Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (251)

Search Parameters:
Keywords = urban aquifer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9145 KiB  
Article
Valuating Hydrological Ecosystem Services Provided by Groundwater in a Dryland Region in the Northwest of Mexico
by Frida Cital, J. Eliana Rodríguez-Burgueño, Concepción Carreón-Diazconti and Jorge Ramírez-Hernández
Water 2025, 17(15), 2221; https://doi.org/10.3390/w17152221 - 25 Jul 2025
Viewed by 306
Abstract
Drylands cover approximately 41% of Earth’s land surface, supporting about 500 million people and 45% of global agriculture. Groundwater is essential in drylands and is crucial for maintaining ecosystem services and offering numerous benefits. This article, for the first time, analyses and valuates [...] Read more.
Drylands cover approximately 41% of Earth’s land surface, supporting about 500 million people and 45% of global agriculture. Groundwater is essential in drylands and is crucial for maintaining ecosystem services and offering numerous benefits. This article, for the first time, analyses and valuates the hydrological ecosystem services (HESs) provided by groundwater in a region of the Colorado River Delta in Mexico, an area with uncertain economic impact due to water scarcity. The main water sources are the Colorado River and groundwater from the Mexicali and San Luis Rio Colorado valley aquifers, both of which are overexploited. Valuation techniques include surrogate and simulated market methods for agricultural, industrial, urban, and domestic uses, the shadow project approach for water conservation and purification cost avoidance, and the contingent valuation method for recreation. Data from 2013 to 2015 and 2020 were used as they are the most reliable sources available. The annual value of HESs provided by groundwater was USD 883,520 million, with water conservation being a key factor. The analyzed groundwater uses reflect differences in efficiency and economic value, providing key information for decisions on governance, allocation, conservation, and revaluation of water resources. These results suggest reorienting crops, establishing differentiated rates, and promoting payment for environmental services programs. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

15 pages, 2467 KiB  
Article
Definition of Groundwater Management Zones for a Fissured Karst Aquifer in Semi-Arid Northeastern Brazil
by Hailton Mello da Silva, Luiz Rogério Bastos Leal, Cezar Augusto Teixeira Falcão Filho, Thiago dos Santos Gonçalves and Harald Klammler
Hydrology 2025, 12(8), 195; https://doi.org/10.3390/hydrology12080195 - 23 Jul 2025
Viewed by 353
Abstract
The objective of this study is to define groundwater management zones for a complex deformed and fissured Precambrian karst aquifer, which underlies one of the most important agricultural areas in the semi-arid region of Irecê, Bahia, Brazil. It is an unconfined aquifer, hundreds [...] Read more.
The objective of this study is to define groundwater management zones for a complex deformed and fissured Precambrian karst aquifer, which underlies one of the most important agricultural areas in the semi-arid region of Irecê, Bahia, Brazil. It is an unconfined aquifer, hundreds of meters thick, resulting from a large sequence of carbonates piled up by thrust faults during tectonic plate collisions. Groundwater recharge and flow in this aquifer are greatly influenced by karst features, through the high density of sinkholes and vertical wells. Over the past four decades, population and agricultural activities have increased in the region, resulting in unsustainable groundwater withdrawal and, at the same time, water quality degradation. Therefore, it is important to develop legal and environmental management strategies. This work proposes the division of the karst area into three well-defined management zones by mapping karst structures, land use, and urban occupation, as well as the concentrations of chloride and nitrate in the region’s groundwater. Zone 1 in the north possesses the lowest levels of karstification, anthropization, and contamination, while zone 2 in the central region has the highest levels and zone 3 in the south ranging in-between (except for stronger karstification). The delimitation of management zones will contribute to the development and implementation of optimized zone-specific groundwater preservation and restoration strategies. Full article
Show Figures

