Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (555)

Search Parameters:
Keywords = urban growth scenario

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 19905 KiB  
Article
Assessing Urban Park Accessibility via Population Projections: Planning for Green Equity in Shanghai
by Leiting Cen and Yang Xiao
Land 2025, 14(8), 1580; https://doi.org/10.3390/land14081580 - 2 Aug 2025
Viewed by 199
Abstract
Rapid urbanization and demographic shifts present significant challenges to spatial justice in green space provision. Traditional static assessments have become increasingly inadequate for guiding park planning, which now requires a dynamic, future-oriented analytical approach. To address this gap, this study incorporates population dynamics [...] Read more.
Rapid urbanization and demographic shifts present significant challenges to spatial justice in green space provision. Traditional static assessments have become increasingly inadequate for guiding park planning, which now requires a dynamic, future-oriented analytical approach. To address this gap, this study incorporates population dynamics into urban park planning by developing a dynamic evaluation framework for park accessibility. Building on the Gaussian-based two-step floating catchment area (Ga2SFCA) method, we propose the human-population-projection-Ga2SFCA (HPP-Ga2SFCA) model, which integrates population forecasts to assess park service efficiency under future demographic pressures. Using neighborhood-committee-level census data from 2000 to 2020 and detailed park spatial data, we identified five types of population change and forecast demographic distributions for both short- and long-term scenarios. Our findings indicate population decline in the urban core and outer suburbs, with growth concentrated in the transitional inner-suburban zones. Long-term projections suggest that 66% of communities will experience population growth, whereas short-term forecasts indicate a decline in 52%. Static models overestimate park accessibility by approximately 40%. In contrast, our dynamic model reveals that accessibility is overestimated in 71% and underestimated in 7% of the city, highlighting a potential mismatch between future population demand and current park supply. This study offers a forward-looking planning framework that enhances the responsiveness of park systems to demographic change and supports the development of more equitable, adaptive green space strategies. Full article
(This article belongs to the Special Issue Spatial Justice in Urban Planning (Second Edition))
Show Figures

Figure 1

33 pages, 7374 KiB  
Article
Exploration of Carbon Emission Reduction Pathways for Urban Residential Buildings at the Provincial Level: A Case Study of Jiangsu Province
by Jian Xu, Tao Lei, Milun Yang, Huixuan Xiang, Ronge Miao, Huan Zhou, Ruiqu Ma, Wenlei Ding and Genyu Xu
Buildings 2025, 15(15), 2687; https://doi.org/10.3390/buildings15152687 - 30 Jul 2025
Viewed by 278
Abstract
Achieving carbon emission reductions in the residential building sector while maintaining economic growth represents a global challenge, particularly in rapidly developing regions with internal disparities. This study examines Jiangsu Province in eastern China—a economic hub with north-south development gradients—to develop an integrated framework [...] Read more.
Achieving carbon emission reductions in the residential building sector while maintaining economic growth represents a global challenge, particularly in rapidly developing regions with internal disparities. This study examines Jiangsu Province in eastern China—a economic hub with north-south development gradients—to develop an integrated framework for differentiated carbon reduction pathways. The methodology combines spatial autocorrelation analysis, logarithmic mean Divisia index (LMDI) decomposition, system dynamics modeling, and Tapio decoupling analysis to examine urban residential building emissions across three regions from 2016–2022. Results reveal significant spatial clustering of emissions (Moran’s I peaking at 0.735), with energy consumption per unit area as the dominant driver across all regions (contributing 147.61%, 131.82%, and 147.57% respectively). Scenario analysis demonstrates that energy efficiency policies can reduce emissions by 10.1% while maintaining 99.2% of economic performance, enabling carbon peak achievement by 2030. However, less developed northern regions emerge as binding constraints, requiring technology investments. Decoupling analysis identifies region-specific optimal pathways: conventional development for advanced regions, balanced approaches for transitional areas, and subsidies for lagging regions. These findings challenge assumptions about environment-economy trade-offs and provide a replicable framework for designing differentiated climate policies in heterogeneous territories, offering insights for similar regions worldwide navigating the transition to sustainable development. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

