Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,154)

Search Parameters:
Keywords = urban growth analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 62899 KiB  
Essay
Monitoring and Historical Spatio-Temporal Analysis of Arable Land Non-Agriculturalization in Dachang County, Eastern China Based on Time-Series Remote Sensing Imagery
by Boyuan Li, Na Lin, Xian Zhang, Chun Wang, Kai Yang, Kai Ding and Bin Wang
Earth 2025, 6(3), 91; https://doi.org/10.3390/earth6030091 (registering DOI) - 6 Aug 2025
Abstract
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of [...] Read more.
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of the Beijing–Tianjin–Hebei metropolitan cluster. In recent years, the area has undergone accelerated urbanization and industrial transfer, resulting in drastic land use changes and a pronounced contradiction between arable land protection and the expansion of construction land. The study period is 2016–2023, which covers the key period of the Beijing–Tianjin–Hebei synergistic development strategy and the strengthening of the national arable land protection policy, and is able to comprehensively reflect the dynamic changes of arable land non-agriculturalization under the policy and urbanization process. Multi-temporal Sentinel-2 imagery was utilized to construct a multi-dimensional feature set, and machine learning classifiers were applied to identify arable land non-agriculturalization with optimized performance. GIS-based analysis and the geographic detector model were employed to reveal the spatio-temporal dynamics and driving mechanisms. The results demonstrate that the XGBoost model, optimized using Bayesian parameter tuning, achieved the highest classification accuracy (overall accuracy = 0.94) among the four classifiers, indicating its superior suitability for identifying arable land non-agriculturalization using multi-temporal remote sensing imagery. Spatio-temporal analysis revealed that non-agriculturalization expanded rapidly between 2016 and 2020, followed by a deceleration after 2020, exhibiting a pattern of “rapid growth–slowing down–partial regression”. Further analysis using the geographic detector revealed that socioeconomic factors are the primary drivers of arable land non-agriculturalization in Dachang Hui Autonomous County, while natural factors exerted relatively weaker effects. These findings provide technical support and scientific evidence for dynamic monitoring and policy formulation regarding arable land under urbanization, offering significant theoretical and practical implications. Full article
Show Figures

Figure 1

22 pages, 2484 KiB  
Article
Urban Land Revenue and Common Prosperity: An Urban Differential Rent Perspective
by Fang He, Yuxuan Si and Yixi Hu
Land 2025, 14(8), 1606; https://doi.org/10.3390/land14081606 - 6 Aug 2025
Abstract
Common prosperity serves as a pivotal condition for achieving sustainable development by fostering social equity, bolstering economic resilience, and promoting environmental stewardship. Differential land revenue, as a crucial form of property based on spatial resource occupation, significantly contributes to the achievement of common [...] Read more.
Common prosperity serves as a pivotal condition for achieving sustainable development by fostering social equity, bolstering economic resilience, and promoting environmental stewardship. Differential land revenue, as a crucial form of property based on spatial resource occupation, significantly contributes to the achievement of common prosperity, though empirical evidence of its impact is limited. This study explores the potential influence of land utilization revenue disparity on common prosperity from the perspective of urban macro differential rent (UMDR). Utilizing panel data from 280 Chinese cities spanning 2007 to 2020, we discover that UMDR and common prosperity levels exhibit strikingly similar spatiotemporal evolution. Further empirical analysis shows that UMDR significantly raises urban common prosperity levels, with a 0.217 standard unit increase in common prosperity for every 1 standard unit rise in UMDR. This boost stems from enhanced urban prosperity and the sharing of development achievements, encompassing economic growth, improved public services, enhanced ecological civilization, and more equitable distribution of development gains between urban and rural areas and among individuals. Additionally, we observe that UMDR has a more pronounced effect on common prosperity in eastern cities and those with a predominant service industry. This study enhances the comprehension of the relationship between urban land revenue disparities, prosperity, and equitable sharing, presenting a new perspective for the administration to contemplate the utilization of land-based policy tools in pursuit of the common prosperity goal and ultimately achieve sustainable development. Full article
Show Figures

