Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (212)

Search Parameters:
Keywords = urban eco-efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2160 KiB  
Article
Green Finance for Green Land: Coupling Economic and Ecological Systems Through Financial Innovation
by Fengchen Wang, Huijia Chen and Chengming Li
Systems 2025, 13(7), 582; https://doi.org/10.3390/systems13070582 - 15 Jul 2025
Cited by 1 | Viewed by 382
Abstract
The coupled development of economic and ecological systems is crucial for achieving sustainable growth, with the financial system playing a pivotal adaptive role. Green financial innovation (GFI) is central to enhancing this adaptation. Urban land use eco-efficiency (ULUEE) serves as an effective measure [...] Read more.
The coupled development of economic and ecological systems is crucial for achieving sustainable growth, with the financial system playing a pivotal adaptive role. Green financial innovation (GFI) is central to enhancing this adaptation. Urban land use eco-efficiency (ULUEE) serves as an effective measure of economic–ecological coupling. Using China’s Green Finance Reform and Innovation Pilot Zones (GFRPZs) as a quasi-natural experiment, this study assesses the impact of GFI on ULUEE, employing panel data from 283 prefecture-level cities (2013–2021). The results show that GFI significantly enhances ULUEE through technological spillovers, strengthened environmental regulation, industrial upgrading, and resource agglomeration. Heterogeneity analyses further reveal that GFI’s positive effects are more pronounced in economically developed regions, cities without legacy heavy-industry reliance, and those with deeper financial development. Additionally, GFI demonstrates cross-regional spillover effects, effectively interacting with other environmental policies. While GFI’s impact is more pronounced in economic growth, its ecological governance improvements are modest. This study provides critical insights for tailored green financial policies aimed at harmonizing economic and ecological objectives. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

28 pages, 395 KiB  
Article
Resident Satisfaction in Eco-Friendly Housing: Informing Sustainable Decision-Making in Urban Development
by Dan Wang, Yunbo Zhang, Radzi Ismail, Mohd Wira Mohd Shafiei and Terh Jing Khoo
Buildings 2025, 15(12), 1966; https://doi.org/10.3390/buildings15121966 - 6 Jun 2025
Viewed by 549
Abstract
The study examines how design quality, indoor air quality, and energy efficiency affect customer satisfaction in eco-friendly houses in Shanghai, China. Further, it examines how environmental awareness mediates community participation and resident satisfaction. A stratified sampling technique is used to collect the data [...] Read more.
The study examines how design quality, indoor air quality, and energy efficiency affect customer satisfaction in eco-friendly houses in Shanghai, China. Further, it examines how environmental awareness mediates community participation and resident satisfaction. A stratified sampling technique is used to collect the data from 742 eligible respondents in public and private eco-residential complexes. The results show that design, air quality, and energy efficiency improve customer satisfaction. At the same time, community engagement partially mediates these correlations, stressing the importance of social cohesion in enhancing residential area quality. Environmental awareness moderated the effects and boosted the happiness benefits of energy efficiency and indoor air quality. This research uses a comprehensive framework that includes psychological, environmental, and social components to make it stand out. Instead of studying green housing benefits in general, it accomplishes this inside China’s urban sustainability program. The results help policymakers, urban planners, and housing authorities make megacity green housing more desirable and livable. Full article
Show Figures