Figure 1

17 pages, 2256 KiB  
Article
Performance Analysis of Different Borehole Heat Exchanger Configurations: A Case Study in NW Italy
by Jessica Maria Chicco, Nicolò Giordano, Cesare Comina and Giuseppe Mandrone
Smart Cities 2025, 8(4), 121; https://doi.org/10.3390/smartcities8040121 - 21 Jul 2025
Viewed by 330
Abstract
The central role of heating and cooling in energy transition has been recognised in recent years, especially with geopolitical developments since February 2022 which demand an acceleration in deploying local energy sources to increase the resilience of the energy sector. Geothermal energy is [...] Read more.
The central role of heating and cooling in energy transition has been recognised in recent years, especially with geopolitical developments since February 2022 which demand an acceleration in deploying local energy sources to increase the resilience of the energy sector. Geothermal energy is a promising and vital option to optimize heating and cooling systems, promoting sustainability of urban environments. To this end, a proper design is of paramount importance to guarantee the energy performance of the whole system. This work deals with the optimization of the technical and geometrical characteristics of borehole heat exchangers (BHEs) as part of a shallow geothermal plant that is assumed to be integrated in an already operating gas-fired DH grid. Thermal performances of three different configurations were analysed according to the geological information that revealed an aquifer at −36 m overlying a poorly permeable marly succession. Numerical simulations validated the geological, hydrogeological, and thermo-physical models by back-analysing the experimental results of a thermal response test (TRT) on a pilot 150 m deep BHE. Five-year simulations were then performed to compare 150 m and 36 m polyethylene 2U, and 36 m steel coaxial BHEs. The coaxial configuration shows the best performance both in terms of specific power (74.51 W/m) and borehole thermal resistance (0.02 mK/W). Outcomes of the study confirm that coupling the best geological and technical parameters ensure the best energy performance and economic sustainability. Full article
(This article belongs to the Special Issue Energy Strategies of Smart Cities)
Show Figures

Figure 1

20 pages, 4438 KiB  
Article
Impacts of Urbanization and Climate Variability on Groundwater Environment in a Basin Scale
by Olawale Joshua Abidakun, Mitsuyo Saito, Shin-ichi Onodera and Kunyang Wang
Hydrology 2025, 12(7), 173; https://doi.org/10.3390/hydrology12070173 - 30 Jun 2025
Viewed by 585
Abstract
Globally, groundwater resources are experiencing a decline in hydraulic heads resulting from the dual effects of urbanization and climate change, highlighting the need for integrated and sustainable water resources management. Urban development in the cities of Kansai region, western Japan, presents a significant [...] Read more.
Globally, groundwater resources are experiencing a decline in hydraulic heads resulting from the dual effects of urbanization and climate change, highlighting the need for integrated and sustainable water resources management. Urban development in the cities of Kansai region, western Japan, presents a significant challenge to the sustainability of groundwater resources. This study aims to assess the combined influence of urbanization and climate change on the groundwater resources of the Nara Basin using MODFLOW 6 for two distinct periods: The Pre-Urbanization Period (PreUP: 1980–1988), and the Post-Urbanization Period (PostUP, 2000–2008) with an emphasis on spatiotemporal distribution of recharge in a multi-layer aquifer system. Simulated hydraulic heads were evaluated under three different recharge scenarios: uniformly, spatiotemporally and spatially distributed. The uniform recharge scenario both overestimates and underestimates hydraulic heads, while the spatially distributed scenario produced a simulated heads distribution similar to the spatiotemporally distributed recharge scenario, underscoring the importance of incorporating spatiotemporal variability in recharge input for accurate groundwater flow simulation. Moreover, our results highlight the relevance of spatial distribution of recharge input than temporal distribution. Our findings indicate a significant decrease in hydraulic heads of approximately 5 m from the PreUP to PostUP in the unconfined aquifer, primarily driven by changes in land use and climate. In contrast, the average head decline in deep confined aquifers is about 4 m and is mainly influenced by long-term climatic variations. The impervious land use types experienced more decline in hydraulic heads than the permeable areas under changing climate because of the impedance to infiltration and percolation exacerbating the climate variability effect. These changes in hydraulic heads were particularly evident in the interactions between surface and groundwater. The cumulative volume of groundwater discharge to the river decreased by 27%, while the river seepage into the aquifer increased by 16%. Sustainable groundwater resources management under conditions of urbanization and climate change necessitates a holistic and integrated approach. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