Figure 1

22 pages, 518 KiB  
Article
Staying or Leaving a Shrinking City: Migration Intentions of Creative Youth in Erzurum, Eastern Türkiye
by Defne Dursun and Doğan Dursun
Sustainability 2025, 17(15), 7109; https://doi.org/10.3390/su17157109 - 6 Aug 2025
Abstract
This study explores the migration intentions of university students—representing the potential creative class—in Erzurum, a medium-sized city in eastern Turkey experiencing shrinkage. Within the theoretical framework of shrinking cities, it investigates how economic, social, physical, and personal factors influence students’ post-graduation stay or [...] Read more.
This study explores the migration intentions of university students—representing the potential creative class—in Erzurum, a medium-sized city in eastern Turkey experiencing shrinkage. Within the theoretical framework of shrinking cities, it investigates how economic, social, physical, and personal factors influence students’ post-graduation stay or leave decisions. Survey data from 742 Architecture and Fine Arts students at Atatürk University were analyzed using factor analysis, logistic regression, and correlation to identify key migration drivers. Findings reveal that, in addition to economic concerns such as limited job opportunities and low income, personal development opportunities and social engagement also play a decisive role. In particular, the perception of limited chances for skill enhancement and the belief that Erzurum is not a good place to meet people emerged as the strongest predictors of migration intentions. These results suggest that members of the creative class are influenced not only by economic incentives but also by broader urban experiences related to self-growth and social connectivity. This study highlights spatial inequalities in access to cultural, educational, and social infrastructure, raising important questions about spatial justice in shrinking urban contexts. This paper contributes to the literature on shrinking cities by highlighting creative youth in mid-sized Global South cities. It suggests smart shrinkage strategies focused on creative sector development, improved quality of life, and inclusive planning to retain young talent and support sustainable urban revitalization. Full article
Show Figures

Graphical abstract

19 pages, 2638 KiB  
Article
Population Viability Analysis of the Federally Endangered Endemic Jacquemontia reclinata (Convolvulaceae): A Comparative Analysis of Average vs. Individual Matrix Dynamics
by John B. Pascarella
Conservation 2025, 5(3), 40; https://doi.org/10.3390/conservation5030040 - 6 Aug 2025
Abstract
Due to small population size, Population Viability Analysis (PVA) of endangered species often pools all individuals into a single matrix to decrease variation in estimation of transition rates. These pooled populations may mask significant environmental variation among populations, affecting estimates. Using 10 years [...] Read more.
Due to small population size, Population Viability Analysis (PVA) of endangered species often pools all individuals into a single matrix to decrease variation in estimation of transition rates. These pooled populations may mask significant environmental variation among populations, affecting estimates. Using 10 years of population data (2000–2010) on the endangered plant Jacquemontia reclinata in Southeastern Florida, USA, I parameterized a stage-structured matrix model and calculated annual growth rates (lambdas)and elasticity for each year using stochastic matrix models. The metapopulation model incorporating actual dynamics of the two largest populations showed a lower occupancy rate and higher risk of extinction at an earlier time compared to a model that used the average of all natural populations. Analyses were consistent that incorporating population variation versus average dynamics in modeling J. reclinata demography results in more variation and greater extinction risk. Local variation may be due to both weather (including minimum winter temperature and total annual precipitation) and local disturbance dynamics in these urban preserves. Full article
Show Figures

