sprawling urbanization have resulted in car-centric, fragmented neighborhoods that lack social cohesion and are vulnerable to the impacts of climate change. This study reframes walkability as a climate adaptation strategy, demonstrating how pedestrian-oriented spatial planning can reduce vehicle [...] Read more.
Amman’s rapid population growth and sprawling urbanization have resulted in car-centric, fragmented neighborhoods that lack social cohesion and are vulnerable to the impacts of climate change. This study reframes walkability as a climate adaptation strategy, demonstrating how pedestrian-oriented spatial planning can reduce vehicle emissions, mitigate urban heat island effects, and enhance the resilience of green infrastructure in peri-urban contexts. Using Deir Ghbar, a rapidly developing marginal area on Amman’s western edge, as a case study, we combine objective walkability metrics (street connectivity and residential and retail density) with GIS-based spatial regression analysis to examine relationships with residents’ sense of community. Employing a quantitative, correlational research design, we assess walkability using a composite objective walkability index, calculated from the land-use mix, street connectivity, retail density, and residential density. Our results reveal that higher residential density and improved street connectivity significantly strengthen social cohesion, whereas low-density zones reinforce spatial and socioeconomic disparities. Furthermore, the findings highlight the potential of targeted green infrastructure interventions, such as continuous street tree canopies and permeable pavements, to enhance pedestrian comfort and urban ecological functions. By visualizing spatial patterns and correlating built-environment attributes with community outcomes, this research provides actionable insights for policymakers and urban planners. These strategies contribute directly to several Sustainable Development Goals (SDGs), particularly SDG 11 (Sustainable Cities and Communities) and SDG 13 (Climate Action), by fostering more inclusive, connected, and climate-resilient neighborhoods. Deir Ghbar emerges as a model for scalable, GIS-driven spatial planning in rural and marginal peri-urban areas throughout Jordan and similar regions facing accelerated urban transitions. By correlating walkability metrics with community outcomes, this study operationalizes SDGs 11 and 13, offering a replicable framework for climate-resilient urban planning in arid regions. Full article
Show Figures

Figure 1

18 pages, 1153 KiB  
Review
Urban Heat Island Mitigation by LEED and BIM Integration—A Review
by Hafiz Saeed Ur Rehman, Sabahat Alamgir, Muhammad Arif Khan, Rehan Masood, Muhammad Hassan Sammad and Krishanu Roy
Buildings 2025, 15(14), 2523; https://doi.org/10.3390/buildings15142523 - 18 Jul 2025
Viewed by 538
Abstract
Rising temperatures are one of the most severe consequences of climate change, and the built environment plays a significant role in exacerbating heat, particularly in urban areas. In densely populated cities with hot climates, buildings release heat generated from cooling their interiors, contributing [...] Read more.
Rising temperatures are one of the most severe consequences of climate change, and the built environment plays a significant role in exacerbating heat, particularly in urban areas. In densely populated cities with hot climates, buildings release heat generated from cooling their interiors, contributing to the urban heat island (UHI) effect. Global research actively seeks ways to reduce UHI and promote a more sustainable built environment. Leadership in Energy and Environmental Design (LEED) is among the most widely used sustainability assessment systems. Additionally, digital technologies, especially Building Information Modelling (BIM), are increasingly used to assess and improve energy performance in buildings. While there are frameworks that apply LEED and BIM separately to address UHI strategies, there are potential LEED–BIM integrations which need to be investigated. This study investigates how LEED and BIM can be integrated to support UHI mitigation efforts. A systematic literature review was conducted to examine existing integrations, analyzing trends by publication year, country, and building type. The study identified approximately thirty examples of LEED–BIM integrations supporting ten UHI mitigation strategies. However, it also highlighted underutilized BIM technologies and gaps in addressing certain strategies. The study proposes a framework to help practitioners and policymakers apply LEED–BIM integrations more efficiently, reducing the effort required to implement UHI mitigation strategies while enhancing their practicality and effectiveness. Full article
(This article belongs to the Collection Buildings for the 21st Century)
Show Figures