18 pages, 4751 KiB  
Article
Hydrochemical Formation Mechanisms and Source Apportionment in Multi-Aquifer Systems of Coastal Cities: A Case Study of Qingdao City, China
by Mingming Li, Xinfeng Wang, Jiangong You, Yueqi Wang, Mingyue Zhao, Ping Sun, Jiani Fu, Yang Yu and Kuanzhen Mao
Sustainability 2025, 17(13), 5988; https://doi.org/10.3390/su17135988 - 29 Jun 2025
Viewed by 390
Abstract
This study systematically unravels the hydrochemical evolution mechanisms and driving forces in multi-aquifer systems of Qingdao, a coastal economic hub. Integrated hydrochemical analysis of porous, fissured, and karst water, combined with PHREEQC modeling and Positive Matrix Factorization (PMF), deciphers water–rock interactions and anthropogenic [...] Read more.
This study systematically unravels the hydrochemical evolution mechanisms and driving forces in multi-aquifer systems of Qingdao, a coastal economic hub. Integrated hydrochemical analysis of porous, fissured, and karst water, combined with PHREEQC modeling and Positive Matrix Factorization (PMF), deciphers water–rock interactions and anthropogenic perturbations. Groundwater exhibits weak alkalinity (pH 7.2–8.4), with porous aquifers showing markedly higher TDS (161.1–8203.5 mg/L) than fissured (147.7–1224.8 mg/L) and karst systems (361.1–4551.5 mg/L). Spatial heterogeneity reveals progressive hydrochemical transitions (HCO3-Ca → SO4-Ca·Mg → Cl-Na) in porous aquifers across the Dagu River Basin. While carbonate (calcite) and silicate weathering govern natural hydrochemistry, evaporite dissolution and seawater intrusion drive severe groundwater salinization in the western Pingdu City and the Dagu River Estuary (localized TDS up to 8203.5 mg/L). PMF source apportionment identifies acid deposition-enhanced dissolution of carbonate/silicate minerals, with nitrate contamination predominantly sourced from agricultural runoff and domestic sewage. Landfill leachate exerts pronounced impacts in Laixi and adjacent regions. This study offering actionable strategies for salinity mitigation and contaminant source regulation, thereby providing a scientific framework for sustainable groundwater management in rapidly urbanizing coastal zones. Full article
Show Figures

Figure 1

22 pages, 9661 KiB  
Article
Regional Groundwater Flow and Advective Contaminant Transport Modeling in a Typical Hydrogeological Environment of Northern New Jersey
by Toritseju Oyen and Duke Ophori
Hydrology 2025, 12(7), 167; https://doi.org/10.3390/hydrology12070167 - 27 Jun 2025
Viewed by 527
Abstract
This study develops a numerical model to simulate groundwater flow and contaminant transport in a “typical hydrogeological environment” of northern New Jersey, addressing freshwater decline. Focusing on the Lower Passaic water management area (WMA), we model chloride transport in a fractured-rock aquifer, where [...] Read more.
This study develops a numerical model to simulate groundwater flow and contaminant transport in a “typical hydrogeological environment” of northern New Jersey, addressing freshwater decline. Focusing on the Lower Passaic water management area (WMA), we model chloride transport in a fractured-rock aquifer, where fracture networks control hydraulic conductivity and porosity. The urbanized setting—encompassing Montclair State University (MSU) and municipal wells—features heterogeneous groundwater systems and critical water resources, providing an ideal case study for worst-case contaminant transport scenarios. Using MODFLOW and MODPATH, we simulated flow and tracked particles over 20 years. Results show that chloride from MSU reached the Third River in 4 years and the Passaic River in 10 years in low-porosity fractures (0.2), with longer times (8 and 20 years) in high-porosity zones (0.4). The First Watchung Mountains were identified as the primary recharge area. Chloride was retained in immobile pores but transported rapidly through fractures, with local flow systems (MSU to Third River) faster than regional systems (MSU to Passaic River). These findings confirm chloride in groundwater, which may originate from road salt application, can reach discharge points in 4–20 years, emphasizing the need for recharge-area monitoring, salt-reduction policies, and site-specific assessments to protect fractured-rock aquifers. Full article
Show Figures