45 pages, 424 KiB  
Article
Human Capital, Household Prosperity, and Social Inequalities in Sub-Saharan Africa
by Boniface Ngah Epo, Francis Menjo Baye, Germano Mwabu, Damiano K. Manda, Olu Ajakaiye and Samuel Kipruto
Economies 2025, 13(8), 221; https://doi.org/10.3390/economies13080221 - 29 Jul 2025
Viewed by 122
Abstract
This article examines the relationship between human capital accumulation, household income, and shared prosperity using 2005–2018 household surveys in Cameroon, Ethiopia, Kenya, Nigeria, and Uganda. Human capital is found to be positively and significantly correlated with household wellbeing in all five nations. Health’s [...] Read more.
This article examines the relationship between human capital accumulation, household income, and shared prosperity using 2005–2018 household surveys in Cameroon, Ethiopia, Kenya, Nigeria, and Uganda. Human capital is found to be positively and significantly correlated with household wellbeing in all five nations. Health’s indirect benefits in Cameroon, Ethiopia, and Kenya augment its direct benefits. Education has monotonic welfare benefits from primary to tertiary levels in all countries. Human capital and labour market participation are strongly associated with household wellbeing. The equalization of human capital endowments increases income for the 40% of the least well-off groups in three of the sample countries. All countries except Uganda record a decrease in human capital deprivation over the period studied. Redistribution is associated with a reduction in human capital deprivation, although less systematically than in the growth scenario. These results suggest that sizeable reductions in human capital deprivation are more likely to be accomplished by interventions that focus on boosting general human capital outcomes than those that redistribute the human capital formation inputs. In countries with declining human capital deprivation, the within-sector interventions seem to account for this success. Substantial heterogeneity in human capital poverty exists within and across countries and between rural and urban areas. Full article
(This article belongs to the Special Issue Human Capital Development in Africa)
20 pages, 9605 KiB  
Article
Future Modeling of Urban Growth Using Geographical Information Systems and SLEUTH Method: The Case of Sanliurfa
by Songül Naryaprağı Gülalan, Fred Barış Ernst and Abdullah İzzeddin Karabulut
Sustainability 2025, 17(15), 6833; https://doi.org/10.3390/su17156833 - 28 Jul 2025
Viewed by 431
Abstract
This study was conducted using Geographic Information Systems (GISs), Remote Sensing (RS) techniques, and the SLEUTH model based on Cellular Automata (CA) to analyze the spatial and temporal dynamics of urban growth in Sanliurfa Province and to create future projections. The model in [...] Read more.
This study was conducted using Geographic Information Systems (GISs), Remote Sensing (RS) techniques, and the SLEUTH model based on Cellular Automata (CA) to analyze the spatial and temporal dynamics of urban growth in Sanliurfa Province and to create future projections. The model in question simulates urban sprawl by using Slope, Land Use/Land Cover (LULC), Excluded Areas, urban areas, transportation, and hill shade layers as inputs. In addition, disaster risk areas and public policies that will affect the urbanization of the city were used as input layers. In the study, the spatial pattern of urbanization in Sanliurfa was determined by using Landsat satellite images of six different periods covering the years 1985–2025. The Analytical Hierarchy Process (AHP) method was applied within the scope of Multi-Criteria Decision Analysis (MCDA). Weighting was made for each parameter. Spatial analysis was performed by combining these values with data in raster format. The results show that the SLEUTH model successfully reflects past growth trends when calibrated at different spatial resolutions and can provide reliable predictions for the future. Thus, the proposed model can be used as an effective decision support tool in the evaluation of alternative urbanization scenarios in urban planning. The findings contribute to the sustainability of land management policies. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