Figure 1

22 pages, 37656 KiB  
Article
Investigating Urban Heat Islands in Miami, Florida, Utilizing Planet and Landsat Satellite Data
by Suraj K C, Anuj Chiluwal, Lalit Pun Magar and Kabita Paudel
Atmosphere 2025, 16(7), 880; https://doi.org/10.3390/atmos16070880 - 18 Jul 2025
Viewed by 484
Abstract
Miami, Florida, renowned for its cultural richness and coastal beauty, also faces the concerning challenges created by urban heat islands (UHIs). As one of the hottest cities of the United States, Miami is facing escalating temperatures and threatening heat-related vulnerabilities due to urbanization [...] Read more.
Miami, Florida, renowned for its cultural richness and coastal beauty, also faces the concerning challenges created by urban heat islands (UHIs). As one of the hottest cities of the United States, Miami is facing escalating temperatures and threatening heat-related vulnerabilities due to urbanization and climate change. Our study addresses the critical issue of mapping and investigating UHIs in complex urban settings. This study leveraged Planet satellite data and Landsat data to conceptualize and develop appropriate mitigation strategies for UHIs in Miami. Utilizing the Planet satellite imagery and Landsat data, we conducted a combined study of land cover and land surface temperature variations within the city. This approach fuses remotely sensed data to identify the UHI hotspots. This study aims for dynamic approaches for UHI mitigation. This includes studying the status of green spaces present in the city, possible expansion of urban green spaces, the propagation of cool roof initiatives, and exploring the recent climatic trend of the city. The research revealed that built-up areas consistently showed higher land surface temperatures while zones with dense vegetation have lower surface temperatures, supporting the role of urban green spaces in surface temperature reduction. This research can also set a robust model for addressing UHIs in other cities facing rapid urbanization and experiencing mounting temperatures each passing year by helping in assessing LST, land cover, and related spectral indices as well. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

33 pages, 12632 KiB  
Article
Analysis of LULC and Urban Thermal Variations in Industrial Cities Using Earth Observation Indices and Machine Learning: A Case Study of Gujranwala, Pakistan
by Zabih Ullah, Muhammad Sajid Mehmood, Shiyan Zhai and Yaochen Qin
Remote Sens. 2025, 17(14), 2474; https://doi.org/10.3390/rs17142474 - 16 Jul 2025
Viewed by 420
Abstract
Rapid urbanization and industrial development have significantly altered land use and cover across the globe, intensifying urban thermal environments and exacerbating the urban heat island (UHI) effect. Gujranwala, Pakistan, represents an industrial growth that has driven substantial land use/land cover (LULC) changes and [...] Read more.
Rapid urbanization and industrial development have significantly altered land use and cover across the globe, intensifying urban thermal environments and exacerbating the urban heat island (UHI) effect. Gujranwala, Pakistan, represents an industrial growth that has driven substantial land use/land cover (LULC) changes and temperature increases; however, the directional and distance-based patterns of these changes remain unquantified. Therefore, this study is conducted to examine spatiotemporal changes in LULC and variations in the Urban Thermal Field Variation Index (UTFVI) between 2001 and 2021 and to project future scenarios for 2031 and 2041 using (1) Earth Observation Indices (EOIs) with machine learning (ML) classifiers (Random Forest) for precise LULC mapping through the Google Earth Engine (GEE) platform, (2) Cellular Automata–Artificial Neural Networks (CA-ANNs) for future scenario projection, and (3) Gradient Directional Analysis (GDA) to quantify directional (16-axis) and distance-based (concentric zones) patterns of urban expansion and thermal variation from 2001–2021. The study revealed significant LULC changes, with built-up areas expanding by 7.5% from 2001 to 2021, especially in the east, northeast, and southeast directions within a 20 km radius. Due to urban encroachment, vegetation and cropland decreased by 1.47% and 1.83%, respectively. The urban thermal environment worsened, with the highest land surface temperature (LST) rising from 41 °C in 2001 to 55 °C in 2021. Additionally, the UTFVI showed expanding areas under the ‘strong’ and ‘strongest’ categories, increasing from 30.58% in 2001 to 33.42% in 2041. Directional analysis highlighted severe thermal stress in the southern and southwestern areas linked to industrial activities and urban sprawl. This integrated approach provides a template for analyzing urban thermal environments in developing cities, supporting targeted mitigation strategies through direction- and distance-specific planning interventions to mitigate UHI impacts. Full article
Show Figures