Figure 1

28 pages, 10144 KiB  
Article
Decoding the Spatial–Temporal Coupling Dynamics of Land Use Intensity and Balance in China’s Chengdu–Chongqing Economic Circle: A 1 km Grid-Based Analysis
by Zijia Yan, Chenxi Zhou, Ziyi Tang, Hanfei Wang and Hao Li
Land 2025, 14(8), 1597; https://doi.org/10.3390/land14081597 - 5 Aug 2025
Abstract
Amid China’s national strategic prioritization of the Chengdu–Chongqing Economic Circle and accelerated territorial spatial planning, this study deciphered the synergistic evolution of Land Use Intensity (LUI) and Balance Degree of Land Use Structure (BDLUS) during rapid urbanization. Leveraging 1 km grid units and [...] Read more.
Amid China’s national strategic prioritization of the Chengdu–Chongqing Economic Circle and accelerated territorial spatial planning, this study deciphered the synergistic evolution of Land Use Intensity (LUI) and Balance Degree of Land Use Structure (BDLUS) during rapid urbanization. Leveraging 1 km grid units and integrating emerging spatiotemporal hotspot analysis, BFAST, and geographic detectors, we systematically analyzed spatiotemporal patterns and drivers of LUI, BDLUS, and their Coupling Coordination Degree (CCD) from 2000 to 2022. Key findings: (1) LUI strongly correlated with economic growth, with core areas reaching high-intensity development (average > 2.96) versus ecologically constrained marginal zones (<2.42), marked by abrupt changes during 2011–2014; (2) BDLUS improvements covered 82.22% of the study area, driven by the Yangtze River Economic Belt strategy (21.96% hotspot concentration), yet structural imbalance persisted in transitional zones (18.81% cold spots); (3) CCD exhibited center-edge dichotomy, contrasting high-value cores (CCD > 0.68) with ecologically sensitive edges (9.80% cold spots), peaking in regulatory shifts around 2010; (4) terrain constraints and intensified human activities (the interaction effect between nighttime lighting and population density increased by 219.49% after 2020) jointly governed coupling mechanisms, with urbanization and industrial transition becoming dominant drivers. This research advances an “intensity–structure–coordination” framework and elucidates “dual-core resonance” dynamics, offering theoretical foundations for spatial optimization and ecological civilization. Full article
(This article belongs to the Special Issue Integration of Remote Sensing and GIS for Land Use Change Assessment)
Show Figures

Figure 1

19 pages, 4452 KiB  
Article
Artificial Surface Water Construction Aggregated Water Loss Through Evaporation in the North China Plain
by Ziang Wang, Yan Zhou, Wenge Zhang, Shimin Tian, Yaoping Cui, Haifeng Tian, Xiaoyan Liu and Bing Han
Remote Sens. 2025, 17(15), 2698; https://doi.org/10.3390/rs17152698 - 4 Aug 2025
Abstract
As a typical grain base with a dense population and high-level urbanization, the North China Plain (NCP) faces a serious threat to its sustainable development due to water shortage. Surface water area (SWA) is a key indicator for continuously measuring the trends of [...] Read more.
As a typical grain base with a dense population and high-level urbanization, the North China Plain (NCP) faces a serious threat to its sustainable development due to water shortage. Surface water area (SWA) is a key indicator for continuously measuring the trends of regional water resources and assessing their current status. Therefore, a deep understanding of its changing patterns and driving forces is essential for achieving the sustainable management of water resources. In this study, we examined the interannual variability and trends of SWA in the NCP from 1990 to 2023 using annual 30 m water body maps generated from all available Landsat imagery, a robust water mapping algorithm, and the cloud computing platform Google Earth Engine (GEE). The results showed that the SWA in the NCP has significantly increased over the past three decades. The continuous emergence of artificial reservoirs and urban lakes, along with the booming aquaculture industry, are the main factors driving the growth of SWA. Consequently, the expansion of artificial water bodies resulted in a significant increase in water evaporation (0.16 km3/yr). Moreover, the proportion of water evaporation to regional evapotranspiration (ET) gradually increased (0–0.7%/yr), indicating that the contribution of water evaporation from artificial water bodies to ET is becoming increasingly prominent. Therefore, it can be concluded that the ever-expanding artificial water bodies have become a new hidden danger affecting the water security of the NCP through evaporative loss and deserve close attention. This study not only provides us with a new perspective for deeply understanding the current status of water resources security in the NCP but also provides a typical case with great reference value for the analysis of water resources changes in other similar regions. Full article
Show Figures