Figure 1

26 pages, 6966 KiB  
Article
Temporal and Spatial Analysis of the Environmental State of the Valencia Plain Aquifer Area Using the Weighted Environmental Index (WEI)
by Javier Rodrigo-Ilarri, Claudia P. Romero-Hernández, Sergio Salazar-Galán and María-Elena Rodrigo-Clavero
Sustainability 2025, 17(13), 5921; https://doi.org/10.3390/su17135921 - 27 Jun 2025
Viewed by 384
Abstract
This article analyses the impact of urban sprawl on the Valencia Plain aquifer system from 1990 to 2018, focusing on land use and land cover (LULC) changes and their environmental implications. The study applies the Weighted Environmental Index (WEI), a composite indicator based [...] Read more.
This article analyses the impact of urban sprawl on the Valencia Plain aquifer system from 1990 to 2018, focusing on land use and land cover (LULC) changes and their environmental implications. The study applies the Weighted Environmental Index (WEI), a composite indicator based on a functional landscape perspective, to quantify changes in the environmental value over time. The WEI combines CORINE Land Cover and World Settlement Footprint data to enhance spatial resolution and urban land detection. The results show a significant territorial transformation, with urban surfaces expanding by 70% and rainfed agricultural areas declining by over 59%. Consequently, the WEI decreased from 44.80 in 1990 to 40.68 in 2018, representing a 9.2% reduction in the environmental value. These changes threaten the sustainability of key ecosystems such as the Albufera Natural Park and indicate a reduced capacity to deliver ecosystem services, including aquifer recharging, biodiversity conservation, and climate regulation. The findings underscore the need for integrated land-use planning, the protection of peri-urban agricultural areas, and the implementation of nature-based solutions to counteract the environmental impacts of urban growth in Mediterranean metropolitan contexts. Full article
(This article belongs to the Special Issue Sustainable Land Use and Management, 2nd Edition)
Show Figures

Figure 1

25 pages, 5025 KiB  
Article
Valorization of Historical Urban Spaces for Managed Aquifer Recharge as a Tool to Support Sustainable Urban Development in Warsaw, Poland
by Joanna Trzeciak and Sebastian Zabłocki
Urban Sci. 2025, 9(6), 224; https://doi.org/10.3390/urbansci9060224 - 13 Jun 2025
Viewed by 453
Abstract
In the context of progressing climate change and the increasing frequency of extreme weather events, there is a growing need for effective strategies to mitigate their impacts. One such strategy involves the implementation of tools aimed at sustainable rainfall management at the site [...] Read more.
In the context of progressing climate change and the increasing frequency of extreme weather events, there is a growing need for effective strategies to mitigate their impacts. One such strategy involves the implementation of tools aimed at sustainable rainfall management at the site of precipitation. This study focuses on assessing the state of the water environment as a prerequisite for introducing sustainable Managed Aquifer Recharge (MAR) practices in urban areas. The research was conducted in the historic district of Warsaw, Poland. A comprehensive methodological approach was employed, including field and laboratory measurements of soil moisture and electrical conductivity (EC), vadose zone hydraulic conductivity, spring discharge rates, and analytical calculations based on climatic data. These were supplemented by groundwater flow modeling to estimate infiltration rates. The study showed that the infiltration rate in the aquifer is low—only 4.4% of the average annual precipitation. This is primarily due to limited green space coverage and high surface runoff, as well as high potential evaporation rates and low soil permeability in the vadose zone. A positive water balance and infiltration were observed only in December and January, as indicated by increased soil moisture and decreased EC values. A multi-criteria spatial analysis identified priority zones for the installation of retention infrastructure aimed at enhancing effective infiltration and improving the urban water balance. These findings underscore the need for targeted interventions in urban water management to support climate resilience and sustainable development goals. Full article
Show Figures