Figure 1

27 pages, 8650 KiB  
Article
Exploring the Impact of Architectural Landscape Characteristics of Urban Functional Areas in Xi’an City on the Thermal Environment in Summer Using Explainable Machine Learning
by Jiayue Xu, Le Xuan, Cong Li, Mengxue Zhang and Xuhui Wang
Sustainability 2025, 17(14), 6489; https://doi.org/10.3390/su17146489 - 16 Jul 2025
Viewed by 385
Abstract
Rapid urbanization has exacerbated the urban heat island effect, posing a significant threat to human health and urban ecosystems. While numerous studies have demonstrated that urban morphology significantly influences land surface temperatures (LSTs), few have systematically explored the impact and contribution of urban [...] Read more.
Rapid urbanization has exacerbated the urban heat island effect, posing a significant threat to human health and urban ecosystems. While numerous studies have demonstrated that urban morphology significantly influences land surface temperatures (LSTs), few have systematically explored the impact and contribution of urban morphology on LST across different functional zones. Therefore, this study takes Xi’an as a case and employs an interpretable CatBoost-SHAP machine learning model to evaluate the nonlinear influence of building landscape features on LST in different functional zones during summer. The results indicate the following: (1) The highest LST in the study area reached 52.68 °C, while the lowest was 21.68 °C. High-temperature areas were predominantly concentrated in the urban center and industrial zones with dense buildings, whereas areas around water bodies and green spaces exhibited relatively lower temperatures. (2) SHAP analysis revealed that landscape indicators exerted the most substantial impact across all functional zones, with green space zones contributing up to 62%. Among these, fractional vegetation coverage (FVC), as a core landscape factor, served as the primary cooling factor in all six functional zones and consistently demonstrated a negative effect. (3) Population density (POP) exhibited a generally high SHAP contribution across all functional zones, showing a positive correlation. Its effect was most pronounced in commercial zones, accounting for 16%. When POP ranged between 0 and 250 people, the warming effect was particularly prominent. (4) The mean building height (MBH) constituted a major influencing factor in most functional zones, especially in residential zones, where the SHAP value reached 0.7643. Within the range of 10–20 m, the SHAP value increased sharply, indicating a significant warming effect. (5) This study proposes targeted cooling strategies tailored to six functional zones, providing a scientific basis for formulating targeted mitigation strategies for different functional zones to alleviate the urban heat island effect. Full article
Show Figures

Figure 1

29 pages, 19566 KiB  
Article
Estimating Urban Linear Heat (UHIULI) Effect Along Road Typologies Using Spatial Analysis and GAM Approach
by Elahe Mirabi, Michael Chang, Georgy Sofronov and Peter Davies
Atmosphere 2025, 16(7), 864; https://doi.org/10.3390/atmos16070864 - 15 Jul 2025
Viewed by 244
Abstract
The urban heat island (UHI) effect significantly impacts urban environments, particularly along roads, a phenomenon known as urban linear heat (UHIULI). Numerous factors contribute to roads influencing the UHIULI; however, effective mitigation strategies remain a challenge. This study examines [...] Read more.
The urban heat island (UHI) effect significantly impacts urban environments, particularly along roads, a phenomenon known as urban linear heat (UHIULI). Numerous factors contribute to roads influencing the UHIULI; however, effective mitigation strategies remain a challenge. This study examines the relationship between canopy cover percentage, normalized difference vegetation index, land use types, and three road typologies (local, regional, and state) with land surface temperature. This study is based on data from the city of Adelaide, Australia, using spatial analysis, and statistical modelling. The results reveal strong negative correlations between land surface temperature and both canopy cover percentage and normalized difference vegetation index. Additionally, land surface temperature tends to increase with road width. Among land use types, land surface temperature varies from highest to lowest in the order of parkland, industrial, residential, educational, medical, and commercial areas. Notably, the combined influence of the road typology and land use produces varying effects on land surface temperature. Canopy cover percentage and normalized difference vegetation index consistently serve as dominant cooling factors. The results highlight a complex interplay between built and natural environments, emphasizing the need for multi-factor analyses and a framework based on the local climate and the type of roads (local, regional, and state) to effectively evaluate UHIULI mitigation approaches. Full article
Show Figures