Figure 1

38 pages, 2159 KiB  
Review
Leveraging Big Data and AI for Sustainable Urban Mobility Solutions
by Oluwaleke Yusuf, Adil Rasheed and Frank Lindseth
Urban Sci. 2025, 9(8), 301; https://doi.org/10.3390/urbansci9080301 - 4 Aug 2025
Viewed by 11
Abstract
Urban population growth is intensifying pressure on mobility systems, with road transportation contributing to environmental and sustainability challenges. Policymakers must navigate complex uncertainties in addressing rising mobility demand while pursuing sustainability goals. Advanced technologies offer promise, but their real-world effectiveness in urban contexts [...] Read more.
Urban population growth is intensifying pressure on mobility systems, with road transportation contributing to environmental and sustainability challenges. Policymakers must navigate complex uncertainties in addressing rising mobility demand while pursuing sustainability goals. Advanced technologies offer promise, but their real-world effectiveness in urban contexts remains underexplored. This meta-review comprised three complementary studies: a broad analysis of sustainable mobility with Norwegian case studies, and systematic literature reviews on digital twins and Big Data/AI applications in urban mobility, covering the period of 2019–2024. Using structured criteria, we synthesised findings from 72 relevant articles to identify major trends, limitations, and opportunities. The findings show that mobility policies often prioritise technocentric solutions that unintentionally hinder sustainability goals. Digital twins show potential for traffic simulation, urban planning, and public engagement, while machine learning techniques support traffic forecasting and multimodal integration. However, persistent challenges include data interoperability, model validation, and insufficient stakeholder engagement. We identify a hierarchy of mobility modes where public transit and active mobility outperform private vehicles in sustainability and user satisfaction. Integrating electrification and automation and sharing models with data-informed governance can enhance urban liveability. We propose actionable pathways leveraging Big Data and AI, outlining the roles of various stakeholders in advancing sustainable urban mobility futures. Full article
(This article belongs to the Special Issue Sustainable Urbanization, Regional Planning and Development)
Show Figures

Figure 1

26 pages, 6220 KiB  
Article
Estimating Urbanization’s Impact on Soil Erosion: A Global Comparative Analysis and Case Study of Phoenix, USA
by Ara Jeong, Dylan S. Connor, Ronald I. Dorn and Yeong Bae Seong
Land 2025, 14(8), 1590; https://doi.org/10.3390/land14081590 - 4 Aug 2025
Viewed by 31
Abstract
Healthy soils are an essential ingredient of land systems and ongoing global change. Urbanization as a global change process often works through the lens of urban planning, which involves urban agriculture, urban greening, and leveraging nature-based solutions to promote resilient cities. Yet, urbanization [...] Read more.
Healthy soils are an essential ingredient of land systems and ongoing global change. Urbanization as a global change process often works through the lens of urban planning, which involves urban agriculture, urban greening, and leveraging nature-based solutions to promote resilient cities. Yet, urbanization frequently leads to soil erosion. Despite recognition of this tension, the rate at which the urban growth boundary accelerates soil erosion above natural background levels has not yet been determined. Our goal here is to provide a first broad estimate of urbanization’s impact of soil erosion. By combining data on modern erosion levels with techniques for estimating long-term natural erosion rates through cosmogenic nuclide 10Be analysis, we modeled the impact of urbanization on erosion across a range of cities in different global climates, revealing an acceleration of soil erosion ~7–19x in environments with mean annual precipitation <1500 mm; growth in wetter urban centers accelerated soil erosion ~23–72x. We tested our statistical model by comparing natural erosion rates to decades of monitoring soil erosion on the margins of Phoenix, USA. A century-long expansion of Phoenix accelerated soil erosion by ~12x, an estimate that is roughly at the mid-point of model projections for drier global cities. In addition to urban planning implications of being able to establish a baseline target of natural rates of soil erosion, our findings support the urban cycle of soil erosion theory for the two USA National Science Foundation urban long-term ecological research areas of Baltimore and Phoenix. Full article
Show Figures

Figure 1

28 pages, 2191 KiB  
Article
An Evaluation of Food Security and Grain Production Trends in the Arid Region of Northwest China (2000–2035)
by Yifeng Hao and Yaodong Zhou
Agriculture 2025, 15(15), 1672; https://doi.org/10.3390/agriculture15151672 - 2 Aug 2025
Viewed by 205
Abstract
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource [...] Read more.
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource matching assessment with grain production forecasting. Based on data from 2000 to 2020, this research projects the food security status to 2035 using the GM(1,1) model, incorporating a comprehensive index of soil and water resource matching and regression analysis to inform production forecasts. Key assumptions include continued historical trends in population growth, urbanization, and dietary shifts towards an increased animal protein consumption. The findings revealed a consistent upward trend in grain production from 2000 to 2020, with an average annual growth rate of 3.5%. Corn and wheat emerged as the dominant grain crops. Certain provinces demonstrated comparative advantages for specific crops like rice and wheat. The most significant finding is that despite the projected growth in the total grain output by 2035 compared to 2020, the regional grain self-sufficiency rate is projected to range from 79.6% to 84.1%, falling below critical food security benchmarks set by the FAO and China. This projected shortfall carries significant implications, underscoring a serious challenge to regional food security and highlighting the region’s increasing vulnerability to external food supply fluctuations. The findings strongly signal that current trends are insufficient and necessitate urgent and proactive policy interventions. To address this, practical policy recommendations include promoting water-saving technologies, enhancing regional cooperation, and strategically utilizing the international grain trade to ensure regional food security. Full article
(This article belongs to the Topic Food Security and Healthy Nutrition)
Show Figures