Figure 1

19 pages, 6599 KiB  
Article
Hydrogeological Assessment of Urban Springs in Warsaw and Their Role in Green Space Management
by Ewa Krogulec, Dorota Porowska, Katarzyna Sawicka and Sebastian Zabłocki
Sustainability 2025, 17(12), 5432; https://doi.org/10.3390/su17125432 - 12 Jun 2025
Viewed by 547
Abstract
Springs located in urban historic areas are important for groundwater management, the protection of green spaces, and the preservation of park functions and urban structure. This article presents the results of a study of selected Warsaw springs in the city center under conservation [...] Read more.
Springs located in urban historic areas are important for groundwater management, the protection of green spaces, and the preservation of park functions and urban structure. This article presents the results of a study of selected Warsaw springs in the city center under conservation protection, focusing on their hydrogeological characteristics, hydrogeochemical analysis, and pressures associated with urban development. Field and laboratory analyses, as well as hydrodynamic modeling, made it possible to assess the quantity and quality of water from the springs. Hydrodynamic studies showed that the area of the spring recharge zone of 13.77 ha is characterized by an average time of water exchange of approx. 26 years and a low infiltration recharge, an average of 18 mm/year. Hydrogeochemical analyses showed that spring water has a complex, multi-ion hydrogeochemical type: Cl-SO4-HCO3-Ca-Na, Cl-HCO3-SO4-Ca-Na, Cl-HCO3-Na-Ca, and NO3-Cl-HCO3-Ca-Na, including the occurrence of hazardous substances such as PAH and BTEX, PCBs, non-ionic detergents, and heavy metals. The results indicate that urbanization significantly affects groundwater levels and spring recharge areas, which can limit the availability of water in green and recreational areas. The results of the study indicate the need for action to increase groundwater resources through managed aquifer recharge for rainwater management in densely built-up areas. In terms of water quality measures, due to the unsatisfactory chemical water status, the use of spring water for irrigation of urban vegetation or its incorporation into the active recreational infrastructure of the park currently appears to be fraught with considerable risk, hence the need to take protective action in the spring recharge zone through the regular monitoring of groundwater quality, the legal designation of protection zones, and the implementation of policies that support urban water retention. It is necessary to implement pre-treatment solutions (aeration, desalination) or introduce appropriately resistant vegetation. Any type of activity that allows the use of water after treatment will certainly contribute to making the park more attractive as a place of recreation and leisure for residents. Findings from the research can support decisions on protecting green spaces and adapting cities to climate change. Full article
Show Figures

Figure 1

34 pages, 7396 KiB  
Article
Sustainable Groundwater Management in the Coastal Aquifer of the Témara Plain, Morocco: A GIS-Based Hydrochemical and Pollution Risk Assessment
by Abdessamia El Alaoui, Imane Haidara, Nawal Bouya, Bennacer Moussaid, Khadeijah Yahya Faqeih, Somayah Moshrif Alamri, Eman Rafi Alamery, Afaf Rafi AlAmri, Youness Moussaid and Mohamed Ait Haddou
Sustainability 2025, 17(12), 5392; https://doi.org/10.3390/su17125392 - 11 Jun 2025
Viewed by 815
Abstract
Morocco’s Témara Plain relies heavily on its aquifer system as a critical resource for drinking water, irrigation, and industrial activities. However, this essential groundwater reserve is increasingly threatened by over-extraction, seawater intrusion, and complex hydrogeochemical processes driven by the region’s geological characteristics and [...] Read more.
Morocco’s Témara Plain relies heavily on its aquifer system as a critical resource for drinking water, irrigation, and industrial activities. However, this essential groundwater reserve is increasingly threatened by over-extraction, seawater intrusion, and complex hydrogeochemical processes driven by the region’s geological characteristics and anthropogenic pressures. This study aims to assess groundwater quality and its vulnerability to pollution risks and map the spatial distribution of key hydrochemical processes through an integrated approach combining Geographic Information System (GIS) techniques and multivariate statistical analysis, as well as applying the DRASTIC model to evaluate water vulnerability. A total of fifty-eight groundwater samples were collected across the plain and analyzed for major ions to identify dominant hydrochemical facies. Spatial interpolation using Inverse Distance Weighting (IDW) within GIS revealed distinct patterns of sodium chloride (Na-Cl) facies near the coastal areas with chloride concentrations exceeding the World Health Organization (WHO) drinking water guideline of 250 mg/L—indicative of seawater intrusion. In addition to marine intrusion, agricultural pollution constitutes a major diffuse pressure across the aquifer. Shallow groundwater zones in agricultural areas show heightened vulnerability to salinization and nitrate contamination, with nitrate concentrations reaching up to 152.3 mg/L, far surpassing the WHO limit of 45 mg/L. Furthermore, other anthropogenic pollution sources—such as wastewater discharges from septic tanks in peri-urban zones lacking proper sanitation infrastructure and potential leachate infiltration from informal waste disposal sites—intensify stress on the aquifer. Principal Component Analysis (PCA) identified three key factors influencing groundwater quality: natural mineralization due to carbonate rock dissolution, agricultural inputs, and salinization driven by seawater intrusion. Additionally, The DRASTIC model was used within the GIS environment to create a vulnerability map based on seven key parameters. The map revealed that low-lying coastal areas are most vulnerable to contamination. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