30 pages, 9606 KiB  
Article
A Visualized Analysis of Research Hotspots and Trends on the Ecological Impact of Volatile Organic Compounds
by Xuxu Guo, Qiurong Lei, Xingzhou Li, Jing Chen and Chuanjian Yi
Atmosphere 2025, 16(8), 900; https://doi.org/10.3390/atmos16080900 - 24 Jul 2025
Viewed by 383
Abstract
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and [...] Read more.
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and dynamic transformation processes across air, water, and soil media, the ecological risks associated with VOCs have attracted increasing attention from both the scientific community and policy-makers. This study systematically reviews the core literature on the ecological impacts of VOCs published between 2005 and 2024, based on data from the Web of Science and Google Scholar databases. Utilizing three bibliometric tools (CiteSpace, VOSviewer, and Bibliometrix), we conducted a comprehensive visual analysis, constructing knowledge maps from multiple perspectives, including research trends, international collaboration, keyword evolution, and author–institution co-occurrence networks. The results reveal a rapid growth in the ecological impact of VOCs (EIVOCs), with an average annual increase exceeding 11% since 2013. Key research themes include source apportionment of air pollutants, ecotoxicological effects, biological response mechanisms, and health risk assessment. China, the United States, and Germany have emerged as leading contributors in this field, with China showing a remarkable surge in research activity in recent years. Keyword co-occurrence and burst analyses highlight “air pollution”, “exposure”, “health”, and “source apportionment” as major research hotspots. However, challenges remain in areas such as ecosystem functional responses, the integration of multimedia pollution pathways, and interdisciplinary coordination mechanisms. There is an urgent need to enhance monitoring technology integration, develop robust ecological risk assessment frameworks, and improve predictive modeling capabilities under climate change scenarios. This study provides scientific insights and theoretical support for the development of future environmental protection policies and comprehensive VOCs management strategies. Full article
Show Figures

Figure 1

34 pages, 5790 KiB  
Article
Urban Densification and Outdoor Thermal Comfort: Scenario-Based Analysis in Zurich’s Altstetten–Albisrieden District
by Yingying Jiang and Sacha Menz
Land 2025, 14(8), 1516; https://doi.org/10.3390/land14081516 - 23 Jul 2025
Viewed by 172
Abstract
The growing urban population has made densification a key focus of urban development. It is crucial to create an urban planning strategy that understands the environmental, social, and economic effects of densification at both the district and city levels. In Switzerland, densification is [...] Read more.
The growing urban population has made densification a key focus of urban development. It is crucial to create an urban planning strategy that understands the environmental, social, and economic effects of densification at both the district and city levels. In Switzerland, densification is a legally binding aim to foster housing and jobs within urban boundaries. The challenge is to accommodate population growth while maintaining a high quality of life. Zurich exemplifies this situation, necessitating the accommodation of approximately 25% of the anticipated increase in both the resident population and associated workplaces, as of 2016. This study examined the effects of urban densification on urban forms and microclimates in the Altstetten–Albisrieden district. It developed five densification scenarios based on current urban initiatives and assessed their impacts. Results showed that the current Building and Zoning Plan provides sufficient capacity to accommodate growth. Strategies such as densifying parcels older than fifty years and adding floors to newer buildings were found to minimally impact existing urban forms. Using the SOLWEIG model in the Urban Multi-scale Environmental Predictor (UMEP), this study simulated mean radiant temperature (Tmrt) in the selected urban areas. The results demonstrated that densification reduced daytime average temperatures by 0.60 °C and diurnal averages by 0.23 °C, but increased average nighttime temperatures by 0.38 °C. This highlights the importance of addressing warm nights. The study concludes that well-planned densification can significantly contribute to urban liveability, emphasising the need for thoughtful building design to improve outdoor thermal comfort. Full article
Show Figures