Figure 1

22 pages, 2702 KiB  
Article
Spatial Heterogeneity of Intra-Urban E-Commerce Demand and Its Retail-Delivery Interactions: Evidence from Waybill Big Data
by Yunnan Cai, Jiangmin Chen and Shijie Li
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 190; https://doi.org/10.3390/jtaer20030190 - 1 Aug 2025
Viewed by 189
Abstract
E-commerce growth has reshaped consumer behavior and retail services, driving parcel demand and challenging last-mile logistics. Existing research predominantly relies on survey data and global regression models that overlook intra-urban spatial heterogeneity in shopping behaviors. This study bridges this gap by analyzing e-commerce [...] Read more.
E-commerce growth has reshaped consumer behavior and retail services, driving parcel demand and challenging last-mile logistics. Existing research predominantly relies on survey data and global regression models that overlook intra-urban spatial heterogeneity in shopping behaviors. This study bridges this gap by analyzing e-commerce demand’s spatial distribution from a retail service perspective, identifying key drivers, and evaluating implications for omnichannel strategies and logistics. Utilizing waybill big data, spatial analysis, and multiscale geographically weighted regression, we reveal: (1) High-density e-commerce demand areas are predominantly located in central districts, whereas peripheral regions exhibit statistically lower volumes. The spatial distribution pattern of e-commerce demand aligns with the urban development spatial structure. (2) Factors such as population density and education levels significantly influence e-commerce demand. (3) Convenience stores play a dual role as retail service providers and parcel collection points, reinforcing their importance in shaping consumer accessibility and service efficiency, particularly in underserved urban areas. (4) Supermarkets exert a substitution effect on online shopping by offering immediate product availability, highlighting their role in shaping consumer purchasing preferences and retail service strategies. These findings contribute to retail and consumer services research by demonstrating how spatial e-commerce demand patterns reflect consumer shopping preferences, the role of omnichannel retail strategies, and the competitive dynamics between e-commerce and physical retail formats. Full article
(This article belongs to the Topic Data Science and Intelligent Management)
Show Figures

Figure 1

23 pages, 658 KiB  
Article
Green Innovation Quality in Center Cities and Economic Growth in Peripheral Cities: Evidence from the Yangtze River Delta Urban Agglomeration
by Sijie Duan, Hao Chen and Jie Han
Systems 2025, 13(8), 642; https://doi.org/10.3390/systems13080642 - 1 Aug 2025
Viewed by 236
Abstract
Improving the green innovation quality (GIQ) of center cities is crucial to achieve sustainable urban agglomeration development. Utilizing data on green patent citations and economic indicators across cities in the Yangtze River Delta urban agglomeration (YRD) from 2003 to 2022, this research examines [...] Read more.
Improving the green innovation quality (GIQ) of center cities is crucial to achieve sustainable urban agglomeration development. Utilizing data on green patent citations and economic indicators across cities in the Yangtze River Delta urban agglomeration (YRD) from 2003 to 2022, this research examines the influence of center cities’ GIQ on the economic performance of peripheral municipalities. The results show the following: (1) Center cities’ GIQ exerts a significant suppressive effect on peripheral cities’ economic growth overall. Heterogeneity analysis uncovers a distance-dependent duality. GIQ stimulates growth in proximate cities (within 300 km) but suppresses it beyond this threshold. This spatial siphoning effect is notably amplified in national-level center cities. (2) Mechanisms suggest that GIQ accelerates the outflow of skilled labor in peripheral cities through factor agglomeration and industry transfer mechanisms. Concurrently, it impedes the gradient diffusion of urban services, collectively hindering peripheral development. (3) Increased government green attention (GGA) and industry–university–research cooperation (IURC) in centers can mitigate these negative impacts. This paper contributes to the theoretical discourse on center cities’ spatial externalities within agglomerations and offers empirical support and policy insights for the exertion of spillover effects of high-quality green innovation from center cities and the sustainable development of urban agglomeration. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