Figure 1

22 pages, 20890 KiB  
Article
Ecological Park with a Sustainable Approach for the Revaluation of the Cultural and Historical Landscape of Pueblo Libre, Peru—2023
by Diego C. Mancilla-Bravo, Vivian M. Chichipe-Mondragón, Doris Esenarro Vargas, Cecilia Uribe Quiroz, Dante Calderón Huamaní, Elvira Ruiz Reyes, Crayla Alfaro and Maria Veliz
Clean Technol. 2025, 7(2), 46; https://doi.org/10.3390/cleantechnol7020046 - 5 Jun 2025
Viewed by 2087
Abstract
Lack of green spaces, citizen insecurity, and crime are the primary issues afflicting the Pueblo Libre district. This research aims to propose public spaces that revalue the cultural and historical landscape of Pueblo Libre. The methodology involves a literature review, urban analysis, and [...] Read more.
Lack of green spaces, citizen insecurity, and crime are the primary issues afflicting the Pueblo Libre district. This research aims to propose public spaces that revalue the cultural and historical landscape of Pueblo Libre. The methodology involves a literature review, urban analysis, and climate analysis, incorporating sustainability strategies supported by digital tools (AutoCAD, Revit, and Sketch-Up). The resulting design features an ecological park with vegetation capable of capturing carbon and emitting oxygen, absorbing up to 3544.99 kg of CO2 annually. It also includes installing 26 solar-powered lights to illuminate necessary spaces efficiently and using eco-friendly materials. Additionally, the park incorporates an artificial wetland with a capacity to process 38,500 L of water using plants that remove toxic elements and capture nutrients. In conclusion, the ecological park seeks to revalue the cultural landscape and counteract environmental degradation by creating a green lung that purifies the air, fosters social connectivity, and integrates users with nature, enhancing their quality of life. Full article
Show Figures

Figure 1

27 pages, 2976 KiB  
Article
Urban Agglomeration Technology Innovation Networks, Spatial Spillover, and Agricultural Ecological Efficiency: Evidence from the Urban Agglomeration in the Middle Reaches of the Yangtze River in China
by Weihui Peng, Zehuan Hu, Jie Li and Chenggang Li
Sustainability 2025, 17(11), 5109; https://doi.org/10.3390/su17115109 - 2 Jun 2025
Cited by 1 | Viewed by 627
Abstract
Urban agglomerations serve as essential platforms for regional innovation, while agricultural technology innovation and diffusion play pivotal roles in enhancing agricultural eco-efficiency (AEE). Based on panel data from the Urban Agglomeration in the Middle Reaches of the Yangtze River (UAMRYR) (2001–2023), this study [...] Read more.
Urban agglomerations serve as essential platforms for regional innovation, while agricultural technology innovation and diffusion play pivotal roles in enhancing agricultural eco-efficiency (AEE). Based on panel data from the Urban Agglomeration in the Middle Reaches of the Yangtze River (UAMRYR) (2001–2023), this study employs a super-efficiency slacks-based measure model incorporating undesirable outputs to evaluate agricultural eco-efficiency. A modified gravity model is utilized to construct agricultural technology innovation networks (ATINs) in urban agglomerations, and a spatial Durbin model is applied to examine the spillover effects of network structure on eco-efficiency. The results indicate that: (1) Higher-degree centrality within the innovation network significantly improves local agricultural eco-efficiency and produces positive spillover effects on neighboring cities; (2) both direct and spillover effects are significant in central cities, whereas sub-central cities exhibit only a significant direct effect, and peripheral cities display an insignificant direct effect but a significant spillover effect; and (3) enhanced urban informatization, agricultural financial development, and industrial scale substantially strengthen the spatial spillover effects of the innovation network, thereby further advancing agricultural eco-efficiency within the agglomeration. These findings offer theoretical and empirical support for optimizing agricultural technology pathways and enhancing eco-efficiency in urban agglomerations. Full article
(This article belongs to the Special Issue Advanced Agricultural Economy: Challenges and Opportunities)
Show Figures

Figure 1

12 pages, 2188 KiB  
Article
Creating Forested Wetlands for Improving Ecosystem Services and Their Potential Benefits for Rural Residents in Metropolitan Areas
by Zhuhong Huang, Yanwei Sun, Rong Sheng, Kun He, Taoyu Wang, Yingying Huang and Xuechu Chen
Water 2025, 17(11), 1682; https://doi.org/10.3390/w17111682 - 2 Jun 2025
Viewed by 459
Abstract
Intensive farming in urban suburbs often causes habitat loss, soil erosion, wastewater discharge, and agricultural productivity decline, threatening long-term benefits for the local community. We developed a nature-based solution for sustainable land restoration by establishing “Green Treasure Island” (GTI). The aim of this [...] Read more.
Intensive farming in urban suburbs often causes habitat loss, soil erosion, wastewater discharge, and agricultural productivity decline, threatening long-term benefits for the local community. We developed a nature-based solution for sustainable land restoration by establishing “Green Treasure Island” (GTI). The aim of this study is to evaluate the ecological restoration effectiveness of GTI and explore its feasibility and replicability for future applications. The core eco-functional zone of GTI—a 7 hm2 forested wetland—embedded a closed-loop framework that integrates land consolidation, ecological restoration, and sustainable land utilization. The forested wetland efficiently removed 65% and 74% of dissolved inorganic nitrogen and phosphorus from agricultural runoff, raised flood control capacity by 22%, and attracted 48 bird species. Additionally, this biophilic recreational space attracted over 3400 visitors in 2022, created green jobs, and promoted local green agricultural product sales. Through adaptive management and nature education activities, GTI evolved into a landmark that represents local natural–social characteristics and serves as a publicly accessible natural park for both rural and urban residents. This study demonstrates the feasibility of creating GTI for improving ecosystem services, providing a practical, low-cost template that governments and local managers can replicate in metropolitan rural areas worldwide to meet both ecological and development goals. Full article
Show Figures