Figure 1

16 pages, 3848 KiB  
Article
Residential Location Preferences in a Post-Conflict Context: An Agent-Based Modeling Approach to Assess High-Demand Areas in Kabul New City, Afghanistan
by Vineet Chaturvedi and Walter Timo de Vries
Land 2025, 14(7), 1502; https://doi.org/10.3390/land14071502 - 21 Jul 2025
Viewed by 480
Abstract
As part of the post-conflict reconstruction and recovery, the development of Kabul New City aims to bring relief to the existing capital city, Kabul, which has experienced exponential population growth, putting heavy pressure on its existing resources. Kabul New City is divided into [...] Read more.
As part of the post-conflict reconstruction and recovery, the development of Kabul New City aims to bring relief to the existing capital city, Kabul, which has experienced exponential population growth, putting heavy pressure on its existing resources. Kabul New City is divided into four subsectors, and each of them is being developed and is expected to reach a target population by 2025, as defined by the master plan. The study’s objective is to determine which of the four zones are in demand and need to be prioritized for development, as per the model results. The data collection involves an online questionnaire, and the responses are collected from residents of Kabul and Herat. Agent-based modeling (ABM) is an emerging method of simulating urban dynamics. Cities are evolving continuously and are forming unique spatial patterns that result from the movement of residents in search of new locations that accommodate their needs and preferences. An agent-based model is developed using the weighted random selection process based on household size and income levels. The agents are the residents of Kabul and Herat, and the environment is the land use classification image using the Sentinel 2 image of Kabul New City. The barren class is treated as the developable area and is divided into four sub-sectors. The model simulates three alternative growth rate scenarios, i.e., ambitious, moderate, and steady. The results of the simulation reveal that the sub-sector Dehsabz South, being closer to Kabul city, is in higher demand. Barikab is another sub-sector high in demand, which has connectivity through the highway and is an upcoming industrial hub. Full article
(This article belongs to the Special Issue Spatial-Temporal Evolution Analysis of Land Use)
Show Figures

Figure 1

14 pages, 7570 KiB  
Article
Experimental Study on Effects of Lateral Spacing on Flame Propagation over Solid Fuel Matrix
by Xin Xu, Yanyan Ma, Guoqing Zhu, Zhen Hu and Yumeng Wang
Fire 2025, 8(7), 284; https://doi.org/10.3390/fire8070284 - 20 Jul 2025
Viewed by 432
Abstract
The increasing complexity of urban structures has significantly elevated the risk and severity of façade fires in high-rise buildings. Unlike traditional models assuming continuous fuel beds, real-world fire scenarios often involve discrete combustible materials arranged in discrete fuel matrices. This study presents a [...] Read more.
The increasing complexity of urban structures has significantly elevated the risk and severity of façade fires in high-rise buildings. Unlike traditional models assuming continuous fuel beds, real-world fire scenarios often involve discrete combustible materials arranged in discrete fuel matrices. This study presents a systematic investigation into the influence of lateral spacing on vertical flame propagation behavior. Laboratory-scale experiments were conducted using vertically oriented polymethyl methacrylate (PMMA) fuel arrays under nine different spacing configurations. Results reveal that lateral spacing plays a critical role in determining flame spread paths and intensities. Specifically, with a vertical spacing fixed at 8 cm, a lateral spacing of 10 mm resulted in rapid flame growth, reaching a peak flame height of approximately 96.5 cm within 450 s after ignition. In contrast, increasing the lateral spacing to 15 mm significantly slowed flame development, achieving a peak flame height of just under 90 cm at approximately 600 s. This notable transition in flame dynamics is closely associated with the critical thermal boundary layer thickness (~11.5 mm). Additionally, at 10 mm spacing, a chimney-like effect was observed, enhancing upward air entrainment and resulting in intensified combustion. These findings reveal the coupled influence of geometric configuration and heat transfer mechanisms on façade flame propagation. The insights gained provide guidance for cladding system design, suggesting that increasing lateral separation between combustible elements may be an effective strategy to limit flame spread and enhance fire safety performance in buildings. Full article
Show Figures