19 pages, 2528 KiB  
Systematic Review
The Nexus Between Green Finance and Artificial Intelligence: A Systemic Bibliometric Analysis Based on Web of Science Database
by Katerina Fotova Čiković, Violeta Cvetkoska and Dinko Primorac
J. Risk Financial Manag. 2025, 18(8), 420; https://doi.org/10.3390/jrfm18080420 - 1 Aug 2025
Viewed by 274
Abstract
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, [...] Read more.
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, and highlighting methodological trends at this nexus. A dataset of 268 peer-reviewed publications (2014–June 2025) was retrieved from the Web of Science Core Collection, filtered by the Business Economics category. Analytical techniques employed include Bibliometrix in R, VOSviewer, and science mapping tools such as thematic mapping, trend topic analysis, co-citation networks, and co-occurrence clustering. Results indicate an annual growth rate of 53.31%, with China leading in both productivity and impact, followed by Vietnam and the United Kingdom. The most prolific affiliations and authors, primarily based in China, underscore a concentrated regional research output. The most relevant journals include Energy Economics and Finance Research Letters. Network visualizations identified 17 clusters, with focused analysis on the top three: (1) Emission, Health, and Environmental Risk, (2) Institutional and Technological Infrastructure, and (3) Green Innovation and Sustainable Urban Development. The methodological landscape is equally diverse, with top techniques including blockchain technology, large language models, convolutional neural networks, sentiment analysis, and structural equation modeling, demonstrating a blend of traditional econometrics and advanced AI. This study not only uncovers intellectual structures and thematic evolution but also identifies underdeveloped areas and proposes future research directions. These include dynamic topic modeling, regional case studies, and ethical frameworks for AI in sustainable finance. The findings provide a strategic foundation for advancing interdisciplinary collaboration and policy innovation in green AI–finance ecosystems. Full article
(This article belongs to the Special Issue Commercial Banking and FinTech in Emerging Economies)
Show Figures