23 pages, 7384 KiB  
Article
Hydrogeochemical and Isotopic Approach to Groundwater Management in a Mediterranean City Dependent on External Water Supply (Aix-en-Provence, SE France)
by Christelle Claude, Hélène Miche, Ghislain Gassier, Ferhat Cherigui and Yves Dutour
Water 2025, 17(11), 1634; https://doi.org/10.3390/w17111634 - 28 May 2025
Viewed by 648
Abstract
Drought frequency and severity intensify with climate change, challenging many Mediterranean cities to face securing sustainable water supplies. In this context, groundwater emerges as a key but often overlooked resource, particularly in urban areas historically reliant on external drinking water systems. This study [...] Read more.
Drought frequency and severity intensify with climate change, challenging many Mediterranean cities to face securing sustainable water supplies. In this context, groundwater emerges as a key but often overlooked resource, particularly in urban areas historically reliant on external drinking water systems. This study provides a comprehensive hydrogeological characterisation of the groundwater system in Aix-en-Provence (southeastern France), with a specific focus on hypothermal springs and the cold springs of the Vallon des Pinchinats, which historically supplied the town before the creation of the Canal de Provence by the company of the same name (Société du Canal de Provence (SCP)). By combining chemical and isotopic analyses (δ18O, δ2H, and chloride concentrations) with a statistical clustering (DACMAD method), we characterise the origin and dynamics of distinct water sources and evaluate their influence with surface water and external supply systems. Four key hydrological entities influencing the study area were identified. (1) regional precipitation (RRW) contributing significantly to groundwater recharge in the region. The isotope composition of the RRW was calculated (δ18O: −6.68‰, δ2H: −41.80‰, Cl: 2.2 mg/L) (2) Groundwater from the Oligocene aquifer (OG) characterised by an enrichment in chloride and sulphate. (3) Groundwater from the Cretaceous–Jurassic aquifer (CJG), a karstified aquifer from the Sainte-Victoire-Concors massif, which supplies the cold and hypothermal springs in Aix-en-Provence and multiple springs in the region. (4) Canal de Provence water (CPW) as an external water source, used for domestic supply, which has left a traceable signal in the local hydrosystem. The study reveals that cold springs of the Vallon des Pinchinats result from the mixing of Oligocene and Cretaceous–Jurassic groundwaters. Hypothermal springs (20–30 °C) circulate at moderate depths (165–500 m), unlike previous models suggesting deeper infiltration and mixing processes. This study contributes a novel hydrogeochemical and isotopic framework applicable to other Mediterranean urban areas facing similar pressures and highlights the strategic role that local groundwater can play in building long-term water resilience. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