Figure 1

33 pages, 12632 KiB  
Article
Analysis of LULC and Urban Thermal Variations in Industrial Cities Using Earth Observation Indices and Machine Learning: A Case Study of Gujranwala, Pakistan
by Zabih Ullah, Muhammad Sajid Mehmood, Shiyan Zhai and Yaochen Qin
Remote Sens. 2025, 17(14), 2474; https://doi.org/10.3390/rs17142474 - 16 Jul 2025
Viewed by 414
Abstract
Rapid urbanization and industrial development have significantly altered land use and cover across the globe, intensifying urban thermal environments and exacerbating the urban heat island (UHI) effect. Gujranwala, Pakistan, represents an industrial growth that has driven substantial land use/land cover (LULC) changes and [...] Read more.
Rapid urbanization and industrial development have significantly altered land use and cover across the globe, intensifying urban thermal environments and exacerbating the urban heat island (UHI) effect. Gujranwala, Pakistan, represents an industrial growth that has driven substantial land use/land cover (LULC) changes and temperature increases; however, the directional and distance-based patterns of these changes remain unquantified. Therefore, this study is conducted to examine spatiotemporal changes in LULC and variations in the Urban Thermal Field Variation Index (UTFVI) between 2001 and 2021 and to project future scenarios for 2031 and 2041 using (1) Earth Observation Indices (EOIs) with machine learning (ML) classifiers (Random Forest) for precise LULC mapping through the Google Earth Engine (GEE) platform, (2) Cellular Automata–Artificial Neural Networks (CA-ANNs) for future scenario projection, and (3) Gradient Directional Analysis (GDA) to quantify directional (16-axis) and distance-based (concentric zones) patterns of urban expansion and thermal variation from 2001–2021. The study revealed significant LULC changes, with built-up areas expanding by 7.5% from 2001 to 2021, especially in the east, northeast, and southeast directions within a 20 km radius. Due to urban encroachment, vegetation and cropland decreased by 1.47% and 1.83%, respectively. The urban thermal environment worsened, with the highest land surface temperature (LST) rising from 41 °C in 2001 to 55 °C in 2021. Additionally, the UTFVI showed expanding areas under the ‘strong’ and ‘strongest’ categories, increasing from 30.58% in 2001 to 33.42% in 2041. Directional analysis highlighted severe thermal stress in the southern and southwestern areas linked to industrial activities and urban sprawl. This integrated approach provides a template for analyzing urban thermal environments in developing cities, supporting targeted mitigation strategies through direction- and distance-specific planning interventions to mitigate UHI impacts. Full article
Show Figures