Figure 1

22 pages, 12284 KiB  
Article
EcoDetect-YOLOv2: A High-Performance Model for Multi-Scale Waste Detection in Complex Surveillance Environments
by Jing Su, Ruihan Chen, Mingzhi Li, Shenlin Liu, Guobao Xu and Zanhong Zheng
Sensors 2025, 25(11), 3451; https://doi.org/10.3390/s25113451 - 30 May 2025
Cited by 1 | Viewed by 579
Abstract
Conventional waste monitoring relies heavily on manual inspection, while most detection models are trained on close-range, simplified datasets, limiting their applicability for real-world surveillance. Even with surveillance imagery, challenges such as cluttered backgrounds, scale variation, and small object sizes often lead to missed [...] Read more.
Conventional waste monitoring relies heavily on manual inspection, while most detection models are trained on close-range, simplified datasets, limiting their applicability for real-world surveillance. Even with surveillance imagery, challenges such as cluttered backgrounds, scale variation, and small object sizes often lead to missed detections and reduced robustness. To address these challenges, this study introduces EcoDetect-YOLOv2, a lightweight and high-efficiency object detection model developed using the Intricate Environment Waste Exposure Detection (IEWED) dataset. Building upon the YOLOv8s architecture, EcoDetect-YOLOv2 incorporates a small object detection P2 detection layer to enhance sensitivity to small objects. The integration of an efficient multi-scale attention (EMA) mechanism prior to the P2 head further improves the model’s capacity to detect small-scale targets, while bolstering robustness against cluttered backgrounds and environmental noise, as well as generalizability across scale variations. In the feature fusion stage, a Dynamic Upsampling Module (Dysample) replaces traditional nearest-neighbor upsampling to yield higher-quality feature maps, thereby facilitating improved discrimination of overlapping and degraded waste particles. To reduce computational overhead and inference latency without sacrificing detection accuracy, Ghost Convolution (GhostConv) replaces conventional convolution layers within the neck. Based on this, a GhostResBottleneck structure is proposed, along with a novel ResGhostCSP module—designed via a one-shot aggregation strategy—to replace the original C2f module. Experiments conducted on the IEWED dataset, which features multi-object, multi-class, and highly complex real-world scenes, demonstrate that EcoDetect-YOLOv2 outperforms the baseline YOLOv8s by 1.0%, 4.6%, 4.8%, and 3.1% in precision, recall, mAP50, and mAP50:95, respectively, while reducing the parameter count by 19.3%. These results highlight the model’s effectiveness in real-time, multi-object waste detection, providing a scalable and efficient tool for automated urban and digital governance. Full article
Show Figures

