Experimental Study on Effects of Lateral Spacing on Flame Propagation over Solid Fuel Matrix
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Flame Heights over Fuel Matrix
3.2. Flame Spread Paths
3.3. Burning Rates of Fuel Matrix
4. Discussion
5. Conclusions
- Lateral spacing plays a dominant role in regulating flame spread behavior and combustion dynamics: Smaller lateral spacings promote early lateral flame propagation and accelerate its transition into rapid vertical spread, leading to increased flame heights, surface heat fluxes, and overall burning rates. In contrast, larger lateral spacings impede flame development by reducing the effective heat transfer to neighboring fuel elements.
- A critical thermal boundary layer thickness (~11.5 mm) governs the transition of heat transfer mechanisms: When the lateral spacing is below this threshold, both convective and radiative heat transfer jointly contribute to the ignition of adjacent fuels. As the spacing exceeds the boundary layer thickness, convection becomes negligible, and flame propagation relies primarily on radiation, resulting in delayed or inhibited lateral spread.
- Chimney effect induced by lateral spacing significantly enhances mass transport and flame intensification: Moderate lateral spacing (e.g., 10 mm) generates optimal airflow entrainment pathways that intensify combustion by promoting increased oxygen supply and flame elongation. This effect explains the observed peak flame heights and elevated burning rates under such configurations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Godakandage, R.; Weerasinghe, P.; Gamage, K.; Adnan, H.; Nguyen, K. A systematic review on cavity fires in buildings: Flame spread characteristics, fire risks, and safety measures. Fire 2023, 7, 12. [Google Scholar] [CrossRef]
- Torero, J.L. The building envelope: Failing to understand complexity in tall building design. In Rethinking Building Skins; Elsevier: Amsterdam, The Netherlands, 2022; pp. 341–357. [Google Scholar] [CrossRef]
- Chu, T.; Zhu, G.; Chai, G.; Gao, Y. Study on upward flame spread of cotton fabrics with different moisture regain. Case Stud. Therm. Eng. 2020, 21, 100683. [Google Scholar] [CrossRef]
- Finney, M.A.; Cohen, J.D.; Grenfell, I.C.; Yedinak, K.M. An examination of fire spread thresholds in discontinuous fuel beds. Int. J. Wildland Fire 2010, 19, 163–170. [Google Scholar] [CrossRef]
- Watanabe, Y.; Torikai, H.; Ito, A. Flame spread along a thin solid randomly distributed combustible and noncombustible areas. Proc. Combust. Inst. 2011, 33, 2449–2455. [Google Scholar] [CrossRef]
- V M, J.; Ambatipudi, M.K.; S, V. The phenomenon of flame jump in counter–current flame propagation in biomass packed beds—Experiments and theory. Combust. Sci. Technol. 2022, 194, 1199–1212. [Google Scholar] [CrossRef]
- Liu, Q.; Li, K.; Yuan, C.; Bian, N.; Li, Z.; Xu, W.; Chen, J. Numerical study on coupled combustion of PMMA counter-directional flame spread at variable slope. Fire 2025, 8, 219. [Google Scholar] [CrossRef]
- Bu, R.; Zhou, Y.; Shi, L.; Fan, C. Experimental study on combustion and flame spread characteristics in horizontal arrays of discrete fuels. Combust. Flame 2021, 225, 136–146. [Google Scholar] [CrossRef]
- Gollner, M.J.; Xie, Y.; Lee, M.; Nakamura, Y.; Rangwala, A.S. Burning behavior of vertical matchstick arrays. Combust. Sci. Technol. 2012, 184, 585–607. [Google Scholar] [CrossRef]
- Vogel, M.; Williams, F.A. Flame propagation along matchstick arrays. Combust. Sci. Technol. 1970, 1, 429–436. [Google Scholar] [CrossRef]
- Prahl, J.M.; Tien, J.S. Preliminary investigations of forced convection on flame propagation along paper and matchstick arrays. Combust. Sci. Technol. 1973, 7, 271–282. [Google Scholar] [CrossRef]
- Miller, C.H.; Gollner, M.J. Upward flame spread over discrete fuels. Fire Saf. J. 2015, 77, 36–45. [Google Scholar] [CrossRef]