Figure 1

28 pages, 10262 KiB  
Article
Driving Forces and Future Scenario Simulation of Urban Agglomeration Expansion in China: A Case Study of the Pearl River Delta Urban Agglomeration
by Zeduo Zou, Xiuyan Zhao, Shuyuan Liu and Chunshan Zhou
Remote Sens. 2025, 17(14), 2455; https://doi.org/10.3390/rs17142455 - 15 Jul 2025
Viewed by 576
Abstract
The remote sensing monitoring of land use changes and future scenario simulation hold crucial significance for accurately characterizing urban expansion patterns, optimizing urban land use configurations, and thereby promoting coordinated regional development. Through the integration of multi-source data, this study systematically analyzes the [...] Read more.
The remote sensing monitoring of land use changes and future scenario simulation hold crucial significance for accurately characterizing urban expansion patterns, optimizing urban land use configurations, and thereby promoting coordinated regional development. Through the integration of multi-source data, this study systematically analyzes the spatiotemporal trajectories and driving forces of land use changes in the Pearl River Delta urban agglomeration (PRD) from 1990 to 2020 and further simulates the spatial patterns of urban land use under diverse development scenarios from 2025 to 2035. The results indicate the following: (1) During 1990–2020, urban expansion in the Pearl River Delta urban agglomeration exhibited a “stepwise growth” pattern, with an annual expansion rate of 3.7%. Regional land use remained dominated by forest (accounting for over 50%), while construction land surged from 6.5% to 21.8% of total land cover. The gravity center trajectory shifted southeastward. Concurrently, cropland fragmentation has intensified, accompanied by deteriorating connectivity of ecological lands. (2) Urban expansion in the PRD arises from synergistic interactions between natural and socioeconomic drivers. The Geographically and Temporally Weighted Regression (GTWR) model revealed that natural constraints—elevation (regression coefficients ranging −0.35 to −0.05) and river network density (−0.47 to −0.15)—exhibited significant spatial heterogeneity. Socioeconomic drivers dominated by year-end paved road area (0.26–0.28) and foreign direct investment (0.03–0.11) emerged as core expansion catalysts. Geographic detector analysis demonstrated pronounced interaction effects: all factor pairs exhibited either two-factor enhancement or nonlinear enhancement effects, with interaction explanatory power surpassing individual factors. (3) Validation of the Patch-generating Land Use Simulation (PLUS) model showed high reliability (Kappa coefficient = 0.9205, overall accuracy = 95.9%). Under the Natural Development Scenario, construction land would exceed the ecological security baseline, causing 408.60 km2 of ecological space loss; Under the Ecological Protection Scenario, mandatory control boundaries could reduce cropland and forest loss by 3.04%, albeit with unused land development intensity rising to 24.09%; Under the Economic Development Scenario, cross-city contiguous development zones along the Pearl River Estuary would emerge, with land development intensity peaking in Guangzhou–Foshan and Shenzhen–Dongguan border areas. This study deciphers the spatiotemporal dynamics, driving mechanisms, and scenario outcomes of urban agglomeration expansion, providing critical insights for formulating regionally differentiated policies. Full article
Show Figures

Figure 1

22 pages, 2194 KiB  
Article
Environmental and Social Benefits of Urban Parking Space Shortages Mitigation Management Model: A System Dynamics and Nudge Approach
by Zhen Chen, Zhengyang Xu, Kang Tian and Shuwei Jia
Sustainability 2025, 17(14), 6414; https://doi.org/10.3390/su17146414 - 13 Jul 2025
Viewed by 386
Abstract
With the growth of the urban population and economic level, the issue of urban parking space shortages (UPSSs) has assumed growing prominence. This persistent issue not only exacerbates traffic congestion but also contributes to environmental pollution, highlighting the need for system-oriented mitigation strategies. [...] Read more.
With the growth of the urban population and economic level, the issue of urban parking space shortages (UPSSs) has assumed growing prominence. This persistent issue not only exacerbates traffic congestion but also contributes to environmental pollution, highlighting the need for system-oriented mitigation strategies. First, an algorithm for mitigating UPSSs based on nudge theory was constructed, in order to determine how the nudge strategies work. Second, nudge tools, including gain disclosure, salience, and outcome notification, were integrated to construct a mitigation model for UPSSs, which synthesizes nudge theory, the model of self-regulatory processes involved in behavioral change, and system dynamics (NT-SPBC-SD theory). Finally, four scenarios of natural development, guide adjustment, balanced regulation, and enhanced change were simulated. The findings of this study are as follows: (1) The UPSS mitigation had multiple overlapping effects and critical point effects, and the nudge strategy gradually decayed or even rebounded over time. (2) Under the enhanced change scenario, the degree of UPSSs, the amount of illegal parking, and CO2 emissions from civil vehicles decreased by 21.2%, 6.93%, and 14.54%, respectively. (3) After quantitative comparisons, the balanced regulation scenario with lower implementation costs instead demonstrated superior overall performance. The results support subsequent research and guide the enhancement of urban parking management policies to advance urban sustainability. Full article
Show Figures