22 pages, 11337 KiB  
Article
Toward Landscape-Based Groundwater Recharge in Arid Regions: A Case Study of Karachi, Pakistan
by Amna Riaz, Steffen Nijhuis and Inge Bobbink
Sustainability 2025, 17(11), 4931; https://doi.org/10.3390/su17114931 - 27 May 2025
Viewed by 667
Abstract
Rapid urbanization and climate change are the driving forces behind changing the urban landscape and affecting natural resources and the environment, particularly in the megacities of arid regions. Many of these cities face an acute water crisis leading to over-exploitation of groundwater resources. [...] Read more.
Rapid urbanization and climate change are the driving forces behind changing the urban landscape and affecting natural resources and the environment, particularly in the megacities of arid regions. Many of these cities face an acute water crisis leading to over-exploitation of groundwater resources. This over-exploitation has led to the depletion of aquifers, land infertility, saline intrusion, land subsidence, and harm to hydrological ecosystems. Globally, numerous studies have documented the potential of groundwater recharge (GWR) using GIS and remote sensing techniques. However, its practical application in a landscape context for sustainable urban and regional development is underexplored. In this study, we developed the landscape-based GWR concept by conducting a case study of Karachi city (Pakistan). We took physical landscape (surface and sub-surface) features and groundwater recharge potential as a base for design and planning to improve groundwater recharge and urban landscape. Moreover, we highlighted the added values of this approach besides recharging the depleted ground hydrological conditions and improving the urban landscape condition (i.e., social–ecological inclusiveness, sustainable future development, and interdisciplinary collaboration). The results indicated a negative impact of urbanization on groundwater recharge, especially in the alluvial zones and river valleys, underscoring the need for a spatial approach to safeguard GWR and guide development. Through this study, we propose that landscape-based GWR can be one of the potential solutions not only for the critical water crisis faced by rapidly urbanizing arid megacities but also for improving the overall quality of life and urban landscape. Furthermore, this holistic approach toward groundwater recharge can guide future urban development patterns, preservation of high groundwater recharge potential sites, and evolution toward sustainable development in arid regions where groundwater is the most significant yet vulnerable resource. Full article
(This article belongs to the Special Issue Landscape Connectivity for Sustainable Biodiversity Conservation)
Show Figures

Figure 1

28 pages, 8099 KiB  
Article
Heavy Metal Contamination of Sediments in the Inaouène Watershed (Morocco): Indices, Statistical Methods, and Contributions to Sustainable Environmental Management
by Marouane Laaraj, Yassine Ait Brahim, Valerie Mesnage, Fadwa Bensalem, Ikram Lahmidi, Mohammed Mouad Mliyeh, Hamid Fattasse, Khalid Arari and Lahcen Benaabidate
Sustainability 2025, 17(10), 4668; https://doi.org/10.3390/su17104668 - 19 May 2025
Viewed by 600
Abstract
The Inaouène watershed (3600 km2), part of the Sebou River’s upper valley in northern Morocco, faces urban, agricultural, and industrial discharges. This research investigates the environmental impact of heavy metal contamination in sediments and its implications for sustainable watershed management and [...] Read more.
The Inaouène watershed (3600 km2), part of the Sebou River’s upper valley in northern Morocco, faces urban, agricultural, and industrial discharges. This research investigates the environmental impact of heavy metal contamination in sediments and its implications for sustainable watershed management and long-term ecological protection. Sediment samples were collected from six sites along the river and the Idriss 1st dam. A combined approach of geochemical analyses and multivariate statistical methods (PCA, HCA) identified metal sources and grouped sites by contamination patterns. Additionally, pollution indices (Igeo, EF, PLI) were used to assess contamination levels and infer potential sources. Results revealed variable metal concentrations: upstream (Ech1) showed high levels of chromium (133 mg/kg) and copper (32.5 mg/kg) linked to urban discharges and erosion, while downstream (Ech6) exhibited high barium (3245 mg/kg) and strontium (505 mg/kg) concentrations due to dam sedimentation. Pollution indices confirmed moderate to high contamination, particularly at Ech1 and Ech6. Multivariate analysis identified three main clusters influenced by both anthropogenic and geological factors. These findings underline the need for integrated sediment management, regular monitoring, and environmental protection strategies to preserve the watershed and the aquifer’s ecological balance. Full article
Show Figures