- Xu, X.; Zhu, G.; Liu, X.; Zhang, X.; Chu, T. Experimental study on influence of air gap on upward flame spread over discrete fuel. Case Stud. Therm. Eng. 2021, 28, 101416. [Google Scholar] [CrossRef]
- Cui, W.; Liao, Y.-T.T. Experimental study of upward flame spread over discrete thin fuels. Fire Saf. J. 2019, 110, 102907. [Google Scholar] [CrossRef]
- Wolff, M.F.; Carrier, G.F.; Fendell, F.E. Wind-Aided Firespread Across Arrays of Discrete Fuel Elements. II. Experiment. Combust. Sci. Technol. 1991, 77, 261–289. [Google Scholar] [CrossRef]
- Luo, S.; Zhao, Y.; Zhang, H. Numerical study on opposed-flow flame spread over discrete fuels—The influence of gap size and opposed-flow velocity. Fuel 2021, 283, 118862. [Google Scholar] [CrossRef]
- Di Cristina, G.; Skowronski, N.S.; Simeoni, A.; Rangwala, A.S.; Im, S.-K. Flame spread behavior characterization of discrete fuel array under a forced flow. Proc. Combust. Inst. 2021, 38, 5109–5117. [Google Scholar] [CrossRef]
- Bu, R.; Shi, L.; Zhou, Y. Identifying the criterion for discrete flame spread over single-row birch rods. Fire Saf. J. 2021, 120, 103116. [Google Scholar] [CrossRef]
- Gollner, M.J.; Miller, C.H.; Tang, W.; Singh, A.V. The effect of flow and geometry on concurrent flame spread. Fire Saf. J. 2017, 91, 68–78. [Google Scholar] [CrossRef]
- Park, J.; Brucker, J.; Seballos, R.; Kwon, B.; Liao, Y.-T.T. Concurrent flame spread over discrete thin fuels. Combust. Flame 2018, 191, 116–125. [Google Scholar] [CrossRef]
- Čolić, A.; Pečur, I.B. Influence of horizontal and vertical barriers on fire development for ventilated façades. Fire Technol. 2020, 56, 1725–1754. [Google Scholar] [CrossRef]
- Di Cristina, G.; Skowronski, N.S.; Simeoni, A.; Rangwala, A.S.; Im, S.-K. Flame spread predictions over linear discrete fuel arrays using an empirical B-number model and stagnation point flow. Combust. Flame 2021, 234, 111644. [Google Scholar] [CrossRef]
- Zhang, X.; Chu, T.; Jiang, L.; Zhu, G.; Liu, X.; Xu, X.; Wu, Z. On the orientation effect on the flame spread over discrete fuel using a mass-transfer number. Fire Saf. J. 2023, 135, 103730. [Google Scholar] [CrossRef]
- Weber, R. A model for fire propagation in arrays. Math. Comput. Model. 1990, 13, 95–102. [Google Scholar] [CrossRef]
- Zhou, Y.; Bu, R.; Zhang, X.; Wang, Z.; Fan, C. Modelling of flame spread over biomass fuel arrays with various inclined angles and spacings. Fuel 2022, 335, 126744. [Google Scholar] [CrossRef]
- Jiang, L.; Zhao, Z.; Tang, W.; Miller, C.; Sun, J.-H.; Gollner, M.J. Flame spread and burning rates through vertical arrays of wooden dowels. Proc. Combust. Inst. 2019, 37, 3767–3774. [Google Scholar] [CrossRef]
- Apte, V.; Bilger, R.; Green, A.; Quintiere, J. Wind-aided turbulent flame spread and burning over large-scale horizontal PMMA surfaces. Combust. Flame 1991, 85, 169–184. [Google Scholar] [CrossRef]
- Chen, X.; Liu, J.; Zhou, Z.; Li, P.; Zhou, T.; Zhou, D.; Wang, J. Experimental and theoretical analysis on lateral flame spread over inclined PMMA surface. Int. J. Heat Mass Transf. 2015, 91, 68–76. [Google Scholar] [CrossRef]
- Ito, A.; Kashiwagi, T. Characterization of flame spread over PMMA using holographic interferometry sample orientation effects. Combust. Flame 1988, 71, 189–204. [Google Scholar] [CrossRef]
- Shaklein, A.A.; Bolkisev, A.A.; Karpov, A.I.; Korobeinichev, O.P.; Trubachev, S.A. Two-step gas-phase reaction model for the combustion of polymeric fuel. Fuel 2019, 255, 115878. [Google Scholar] [CrossRef]
- Jiang, L.; Miller, C.H.; Gollner, M.J.; Sun, J.-H. Sample width and thickness effects on horizontal flame spread over a thin PMMA surface. Proc. Combust. Inst. 2017, 36, 2987–2994. [Google Scholar] [CrossRef]
- Morrisset, D.; Santamaria, S.; Hadden, R.; Emberley, R. Implications of data smoothing on experimental mass loss rates. Fire Saf. J. 2022, 131, 103611. [Google Scholar] [CrossRef]
- The OpenCV Library. Available online: https://github.com/opencv/opencv/tree/4.12.0 (accessed on 3 March 2024).