Figure 1

23 pages, 12120 KiB  
Article
Estimating Macroplastic Mass Transport from Urban Runoff in a Data-Scarce Watershed: A Case Study from Cordoba, Argentina
by María Fernanda Funes, Teresa María Reyna, Carlos Marcelo García, María Lábaque, Sebastián López, Ingrid Strusberg and Susana Vanoni
Sustainability 2025, 17(13), 6177; https://doi.org/10.3390/su17136177 - 5 Jul 2025
Viewed by 487
Abstract
Urban growth has intensified the generation of solid waste, particularly in densely populated and vulnerable neighborhoods, leading to environmental degradation and public health risks. This study presents a multidisciplinary methodology to estimate the mass of macroplastic litter mobilized from urban surfaces into nearby [...] Read more.
Urban growth has intensified the generation of solid waste, particularly in densely populated and vulnerable neighborhoods, leading to environmental degradation and public health risks. This study presents a multidisciplinary methodology to estimate the mass of macroplastic litter mobilized from urban surfaces into nearby watercourses during storm events. Focusing on the Villa Páez neighborhood in Cordoba, Argentina—a data-scarce and flood-prone urban basin—the approach integrates socio-environmental surveys, field observations, Google Street View analysis, and hydrologic modeling using EPA SWMM 5.2. Macroplastic accumulation on streets was estimated based on observed waste density, and its transport under varying garbage collection intervals and rainfall intensities was simulated using a conceptual pollutant model. Results indicate that plastic mobilization increases substantially with storm intensity and accumulation duration, with the majority of macroplastic mass transported during high-return-period rainfall events. The study highlights the need for frequent waste collection, improved monitoring in vulnerable urban areas, and scenario-based modeling tools to support more effective waste and stormwater management. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

22 pages, 4465 KiB  
Article
Urban Expansion Scenario Prediction Model: Combining Multi-Source Big Data, a Graph Attention Network, a Vector Cellular Automata, and an Agent-Based Model
by Yunqi Gao, Dongya Liu, Xinqi Zheng, Xiaoli Wang and Gang Ai
Remote Sens. 2025, 17(13), 2272; https://doi.org/10.3390/rs17132272 - 2 Jul 2025
Cited by 1 | Viewed by 355
Abstract
The construction of transition rules is the core and difficulty faced by the cellular automata (CA) model. Dynamic mining of transition rules can more accurately simulate urban land use change. By introducing a graph attention network (GAT) to mine CA model transition rules, [...] Read more.
The construction of transition rules is the core and difficulty faced by the cellular automata (CA) model. Dynamic mining of transition rules can more accurately simulate urban land use change. By introducing a graph attention network (GAT) to mine CA model transition rules, the temporal and spatial dynamics of the model are increased based on the construction of a real-time dynamic graph structure. At the same time, by adding an agent-based model (ABM) to the CA model, the simulation evolution of different human decision-making behaviors can be achieved. Based on this, an urban expansion scenario prediction (UESP) model has been proposed: (1) the UESP model employs a multi-head attention mechanism to dynamically capture high-order spatial dependencies, supporting the efficient processing of large-scale datasets with over 50,000 points of interest (POIs); (2) it incorporates the behaviors of agents such as residents, governments, and transportation systems to more realistically reflect human micro-level decision-making; and (3) by integrating macro-structural learning with micro-behavioral modeling, it effectively addresses the existing limitations in representing high-order spatial relationships and human decision-making processes in urban expansion simulations. Based on the policy context of the Outline of the Beijing–Tianjin–Hebei (BTH) Coordinated Development Plan, four development scenarios were designed to simulate construction land change by 2030. The results show that (1) the UESP model achieved an overall accuracy of 0.925, a Kappa coefficient of 0.878, and a FoM index of 0.048, outperforming traditional models, with the FoM being 3.5% higher; (2) through multi-scenario simulation prediction, it is found that under the scenario of ecological conservation and farmland protection, forest and grassland increase by 3142 km2, and cultivated land increases by 896 km2, with construction land showing a concentrated growth trend; and (3) the expansion of construction land will mainly occur at the expense of farmland, concentrated around Beijing, Tianjin, Tangshan, Shijiazhuang, and southern core cities in Hebei, forming a “core-driven, axis-extended, and cluster-expanded” spatial pattern. Full article
Show Figures