Figure 1

33 pages, 7374 KiB  
Article
Exploration of Carbon Emission Reduction Pathways for Urban Residential Buildings at the Provincial Level: A Case Study of Jiangsu Province
by Jian Xu, Tao Lei, Milun Yang, Huixuan Xiang, Ronge Miao, Huan Zhou, Ruiqu Ma, Wenlei Ding and Genyu Xu
Buildings 2025, 15(15), 2687; https://doi.org/10.3390/buildings15152687 - 30 Jul 2025
Viewed by 278
Abstract
Achieving carbon emission reductions in the residential building sector while maintaining economic growth represents a global challenge, particularly in rapidly developing regions with internal disparities. This study examines Jiangsu Province in eastern China—a economic hub with north-south development gradients—to develop an integrated framework [...] Read more.
Achieving carbon emission reductions in the residential building sector while maintaining economic growth represents a global challenge, particularly in rapidly developing regions with internal disparities. This study examines Jiangsu Province in eastern China—a economic hub with north-south development gradients—to develop an integrated framework for differentiated carbon reduction pathways. The methodology combines spatial autocorrelation analysis, logarithmic mean Divisia index (LMDI) decomposition, system dynamics modeling, and Tapio decoupling analysis to examine urban residential building emissions across three regions from 2016–2022. Results reveal significant spatial clustering of emissions (Moran’s I peaking at 0.735), with energy consumption per unit area as the dominant driver across all regions (contributing 147.61%, 131.82%, and 147.57% respectively). Scenario analysis demonstrates that energy efficiency policies can reduce emissions by 10.1% while maintaining 99.2% of economic performance, enabling carbon peak achievement by 2030. However, less developed northern regions emerge as binding constraints, requiring technology investments. Decoupling analysis identifies region-specific optimal pathways: conventional development for advanced regions, balanced approaches for transitional areas, and subsidies for lagging regions. These findings challenge assumptions about environment-economy trade-offs and provide a replicable framework for designing differentiated climate policies in heterogeneous territories, offering insights for similar regions worldwide navigating the transition to sustainable development. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 8292 KiB  
Article
Landscape Zoning Strategies for Small Mountainous Towns: Insights from Yuqian Town in China
by Qingwei Tian, Yi Xu, Shaojun Yan, Yizhou Tao, Xiaohua Wu and Bifan Cai
Sustainability 2025, 17(15), 6919; https://doi.org/10.3390/su17156919 - 30 Jul 2025
Viewed by 234
Abstract
Small towns in mountainous regions face significant challenges in formulating effective landscape zoning strategies due to pronounced landscape fragmentation, which is driven by both the dominance of large-scale forest resources and the lack of coordination between administrative planning departments. To tackle this problem, [...] Read more.
Small towns in mountainous regions face significant challenges in formulating effective landscape zoning strategies due to pronounced landscape fragmentation, which is driven by both the dominance of large-scale forest resources and the lack of coordination between administrative planning departments. To tackle this problem, this study focused on Yuqian, a quintessential small mountainous town in Hangzhou, Zhejiang Province. The town’s layout was divided into a grid network measuring 70 m × 70 m. A two-step cluster process was employed using ArcGIS and SPSS software to analyze five landscape variables: altitude, slope, land use, heritage density, and visual visibility. Further, eCognition software’s semi-automated segmentation technique, complemented by manual adjustments, helped delineate landscape character types and areas. The overlay analysis integrated these areas with administrative village units, identifying four landscape character types across 35 character areas, which were recategorized into four planning and management zones: urban comprehensive service areas, agricultural and cultural tourism development areas, industrial development growth areas, and mountain forest ecological conservation areas. This result optimizes the current zoning types. These zones closely match governmental sustainable development zoning requirements. Based on these findings, we propose integrated landscape management and conservation strategies, including the cautious expansion of urban areas, leveraging agricultural and cultural tourism, ensuring industrial activities do not impact the natural and village environment adversely, and prioritizing ecological conservation in sensitive areas. This approach integrates spatial and administrative dimensions to enhance landscape connectivity and resource sustainability, providing key guidance for small town development in mountainous regions with unique environmental and cultural contexts. Full article
Show Figures

Figure 1

19 pages, 1844 KiB  
Article
Urban Expansion and the Loss of Agricultural Lands and Forest Cover in Limbe, Cameroon
by Lucy Deba Enomah, Joni Downs, Michael Acheampong, Qiuyan Yu and Shirley Tanyi
Remote Sens. 2025, 17(15), 2631; https://doi.org/10.3390/rs17152631 - 29 Jul 2025
Viewed by 280
Abstract
Using LULC change detection analysis, it is possible to identify changes due to urbanization, deforestation, or a natural disaster in an area. As population growth and urbanization increase, real-time solutions for the effects of urbanization on land use are required to assess its [...] Read more.
Using LULC change detection analysis, it is possible to identify changes due to urbanization, deforestation, or a natural disaster in an area. As population growth and urbanization increase, real-time solutions for the effects of urbanization on land use are required to assess its implications for food security and livelihood. This study seeks to identify and quantify recent LULC changes in Limbe, Cameroon, and to measure rates of conversion between agricultural, forest, and urban lands between 1986 and 2020 using remote sensing and GIS. Also, there is a deficiency of research employing these data to evaluate the efficiency of LULC satellite data and a lack of awareness by local stakeholders regarding the impact on LULC change. The changes were identified in four classes utilizing maximum supervised classification in ENVI and ArcGIS environments. The classification result reveals that the 2020 image has the highest overall accuracy of 94.6 while the 2002 image has an overall accuracy of 89.2%. The overall gain for agriculture was approximately 4.6 km2, urban had an overall gain of nearly 12.7 km2, while the overall loss for forest was −16.9 km2 during this period. Much of the land area previously occupied by forest is declining as pressures for urban areas and new settlements increase. This study’s findings have significant policy implications for sustainable land use and food security. It also provides a spatial method for monitoring LULC variations that can be used as a framework by stakeholders who are interested in environmentally conscious development and sustainable land use practices. Full article
Show Figures

Figure 1

Back to TopTop