Figure 1

26 pages, 10537 KiB  
Article
Development of a Low-Cost Traffic and Air Quality Monitoring Internet of Things (IoT) System for Sustainable Urban and Environmental Management
by Lorand Bogdanffy, Csaba Romuald Lorinț and Aurelian Nicola
Sustainability 2025, 17(11), 5003; https://doi.org/10.3390/su17115003 - 29 May 2025
Cited by 1 | Viewed by 721
Abstract
In this research, we present the development and validation of a compact, resource-efficient (low-cost, low-energy), distributed, real-time traffic and air quality monitoring system. Deployed since November 2023 in a small town that relies on burning various fuels and waste for winter heating, the [...] Read more.
In this research, we present the development and validation of a compact, resource-efficient (low-cost, low-energy), distributed, real-time traffic and air quality monitoring system. Deployed since November 2023 in a small town that relies on burning various fuels and waste for winter heating, the system comprises three IoT units that integrate image processing and environmental sensing for sustainable urban and environmental management. Each unit uses an embedded camera and sensors to process live data locally, which are then transmitted to a central database. The image processing algorithm counts vehicles by type with over 95% daylight accuracy, while air quality sensors measure pollutants including particulate matter (PM), equivalent carbon dioxide (eCO2), and total volatile organic compounds (TVOCs). Data analysis revealed fluctuations in pollutant concentrations across monitored areas, correlating with traffic variations and enabling the identification of pollution sources and their relative impacts. Recorded PM10 daily average levels even reached eight times above the safe 24 h limits in winter, when traffic values were low, indicating a strong link to household heating. This work provides a scalable, cost-effective approach to traffic and air quality monitoring, offering actionable insights for urban planning and sustainable development. Full article
Show Figures

Figure 1

18 pages, 2907 KiB  
Article
Eco-Efficient Transition Pathways for Urban Transportation: A Case Study of Chengdu’s Decarbonization Initiatives
by Qinyi Liu and Chenglin Ma
Sustainability 2025, 17(11), 4949; https://doi.org/10.3390/su17114949 - 28 May 2025
Viewed by 481
Abstract
Under the “dual-carbon goals” (carbon peaking and carbon neutrality), the accelerated global transition toward green and low-carbon development has become an irreversible trend. As a key carbon-emitting sector in China, the transportation industry accounts for approximately 10% of the nation’s total carbon emissions. [...] Read more.
Under the “dual-carbon goals” (carbon peaking and carbon neutrality), the accelerated global transition toward green and low-carbon development has become an irreversible trend. As a key carbon-emitting sector in China, the transportation industry accounts for approximately 10% of the nation’s total carbon emissions. Transportation decarbonization is therefore critical not only for addressing global climate change challenges and fulfilling international emission reduction commitments but also for driving the industry’s green transformation, optimizing energy structures, enhancing public livelihood and ecological environment quality, and, ultimately, achieving sustainable development. Taking Chengdu as a case study, systematically, this paper (1) objectively summarizes the current status and achievements of green development in Chengdu’s transportation sector; (2) identifies bottlenecks hindering its green transition; (3) calculates carbon emissions across various transport modes in recent years using the GHG Protocol framework to identify key influencing factors; and (4) proposes targeted strategies to establish Chengdu as a national pioneer in developing innovative “dual-carbon” pathways for transportation. The findings are intended to provide decision-making support for building a low-carbon transportation system that aligns with Chengdu’s megacity development goals. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

28 pages, 1235 KiB  
Article
Sustainable Transformation Paths for Value Realization of Eco-Products Empowered by New Quality Productivity: Based on Provincial Panel Data in China
by Peiran Zhang and Hongmin Li
Sustainability 2025, 17(11), 4773; https://doi.org/10.3390/su17114773 - 22 May 2025
Cited by 1 | Viewed by 511
Abstract
With the increasing awareness of human environmental protection, eco-products, a green and sustainability resource, are increasingly valued; however, the dynamics that drive the realization of the environmental benefits of the products are poorly understood. Therefore, this study investigates the role of new quality [...] Read more.
With the increasing awareness of human environmental protection, eco-products, a green and sustainability resource, are increasingly valued; however, the dynamics that drive the realization of the environmental benefits of the products are poorly understood. Therefore, this study investigates the role of new quality productivity in influencing the realization of eco-product value in China as an example. This study applies the fixed effects model to verify the hypotheses presented in the article through robustness and endogeneity tests, and explores the impact of neoplastic productivity in more depth through heterogeneity and threshold effects tests. This study finds that new productivity has a significant effect on the realization of eco-product value, and there is a non-linear threshold feature, which is still valid after the robustness test; the mechanism analysis shows that the advanced industrial structure and the green technology innovation constitute the main transmission path, while the population urbanization rate plays a positive moderating role; and the test of heterogeneity reveals that the effect of the eastern region and the region with high development of the digital economy is more significant. The results show that the new quality of productive forces provides the core energy to break the dichotomy between ecological protection and economic development, and realize sustainable development in which human beings and nature coexist harmoniously. The conclusions additions are as follows. China should adopt a strategy that differentiates between regions and levels of digital economic development, while paying attention to the threshold effect of environmental protection expenditure and total mechanical power per hectare of crop sown area, in order to promote the efficient development of new quality productivity and provide impetus for the realization of the value of ecological products. Full article
Show Figures