Figure 1

25 pages, 6935 KiB  
Article
Multi-Scale Analysis of the Mitigation Effect of Green Space Morphology on Urban Heat Islands
by Jie Liu, Xueying Wu, Liyu Pan and Chun-Ming Hsieh
Atmosphere 2025, 16(7), 857; https://doi.org/10.3390/atmos16070857 - 14 Jul 2025
Viewed by 347
Abstract
Urban green spaces (UGS) serve as critical mitigators of urban heat islands (UHIs), yet the scale-dependent mechanisms through which UGS morphology regulates thermal effects remain insufficiently understood. This study investigates the multi-scale relationships between UGS spatial patterns and cooling effects in Macao, employing [...] Read more.
Urban green spaces (UGS) serve as critical mitigators of urban heat islands (UHIs), yet the scale-dependent mechanisms through which UGS morphology regulates thermal effects remain insufficiently understood. This study investigates the multi-scale relationships between UGS spatial patterns and cooling effects in Macao, employing morphological spatial pattern analysis (MSPA) to characterize UGS configurations and geographically weighted regression (GWR) to examine city-scale thermal interactions, complemented by patch-scale buffer analyses of area, perimeter, and landscape shape index effects. Results demonstrate that high-UGS-integrity areas significantly enhance cooling capacity (area with proportion of core ≥35% showing optimal performance), while fragmented elements (branches, edges) exacerbate UHIs, with patch-scale analyses revealing nonlinear threshold effects in cooling efficiency. A tripartite classification of UGS by cooling capacity identifies strong mitigation types with optimal shape metrics and cooling extents. These findings establish a tripartite UGS classification system based on cooling performance and identify optimal morphological parameters, advancing understanding of thermal regulation mechanisms in urban environments. This research provides empirical evidence for UGS planning strategies prioritizing core area conservation, morphological optimization, and seasonal adaptation to improve urban climate resilience, offering practical insights for sustainable development in high-density coastal cities. Full article
(This article belongs to the Special Issue Urban Design Guidelines for Climate Change (2nd edition))
Show Figures

Figure 1

31 pages, 18606 KiB  
Article
Research on Thermal Environment Influencing Mechanism and Cooling Model Based on Local Climate Zones: A Case Study of the Changsha–Zhuzhou–Xiangtan Urban Agglomeration
by Mengyu Ge, Zhongzhao Xiong, Yuanjin Li, Li Li, Fei Xie, Yuanfu Gong and Yufeng Sun
Remote Sens. 2025, 17(14), 2391; https://doi.org/10.3390/rs17142391 - 11 Jul 2025
Cited by 1 | Viewed by 374
Abstract
Urbanization has profoundly transformed land surface morphology and amplified thermal environmental modifications, culminating in intensified urban heat island (UHI) phenomena. Local climate zones (LCZs) provide a robust methodological framework for quantifying thermal heterogeneity and dynamics at local scales. Our study investigated the Changsha–Zhuzhou–Xiangtan [...] Read more.
Urbanization has profoundly transformed land surface morphology and amplified thermal environmental modifications, culminating in intensified urban heat island (UHI) phenomena. Local climate zones (LCZs) provide a robust methodological framework for quantifying thermal heterogeneity and dynamics at local scales. Our study investigated the Changsha–Zhuzhou–Xiangtan urban agglomeration (CZXA) as a case study and systematically examined spatiotemporal patterns of LCZs and land surface temperature (LST) from 2002 to 2019, while elucidating mechanisms influencing urban thermal environments and proposing optimized cooling strategies. Key findings demonstrated that through multi-source remote sensing data integration, long-term LCZ classification was achieved with 1,592 training samples, maintaining an overall accuracy exceeding 70%. Landscape pattern analysis revealed that increased fragmentation, configurational complexity, and diversity indices coupled with diminished spatial connectivity significantly elevate LST. Rapid development of the city in the vertical direction also led to an increase in LST. Among seven urban morphological parameters, impervious surface fraction (ISF) and pervious surface fraction (PSF) demonstrated the strongest correlations with LST, showing Pearson coefficients of 0.82 and −0.82, respectively. Pearson coefficients of mean building height (BH), building surface fraction (BSF), and mean street width (SW) also reached 0.50, 0.55, and 0.66. Redundancy analysis (RDA) results revealed that the connectivity and fragmentation degree of LCZ_8 (COHESION8) was the most critical parameter affecting urban thermal environment, explaining 58.5% of LST. Based on these findings and materiality assessment, the regional cooling model of “cooling resistance surface–cooling source–cooling corridor–cooling node” of CZXA was constructed. In the future, particular attention should be paid to the shape and distribution of buildings, especially large, openly arranged buildings with one to three stories, as well as to controlling building height and density. Moreover, tailored protection strategies should be formulated and implemented for cooling sources, corridors, and nodes based on their hierarchical significance within urban thermal regulation systems. These research outcomes offer a robust scientific foundation for evidence-based decision-making in mitigating UHI effects and promoting sustainable urban ecosystem development across urban agglomerations. Full article
Show Figures