Figure 1

26 pages, 4037 KiB  
Article
Sustainability Assessment Framework for Urban Transportation Combining System Dynamics Modeling and GIS; A TOD and Parking Policy Approach
by Ahad Farnood, Ursula Eicker, Carmela Cucuzzella, Govind Gopakumar and Sepideh Khorramisarvestani
Smart Cities 2025, 8(4), 107; https://doi.org/10.3390/smartcities8040107 - 30 Jun 2025
Viewed by 619
Abstract
Urban transportation systems face increasing pressure to reduce car dependency and greenhouse gas emissions while supporting sustainable growth. This study addresses the lack of integrated modeling approaches that capture both spatial and temporal dynamics in transport planning. It develops a novel framework combining [...] Read more.
Urban transportation systems face increasing pressure to reduce car dependency and greenhouse gas emissions while supporting sustainable growth. This study addresses the lack of integrated modeling approaches that capture both spatial and temporal dynamics in transport planning. It develops a novel framework combining System Dynamics (SD) and Geographic Information Systems (GIS) to assess the sustainability of Transit-Oriented Development (TOD) strategies and parking policies in two brownfield redevelopment sites in Montreal. The framework embeds spatial metrics, such as proximity to transit, parking availability, and active transportation infrastructure into dynamic feedback loops. Using scenario analysis, the study compares a baseline reflecting current norms with an intervention scenario emphasizing higher density near transit, reduced parking ratios, and improved walkability and bike infrastructure. The results suggest that aligning TOD principles with targeted parking limits and investments in active mobility can substantially reduce car ownership and emissions. While primarily conceptual, the model provides a foundation for location-sensitive, feedback-driven planning tools that support sustainable urban mobility. Full article
Show Figures

Figure 1

29 pages, 7229 KiB  
Article
The Non-Destructive Testing of Architectural Heritage Surfaces via Machine Learning: A Case Study of Flat Tiles in the Jiangnan Region
by Haina Song, Yile Chen and Liang Zheng
Coatings 2025, 15(7), 761; https://doi.org/10.3390/coatings15070761 - 27 Jun 2025
Viewed by 594
Abstract
This study focuses on the ancient buildings in Cicheng Old Town, a typical architectural heritage area in the Jiangnan region of China. These buildings are famous for their well-preserved Tang Dynasty urban layout and Ming and Qing Dynasty roof tiles. However, the natural [...] Read more.
This study focuses on the ancient buildings in Cicheng Old Town, a typical architectural heritage area in the Jiangnan region of China. These buildings are famous for their well-preserved Tang Dynasty urban layout and Ming and Qing Dynasty roof tiles. However, the natural aging, weathering, and biological erosion of the roof tiles seriously threaten the integrity of heritage protection. Given that current detection methods mostly depend on manual checks, which are slow and cover only a small area, this study suggests using deep learning technology for heritage protection and creating a smart model to identify damage in flat tiles using the YOLOv8 architecture. During this research, the team used drone aerial photography to collect images of typical building roofs in Cicheng Old Town. Through preprocessing, unified annotation, and system training, a damage dataset containing 351 high-quality images was established, covering five types of damage: breakage, cracks, the accumulation of fallen leaves, lichen growth, and vegetation growth. The results show that (1) the model has an overall mAP of 73.44%, an F1 value of 0.75 in the vegetation growth category, and a recall rate of 0.70, showing stable and balanced detection performance for various damage types; (2) the model performs well in comparisons using confusion matrices and multidimensional indicators (including precision, recall, and log-average miss rate) and can effectively reduce the false detection and missed detection rates; and (3) the research team applied the model to drone images of the roof of Fengyue Painted Terrace Gate in Cicheng Old Town, Jiangbei District, Ningbo City, Zhejiang Province, and automatically detected and located multiple tile damage areas. The prediction results are highly consistent with field observations, verifying the feasibility and application potential of the model in actual heritage protection scenarios. Full article
Show Figures

Figure 1

Back to TopTop