Figure 1

49 pages, 3785 KiB  
Review
Carbon-Nanotube-Based Nanocomposites in Environmental Remediation: An Overview of Typologies and Applications and an Analysis of Their Paradoxical Double-Sided Effects
by Silvana Alfei and Guendalina Zuccari
J. Xenobiot. 2025, 15(3), 76; https://doi.org/10.3390/jox15030076 - 21 May 2025
Cited by 1 | Viewed by 1381
Abstract
Incessant urbanization and industrialization have resulted in several pollutants being increasingly produced and continuously discharged into the environment, altering its equilibrium, with a high risk for living organisms’ health. To restore it, new advanced materials for remediating gas streams, polluted soil, water, wastewater, [...] Read more.
Incessant urbanization and industrialization have resulted in several pollutants being increasingly produced and continuously discharged into the environment, altering its equilibrium, with a high risk for living organisms’ health. To restore it, new advanced materials for remediating gas streams, polluted soil, water, wastewater, groundwater and industrial waste are continually explored. Carbon-based nanomaterials (CNMs), including quantum dots, nanotubes, fullerenes and graphene, have displayed outstanding effectiveness in the decontamination of the environment by several processes. Carbon nanotubes (CNTs), due to their nonpareil characteristics and architecture, when included in absorbents, filter membranes, gas sensors, etc., have significantly improved the efficiency of these technologies in detecting and/or removing inorganic, organic and gaseous xenobiotics and pathogens from air, soil and aqueous matrices. Moreover, CNT-based membranes have displayed significant potential for efficient, fast and low-energy water desalination. However, despite CNTs serving as very potent instruments for environmental detoxification, their extensive utilization could, paradoxically, be highly noxious to the environment and, therefore, humans, due to their toxicity. The functionalization of CNTs (F-CNTs), in addition to further enhancing their absorption capacity and selectivity, has increased their hydrophilicity, thus minimizing their toxicity and carcinogenic effects. In this scenario, this review aims to provide evidence of both the enormous potential of CNTs in sustainable environmental remediation and the concerning hazards to the environment and living organisms that could derive from their extensive and uncontrolled utilization. To this end, an introduction to CNTs, including their eco-friendly production from biomass, is first reported. Several literature reports on CNTs’ possible utilization for environmental remediation, their potential toxicity due to environmental accumulation and the challenges of their regeneration are provided using several reader-friendly tools, to better capture readers’ attention and make reading easier. Full article
Show Figures

Graphical abstract

23 pages, 9466 KiB  
Article
Nature-Based Solutions: Green and Smart Façade with an Innovative Cultivation System for Sustainable Buildings and More Climate-Resilient Cities
by Paola Lassandro, Salvatore Capotorto and Valeria Mammone
Sustainability 2025, 17(10), 4580; https://doi.org/10.3390/su17104580 - 16 May 2025
Viewed by 502
Abstract
To address the challenges linked to climate change, rapidly increasing urbanization, and food security necessity, this study explores the potential of smart, low-cost innovative cultivation systems for modules on facades as nature-based solutions (NBSs) to improve building energy efficiency, urban food production, and [...] Read more.
To address the challenges linked to climate change, rapidly increasing urbanization, and food security necessity, this study explores the potential of smart, low-cost innovative cultivation systems for modules on facades as nature-based solutions (NBSs) to improve building energy efficiency, urban food production, and sustainability. Innovative cultivation systems were studied and implemented in the horizontal experimental setup, with a focus on sub-irrigation techniques with terracotta pots, ozonated water, and IoT use. The best eco-smart irrigation system was selected considering both plant growth and the water savings obtained (up to 57.14%) in comparison to the traditional method. With the implementation of this system, a vertical green module (VGM) was designed, allowing for efficient distribution and water savings. The positive effects in terms of temperature reduction and energy behavior were validated by comparing two office rooms: one without VGM and the other with VGM in a Mediterranean city. The drop in internal temperatures achieved was up to 3–4 °C during the hot days of the experimental campaign. The uptake of this low-cost and smart prototype can be useful to support the enhancement of energy-efficient, eco-sustainable, and self-sufficient buildings and urban spaces, contributing to creating more climate-resilient cities and promoting sustainable urban agriculture. Full article
Show Figures