Figure 1

20 pages, 2723 KiB  
Article
Downscaling of Urban Land Surface Temperatures Using Geospatial Machine Learning with Landsat 8/9 and Sentinel-2 Imagery
by Ratovoson Robert Andriambololonaharisoamalala, Petra Helmholz, Dimitri Bulatov, Ivana Ivanova, Yongze Song, Susannah Soon and Eriita Jones
Remote Sens. 2025, 17(14), 2392; https://doi.org/10.3390/rs17142392 - 11 Jul 2025
Viewed by 524
Abstract
Urban surface temperatures are increasing because of climate change and rapid urbanisation, contributing to the urban heat island (UHI) effect and significantly influencing local climates. Satellite-derived land surface temperature (LST) plays a vital role in analysing urban thermal patterns. However, current satellite thermal [...] Read more.
Urban surface temperatures are increasing because of climate change and rapid urbanisation, contributing to the urban heat island (UHI) effect and significantly influencing local climates. Satellite-derived land surface temperature (LST) plays a vital role in analysing urban thermal patterns. However, current satellite thermal infrared (TIR) sensors have a low spatial resolution, making it difficult to accurately capture the complex thermal variations within urban areas. This limitation affects the assessments of UHI effects and hinders effective mitigation strategies. We proposed a hybrid model named “geospatial machine learning” (GeoML) to address these challenges, combining random forest and kriging downscaling techniques. This method utilises high spatial resolution data from Sentinel-2 to enhance the LST derived from Landsat 8/9 data. Tested in Perth, Australia, GeoML generated an enhanced LST with good agreement with ground-based measurements, with a Pearson’s correlation coefficient of 0.85, a root mean square error (RMSE) of 2.7 °C, and a mean absolute error (MAE) of less than 2.2 °C. Validation with LST derived from another TIR sensor also provided promising outputs. The results were compared with the high-resolution urban thermal sharpener (HUTS) downscaling methods, which GeoML outperformed, demonstrating its effectiveness as a valuable tool for urban thermal studies involving high-resolution LST data. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Urban Environment and Climate)
Show Figures

Figure 1

21 pages, 3022 KiB  
Article
Machine Learning Prediction of Urban Heat Island Severity in the Midwestern United States
by Ali Mansouri and Abdolmajid Erfani
Sustainability 2025, 17(13), 6193; https://doi.org/10.3390/su17136193 - 6 Jul 2025
Viewed by 844
Abstract
Rapid population growth and urbanization have greatly impacted the environment, causing a sharp rise in city temperatures—a phenomenon known as the Urban Heat Island (UHI) effect. While previous research has extensively examined the influence of land use characteristics on urban heat islands, their [...] Read more.
Rapid population growth and urbanization have greatly impacted the environment, causing a sharp rise in city temperatures—a phenomenon known as the Urban Heat Island (UHI) effect. While previous research has extensively examined the influence of land use characteristics on urban heat islands, their impact on community demographics and UHI severity remains unexplored. Moreover, most previous studies have focused on specific locations, resulting in relatively homogeneous environmental data and limiting understanding of variations across different areas. To address this gap, this paper develops ensemble learning models to predict UHI severity based on demographic, meteorological, and land use/land cover factors in Midwestern United States. Analyzing over 11,000 data points from urban census tracts across more than 12 states in the Midwestern United States, this study developed Random Forest and XGBoost classifiers achieving weighted F1-scores up to 0.76 and excellent discriminatory power (ROC-AUC > 0.90). Feature importance analysis, supported by a detailed SHAP (SHapley Additive exPlanations) interpretation, revealed that the difference in vegetation between urban and rural areas (DelNDVI_summer) and imperviousness were the most critical predictors of UHI severity. This work provides a robust, large-scale predictive tool that helps urban planners and policymakers identify key UHI drivers and develop targeted mitigation strategies. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