Figure 1

19 pages, 12021 KiB  
Article
Assessing the Impact of Groundwater Extraction and Climate Change on a Protected Playa-Lake System in the Southern Iberian Peninsula: La Ratosa Natural Reserve
by Miguel Rodríguez-Rodríguez, Laszlo Halmos, Alejandro Jiménez-Bonilla, Manuel Díaz-Azpiroz, Fernando Gázquez, Joaquín Delgado, Ana Fernández-Ayuso, Inmaculada Expósito, Sergio Martos-Rosillo and José Luis Yanes
Geographies 2025, 5(2), 21; https://doi.org/10.3390/geographies5020021 - 8 May 2025
Viewed by 900
Abstract
We modeled the water level variations in a protected playa-lake system (La Ratosa Natural Reserve, S Spain) comprising two adjacent playa-lakes: La Ratosa and Herriza de los Ladrones. For this purpose, daily water balances were applied to reconstruct the water level. Model results [...] Read more.
We modeled the water level variations in a protected playa-lake system (La Ratosa Natural Reserve, S Spain) comprising two adjacent playa-lakes: La Ratosa and Herriza de los Ladrones. For this purpose, daily water balances were applied to reconstruct the water level. Model results were validated using actual water level monitoring over the past 20 years. We surveyed post-Pliocene geological structures in the endorheic watershed to investigate lake nucleation and to improve the hydrogeological model. Additionally, we investigated the groundwater level evolution in nearby aquifers, which have been profusely affected by groundwater exploitation for domestic and agricultural use. Then, the RCP 4.5 and RCP 8.5 climate change scenarios were applied to forecast the future of this lake system. We found that the playa-lake hydroperiod will shorten, causing the system to shift from seasonal to ephemeral, which appears to be a general trend in this area. However, the impact on the La Ratosa-Herriza de los Ladrones system would be likely more severe due to local stressors, such as groundwater withdrawal for urban demand and agriculture, driving the system to complete desiccation for extended periods. These results highlight the sensitivity of these protected ecosystems to changes in the watershed’s water balance and underscore the urgent need to preserve watersheds from any form of water use, other than ecological purposes. This approach aims to support informed decision-making to mitigate adverse impacts on these fragile ecosystems, ensuring their ecological integrity in the context of climate change and increasing water demand for various uses. Full article
Show Figures

Graphical abstract

27 pages, 8610 KiB  
Article
Comparing SWMM and HEC-RAS Hydrological Modeling Performance in Semi-Urbanized Watershed
by Michael A. Bragg, Ashmita Poudel and Jose G. Vasconcelos
Water 2025, 17(9), 1331; https://doi.org/10.3390/w17091331 - 29 Apr 2025
Cited by 1 | Viewed by 1371
Abstract
One of the most common applications of hydrological models is in studying urban watersheds, with distributed and semi-distributed models being used more frequently. The choice of modeling tools and the selection of hydrological processes to represent is dependent on the modeling objectives, available [...] Read more.
One of the most common applications of hydrological models is in studying urban watersheds, with distributed and semi-distributed models being used more frequently. The choice of modeling tools and the selection of hydrological processes to represent is dependent on the modeling objectives, available resources, and the scale of the study. Certain modeling setup parameters can have important effects on model accuracy, such as the representation of aquifer components, detailed surface storage, and discretization, among others. The effects of these parameters are often unknown since most hydrological studies do not systematically alter these parameters nor consider different modeling tools. This study performs a comparative analysis between SWMM and HEC-RAS in describing the hydrological response of a semi-urbanized headwater watershed in Alabama. Within each model, different modeling parameters were varied and the effects on the model accuracy were assessed with the stream depth and velocity collected in the field. The results showed that the parameters most impactful in SWMM modeling results were the existence of an aquifer component as well as the careful representation of surface storage. Conversely, HEC-RAS results were comparable with SWMM results when an aquifer was not present, but the runoff was highly overpredicted when infiltration was not considered. These results can indicate the applications and limitations of rain-on-grid model results that neglect interactions with shallow groundwater. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

Back to TopTop