- Chu, T.; Zhu, G.; Gao, Y.; Wang, P.; Chai, G.; Wang, Z. Combined effects of width and moisture content on upward flame spread over cotton fabrics. Case Stud. Therm. Eng. 2019, 15, 100514. [Google Scholar] [CrossRef]
- Pizzo, Y.; Consalvi, J.; Querre, P.; Coutin, M.; Audouin, L.; Porterie, B.; Torero, J. Experimental observations on the steady-state burning rate of a vertically oriented PMMA slab. Combust. Flame 2008, 152, 451–460. [Google Scholar] [CrossRef]
- Chung, B.T.F.; Naraghi, M.H.N. Some exact solutions for radiation view factors from spheres. AIAA J. 1981, 19, 1077–1081. [Google Scholar] [CrossRef]
- Pinto, P.; Severino, G.; Cruz, J.J.; Rivera, J.; Demarco, R.; Reszka, P.; Fuentes, A. Radiative characteristics of laminar Eucalyptus Globulus flames at different coflows. Int. J. Therm. Sci. 2024, 203, 109152. [Google Scholar] [CrossRef]
- Bergman, T.L.; Incropera, F.P. (Eds.) Fundamentals of Heat and Mass Transfer, 7th ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Pizzo, Y.; Consalvi, J.; Querre, P.; Coutin, M.; Porterie, B. Width effects on the early stage of upward flame spread over PMMA slabs: Experimental observations. Fire Saf. J. 2009, 44, 407–414. [Google Scholar] [CrossRef]
- Bradley, D.; Lawes, M.; Morsy, M. Flame speed and particle image velocimetry measurements of laminar burning velocities and Markstein numbers of some hydrocarbons. Fuel 2019, 243, 423–432. [Google Scholar] [CrossRef]
Test Scenario No. | Lateral Spacing (mm) | Vertical Spacing (cm) |
---|---|---|
1 | 5 | 4 |
2 | 5 | 8 |
3 | 5 | 12 |
4 | 10 | 4 |
5 | 10 | 8 |
6 | 10 | 12 |
7 | 15 | 4 |
8 | 15 | 8 |
9 | 15 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Ma, Y.; Zhu, G.; Hu, Z.; Wang, Y. Experimental Study on Effects of Lateral Spacing on Flame Propagation over Solid Fuel Matrix. Fire 2025, 8, 284. https://doi.org/10.3390/fire8070284
Xu X, Ma Y, Zhu G, Hu Z, Wang Y. Experimental Study on Effects of Lateral Spacing on Flame Propagation over Solid Fuel Matrix. Fire. 2025; 8(7):284. https://doi.org/10.3390/fire8070284
Chicago/Turabian StyleXu, Xin, Yanyan Ma, Guoqing Zhu, Zhen Hu, and Yumeng Wang. 2025. "Experimental Study on Effects of Lateral Spacing on Flame Propagation over Solid Fuel Matrix" Fire 8, no. 7: 284. https://doi.org/10.3390/fire8070284
APA StyleXu, X., Ma, Y., Zhu, G., Hu, Z., & Wang, Y. (2025). Experimental Study on Effects of Lateral Spacing on Flame Propagation over Solid Fuel Matrix. Fire, 8(7), 284. https://doi.org/10.3390/fire8070284