26 pages, 918 KiB  
Review
The Role of Urban Green Spaces in Mitigating the Urban Heat Island Effect: A Systematic Review from the Perspective of Types and Mechanisms
by Haoqiu Lin and Xun Li
Sustainability 2025, 17(13), 6132; https://doi.org/10.3390/su17136132 - 4 Jul 2025
Viewed by 997
Abstract
Due to rising temperatures, energy use, and thermal discomfort, urban heat islands (UHIs) pose a serious environmental threat to urban sustainability. This systematic review synthesizes peer-reviewed literature on various forms of green infrastructure and their mechanisms for mitigating UHI effects, and the function [...] Read more.
Due to rising temperatures, energy use, and thermal discomfort, urban heat islands (UHIs) pose a serious environmental threat to urban sustainability. This systematic review synthesizes peer-reviewed literature on various forms of green infrastructure and their mechanisms for mitigating UHI effects, and the function of urban green spaces (UGSs) in reducing the impact of UHI. In connection with urban parks, green roofs, street trees, vertical greenery systems, and community gardens, important mechanisms, including shade, evapotranspiration, albedo change, and ventilation, are investigated. This study emphasizes how well these strategies work to lower city temperatures, enhance air quality, and encourage thermal comfort. For instance, the findings show that green areas, including parks, green roofs, and street trees, can lower air and surface temperatures by as much as 5 °C. However, the efficiency of cooling varies depending on plant density and spatial distribution. While green roofs and vertical greenery systems offer localized cooling in high-density urban settings, urban forests and green corridors offer thermal benefits on a larger scale. To maximize their cooling capacity and improve urban resilience to climate change, the assessment emphasizes the necessity of integrating UGS solutions into urban planning. To improve the implementation and efficacy of green spaces, future research should concentrate on policy frameworks and cutting-edge technology such as remote sensing. Full article
Show Figures

Figure 1

12 pages, 468 KiB  
Review
Hot Weather and Violence Against Women: A Global Scoping Review
by Chiratidzo Hope Mulambo, Rishu Thakur and Supriya Mathew
Int. J. Environ. Res. Public Health 2025, 22(7), 1069; https://doi.org/10.3390/ijerph22071069 - 3 Jul 2025
Viewed by 512
Abstract
Temperature increases due to climatic changes have been increasingly recognized as posing significant public health challenges, with wide-ranging socio-economic implications. This scoping review examines the relationship between high temperatures and violence against women (VAW) globally. Nine studies from both high-income and low- and [...] Read more.
Temperature increases due to climatic changes have been increasingly recognized as posing significant public health challenges, with wide-ranging socio-economic implications. This scoping review examines the relationship between high temperatures and violence against women (VAW) globally. Nine studies from both high-income and low- and middle-income countries were included in this review. The findings suggest an overall positive association between high temperatures and rates of VAW. Theoretical frameworks, including the temperature–aggression hypothesis and routine activity theory, offer insights into the mechanisms driving this relationship. Key risk factors such as socioeconomic status, urban heat island effects, rurality, patriarchal norms, and alcohol consumption were considered to be risk factors affecting rates of VAW. Despite growing evidence, research gaps persist, particularly in regions with high rates of VAW and in the form of qualitative studies that capture women’s lived experiences. The positive associations between temperature and VAW underscore the urgency of integrating gender-sensitive strategies into climate adaptation policies to mitigate the compounding risks of climate change and gender-based violence. Full article
Show Figures