Figure 1

21 pages, 16776 KiB  
Article
Spatio-Temporal Dynamics and Driving Forces of Ecosystem Service Value at Multiple Scales in the Shandong Peninsula Urban Agglomeration, China
by Yongwei Liu and Tianping Zhang
Sustainability 2025, 17(10), 4393; https://doi.org/10.3390/su17104393 - 12 May 2025
Viewed by 461
Abstract
The analysis of ecosystem service value (ESV) dynamics across space and time, along with their driving factors, is essential for informed ecosystem service administration and policy development. The Shandong Peninsula Urban Agglomeration (SPUA) is an important, highly efficient eco-economic zone in China. Leveraging [...] Read more.
The analysis of ecosystem service value (ESV) dynamics across space and time, along with their driving factors, is essential for informed ecosystem service administration and policy development. The Shandong Peninsula Urban Agglomeration (SPUA) is an important, highly efficient eco-economic zone in China. Leveraging land use/land cover datasets covering the period 2000–2020, spatial autocorrelation analysis and geographical detector were used to examine the spatial distribution characteristics and driving forces of the ESV. The results indicated the following: (1) From 2000 to 2020, the ESV of SPUA exhibited an overall trend of “increase—decrease—increase”. Cropland, forest, and water bodies were the primary sources of ESV, with significant variations in the changes of ESV across different land-use types. (2) As the spatial scale increased, the level of spatial autocorrelation of the per-unit ESV gradually decreased, and no spatial autocorrelation was observed at the urban scale. Analysis revealed that the clustering trend was more pronounced at the township scale, and its stability over the years was higher than that at the county scale. (3) The per-unit ESV was driven primarily by socio-economic factors, and the relative importance of these driving forces was minimally affected by the spatial scale, indicating a certain degree of similarity across different scales. (4) The spatial distribution pattern of per-unit ESV was not driven by a single factor but by the interaction of multiple factors. These interactions were significantly influenced by spatial scale, with more complex interaction effects observed at the county scale. Slope, in particular, played a crucial role in the interactions. This research contributes valuable scientific knowledge for developing environmental conservation frameworks in the SPUA while supporting the region’s sustainable growth initiatives. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

22 pages, 1075 KiB  
Article
Socio-Economic Aspects of Drought Impact on Forest Industry in China
by Lei Wang, Xinyi Wang and Wei Wang
Forests 2025, 16(5), 802; https://doi.org/10.3390/f16050802 - 11 May 2025
Viewed by 326
Abstract
Extreme drought events under the background of global warming pose a significant threat to China’s forest industry system. This study aims to analyze the impact of drought on China’s forest industry from the perspective of economics, and, through the mechanism test, to further [...] Read more.
Extreme drought events under the background of global warming pose a significant threat to China’s forest industry system. This study aims to analyze the impact of drought on China’s forest industry from the perspective of economics, and, through the mechanism test, to further study the communication path of drought to the forest industry. The study finds: (1) drought has been increasing in China in the last 50 years. (2) Drought has a significant restraining effect on the Chinese forest industry. Moreover, inland areas are more vulnerable to drought than coastal areas. (3) Drought will lead to an increase in the occurrence area of forest pests and diseases, forming a compound eco-economic loss effect, thus inhibiting the development of the forest industry. (4) Drought can drive an increase in irrigation facilities. Efficient irrigation may mitigate biological damages caused by drought, so as to resist part of the economic losses. (5) Drought may cause labor to migrate from the forest sector to non-forest sectors, leading to lower production in the forest industry. Labor transfer effects caused by drought are more obvious in the areas where the income gap is relatively big between rural and urban regions, e.g., in inland areas. Full article
Show Figures