Figure 1

32 pages, 58845 KiB  
Article
Using New York City’s Geographic Data in an Innovative Application of Generative Adversarial Networks (GANs) to Produce Cooling Comparisons of Urban Design
by Yuanyuan Li, Lina Zhao, Hao Zheng and Xiaozhou Yang
Land 2025, 14(7), 1393; https://doi.org/10.3390/land14071393 - 2 Jul 2025
Cited by 1 | Viewed by 528
Abstract
Urban blue–green space (UBGS) plays a critical role in mitigating the urban heat island (UHI) effect and reducing land surface temperatures (LSTs). However, existing research has not sufficiently explored the optimization of UBGS spatial configurations or their interactions with urban morphology. This study [...] Read more.
Urban blue–green space (UBGS) plays a critical role in mitigating the urban heat island (UHI) effect and reducing land surface temperatures (LSTs). However, existing research has not sufficiently explored the optimization of UBGS spatial configurations or their interactions with urban morphology. This study takes New York City as a case and systematically investigates small-scale urban cooling strategies by integrating multiple factors, including adjustments to the blue–green ratio, spatial layouts, vegetation composition, building density, building height, and layout typologies. We utilize multi-source geographic data, including LiDAR derived land cover, OpenStreetMap data, and building footprint data, together with LST data retrieved from Landsat imagery, to develop a prediction model based on generative adversarial networks (GANs). This model can rapidly generate visual LST predictions under various configuration scenarios. This study employs a combination of qualitative and quantitative metrics to evaluate the performance of different model stages, selecting the most accurate model as the final experimental framework. Furthermore, the experimental design strictly controls the study area and pixel allocation, combining manual and automated methods to ensure the comparability of different ratio configurations. The main findings indicate that a blue–green ratio of 3:7 maximizes cooling efficiency; a shrub-to-tree coverage ratio of 2:8 performs best, with tree-dominated configurations outperforming shrub-dominated ones; concentrated linear layouts achieve up to a 10.01% cooling effect; and taller buildings exhibit significantly stronger UBGS cooling performance, with super-tall areas achieving cooling effects approximately 31 percentage points higher than low-rise areas. Courtyard layouts enhance airflow and synergistic cooling effects, whereas compact designs limit the cooling potential of UBGS. This study proposes an innovative application of GANs to address a key research gap in the quantitative optimization of UBGS configurations and provides a methodological reference for sustainable microclimate planning at the neighborhood scale. Full article
Show Figures

Figure 1

19 pages, 6342 KiB  
Article
Innovative Use of UHPC and Topology Optimization in Permeable Interlocking Pavers: Advancing Sustainable Pavement Solutions
by Fernanda Gadler, José Augusto Ferreira Sales de Mesquita, Francisco Helio Alencar Oliveira, Liedi Legi Bariani Bernucci, Rafael Giuliano Pileggi, Emilio Carlos Nelli Silva and Diego Silva Prado
Sustainability 2025, 17(13), 6039; https://doi.org/10.3390/su17136039 - 1 Jul 2025
Viewed by 402
Abstract
The rapid expansion of urban areas has increased the prevalence of impermeable surfaces, intensifying flooding risks by disrupting natural water infiltration. Permeable pavements have emerged as a sustainable alternative, capable of reducing stormwater runoff, improving surface friction, and mitigating urban heat island effects. [...] Read more.
The rapid expansion of urban areas has increased the prevalence of impermeable surfaces, intensifying flooding risks by disrupting natural water infiltration. Permeable pavements have emerged as a sustainable alternative, capable of reducing stormwater runoff, improving surface friction, and mitigating urban heat island effects. Nevertheless, their broader implementation is often hindered by issues such as clogging and limited mechanical strength resulting from high porosity. This study examines the design of interlocking permeable blocks utilizing ultra-high-performance concrete (UHPC) to strike a balance between enhanced drainage capacity and high structural performance. A topology optimization (TO) strategy was applied to numerically model the ideal block geometry, incorporating 105 drainage channels with a diameter of 6 mm—chosen to ensure manufacturability and structural integrity. The UHPC formulation was developed using particle packing optimization with ordinary Portland cement (OPC), silica fume, and limestone filler to reduce binder content while achieving superior strength and workability, guided by rheological assessments. Experimental tests revealed that the perforated UHPC blocks reached compressive strengths of 87.8 MPa at 7 days and 101.0 MPa at 28 days, whereas the solid UHPC blocks achieved compressive strengths of 125.8 MPa and 146.2 MPa, respectively. In contrast, commercial permeable concrete blocks reached only 28.9 MPa at 28 days. Despite a reduction of approximately 30.9% in strength due to perforations, the UHPC-105holes blocks still far exceed the 41 MPa threshold required for certain structural applications. These results highlight the mechanical superiority of the UHPC blocks and confirm their viability for structural use even with enhanced permeability features. The present research emphasizes mechanical and structural performance, while future work will address hydraulic conductivity and anticlogging behavior. Overall, the findings support the use of topology-optimized UHPC permeable blocks as a resilient solution for sustainable urban drainage systems, combining durability, strength, and environmental performance. Full article
(This article belongs to the Special Issue Green Infrastructure and Sustainable Stormwater Management)
Show Figures

Figure 1

Back to TopTop