Figure 1

24 pages, 4359 KiB  
Review
MSW Incineration Bottom Ash-Based Alkali-Activated Binders as an Eco-Efficient Alternative for Urban Furniture and Paving: Closing the Loop Towards Sustainable Construction Solutions
by Josep Maria Chimenos, Fabian Cuspoca, Alex Maldonado-Alameda, Jofre Mañosa, Joan Ramon Rosell, Ana Andrés, Gerard Faneca and Luisa F. Cabeza
Buildings 2025, 15(9), 1571; https://doi.org/10.3390/buildings15091571 - 7 May 2025
Viewed by 713
Abstract
Innovative approaches in the Portland cement industry, aligned with circular economy principles, offer a promising solution to reduce the environmental impacts. These methods can initially target the architectural elements with lower structural demands, such as urban furniture and paving, before being applied to [...] Read more.
Innovative approaches in the Portland cement industry, aligned with circular economy principles, offer a promising solution to reduce the environmental impacts. These methods can initially target the architectural elements with lower structural demands, such as urban furniture and paving, before being applied to areas with higher cement usage. Alkali-activated binders (AABs) made from secondary resources present a sustainable alternative to Portland cement (PC), promoting resource recovery, conservation, and a low-carbon economy. Incinerator bottom ash (IBA), traditionally landfilled, has shown potential as a precursor for AABs due to its aluminosilicate content. Repurposing IBA for urban furniture and paving transforms it into a valuable secondary resource. Accordingly, this is the first study to utilize IBA as the sole precursor for urban furniture or paving applications. Research, including state-of-the-art studies and proof of concept developed in this work, demonstrates that IBA-based AABs can produce cast concrete suitable for non-structural urban elements, meeting the technical, environmental, and ecotoxicological standards. Using IBA in AAB formulations not only reduces the reliance on primary raw materials but also contributes to significant energy savings in binder production and lowers greenhouse gas (GHG) emissions, resulting in a reduced carbon footprint. Furthermore, producing concrete from local residual resources, such as IBA, facilitates the reintegration of municipal waste into the production cycle at its point of origin, fostering a sustainable approach to urban development and supporting the circular economy. Full article
(This article belongs to the Special Issue Advances in the Implementation of Circular Economy in Buildings)
Show Figures

Figure 1

29 pages, 4494 KiB  
Article
Data-Driven Green Transformation: How Public Data Openness Fuels Urban Land Use Eco-Efficiency in Chinese Cities
by Yongqiang Li, Bowen Li, Jiani Chen, Yue Zhang, Yian Hu and Chengming Li
Land 2025, 14(5), 990; https://doi.org/10.3390/land14050990 - 3 May 2025
Cited by 1 | Viewed by 474
Abstract
Urban land use eco-efficiency (ULUEE) encapsulates the equilibrium between economic gains and environmental sustainability. The improvement of ULUEE has emerged as a critical measure in addressing climate change and achieving dual-carbon objectives. This paper examines the potential of public data in enhancing ULUEE, [...] Read more.
Urban land use eco-efficiency (ULUEE) encapsulates the equilibrium between economic gains and environmental sustainability. The improvement of ULUEE has emerged as a critical measure in addressing climate change and achieving dual-carbon objectives. This paper examines the potential of public data in enhancing ULUEE, focusing on public data openness (PDO), using a sample of 294 prefecture-level cities spanning from 2014 to 2022. The findings indicate that PDO has a significant positive impact on ULUEE, a result that remains robust through various sensitivity tests. Further analysis reveals that PDO fosters urban innovation, stimulates industrial agglomeration, optimizes urban industrial structures, and further enhances ULUEE through innovation effects, agglomeration effects, and structural effects. A heterogeneity analysis shows that this positive effect is more pronounced in regions with higher financial development levels and in the economically advanced eastern regions, suggesting that the ecological benefits derived from PDO are contingent upon a solid economic foundation. Additionally, the effect is more substantial in regions with weaker digital infrastructure and suboptimal environmental regulation, implying that public data can compensate for deficiencies in urban digital infrastructure and environmental governance, thereby contributing to improvements in ULUEE. This paper broadens the existing literature on the ecological value of public data, uncovers the potential of PDO in promoting ULUEE, and offers a practical framework for leveraging PDO to facilitate urban green transformation and ecological advancement. Full article
Show Figures

Figure 1

Back to TopTop