Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = uneven irradiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8054 KiB  
Article
Electron Beam Irradiation’s Effect on Polyaniline/LiClO4/CuO Nanocomposite: A Study of Dielectric, Conductivity and Electrochemical Properties
by Yesappa Laxmayyaguddi, Sharanappa Chapi and Nagaraj Nandihalli
Appl. Sci. 2025, 15(7), 4001; https://doi.org/10.3390/app15074001 - 4 Apr 2025
Viewed by 480
Abstract
A straightforward chemical polymerization process was used to create the polyaniline/LiClO4/CuO nanoparticle (PLC) nanocomposite, which was then exposed to varying doses of electron beam (EB) radiation and studied. The FESEM, XRD, FTIR, DSC, TG/DTA, and electrochemical measurements with higher EB doses [...] Read more.
A straightforward chemical polymerization process was used to create the polyaniline/LiClO4/CuO nanoparticle (PLC) nanocomposite, which was then exposed to varying doses of electron beam (EB) radiation and studied. The FESEM, XRD, FTIR, DSC, TG/DTA, and electrochemical measurements with higher EB doses showed clear changes. The FTIR spectra of the PLC nanocomposite showed variations in the C-N and carbonyl groups at 1341 cm−1 and 1621 cm−1, respectively. After a 120 kGy EB dose, the shape changed from a smooth, uneven surface to a well-connected, nanofiber-like structure, creating pathways for electricity to flow through the polymer matrix. The EB irradiation improved the thermal stability by decreasing the melting temperature, and the XRD and DSC studies reveal that the decrease in crystallinity is attributed to the dominant chain scission mechanism. The enhanced absorption and red shift in the wavelength (from 374 nm to 400 nm) observed in the UV-Visible spectroscopy were caused by electrons transitioning from a lower to a higher energy state, with a progressive drop in the band gaps (Eg) from 2.15 to 1.77 eV following irradiation. The dielectric parameters increased with the temperature and electron beam doses because of the dissociation of the ion aggregates and the emergence of defects and/or disorders in the polymer band gaps. This was triggered by chain scission, discontinuity, and bond breaking in the molecular chains at elevated levels of radiation energy, leading to an augmented charge carrier density and, subsequently, enhanced conductivity. The cyclic voltammetry study revealed an enhanced electrochemical stability at a high scan rate of about 600 mV/s for the PLC nanocomposite with the increase in the EB doses. The I-V characteristics measured at room temperature exhibited nonohmic behavior with an expanded current range, and the electrical conductivity was estimated, using the I-V curve, to be around 1.05 × 10−4 S/cm post 20 kGy EB irradiation. Full article
Show Figures

Figure 1

15 pages, 2973 KiB  
Article
Evaluating the Photocatalytic Activity of Green Synthesized Iron Oxide Nanoparticles
by Devendra Khadka, Prayas Gautam, Rabin Dahal, Moses D. Ashie, Hari Paudyal, Kedar Nath Ghimire, Bishweshwar Pant, Bhoj Raj Poudel, Bishnu Prasad Bastakoti and Megh Raj Pokhrel
Catalysts 2024, 14(11), 751; https://doi.org/10.3390/catal14110751 - 25 Oct 2024
Cited by 10 | Viewed by 2217
Abstract
Water pollution from dyes is a major environmental challenge, demanding advanced materials for efficient degradation. In this study, we synthesized iron oxide nanoparticles (IONPs) using an aqueous extract of Senegalia catechu leaves and evaluated their photocatalytic activity in methylene blue (MB) dye degradation [...] Read more.
Water pollution from dyes is a major environmental challenge, demanding advanced materials for efficient degradation. In this study, we synthesized iron oxide nanoparticles (IONPs) using an aqueous extract of Senegalia catechu leaves and evaluated their photocatalytic activity in methylene blue (MB) dye degradation under sunlight irradiation. The IONPs were characterized by UV-visible spectroscopy (UV–vis), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Spectroscopy (EDS). XRD pattern showed a highly crystalline structure with an average crystallite size of 34.7 nm, while SEM images revealed predominantly spherical particles with uneven surface texture. Photocatalytic efficiency exceeded 80% MB dye degradation after 120 min of sunlight exposure. Optimization of catalyst dose, pH, dye concentration, and other parameters is essential for maximizing degradation efficiency. The IONPs demonstrated reusability over four degradation cycles, retaining effective photocatalytic performance. This study underscores the potential of green-synthesized IONPs as eco-friendly photocatalysts for wastewater treatment and environmental remediation. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis Research in Asia)
Show Figures

Figure 1

16 pages, 5151 KiB  
Article
A Maximum Power Point Tracking (MPPT) Strategy Based on Harris Hawk Optimization (HHO) Algorithm
by Dabin Jia and Dazhi Wang
Actuators 2024, 13(11), 431; https://doi.org/10.3390/act13110431 - 25 Oct 2024
Cited by 4 | Viewed by 1263
Abstract
To address the multi-peak characteristics of the P-U output characteristic curve when the photovoltaic array is partially shaded, a Maximum Power Point Tracking (MPPT) method combining Harris Hawk optimization, and a variable step conductance increment method is proposed in this article. Although the [...] Read more.
To address the multi-peak characteristics of the P-U output characteristic curve when the photovoltaic array is partially shaded, a Maximum Power Point Tracking (MPPT) method combining Harris Hawk optimization, and a variable step conductance increment method is proposed in this article. Although the Harris Hawk Optimization algorithm has advantages in optimizing multi-modal P-U curves, when the lighting conditions suddenly change, the output characteristic curve will undergo drastic changes, causing the algorithm to oscillate repeatedly at the maximum power point. Moreover, due to its inherent limitations, the Harris Hawk algorithm has a low convergence accuracy, slow tracking speed, and is prone to getting trapped in a local optimum. In order to compensate for the shortcomings of the Harris Hawk Optimization algorithm, the variable step conductance increment method is switched for local exploration to improve the algorithm’s ability to escape from the local optimal solution and reduce power oscillation. Finally, the MPPT control of the proposed strategy was simulated and verified on the MATLAB/Simulink simulation (2021) platform. In the MPPT test experiment, the proposed composite algorithm was applied to simulate and verify uneven irradiance conditions. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

17 pages, 8968 KiB  
Article
Improvement of Optical-Induced Thermography Defect Detectability by Equivalent Heating and Non-Uniformity Compensation in Polyetheretherketone
by Yoonjae Chung, Chunyoung Kim, Seungju Lee, Hyunkyu Suh and Wontae Kim
Appl. Sci. 2024, 14(19), 8720; https://doi.org/10.3390/app14198720 - 27 Sep 2024
Cited by 2 | Viewed by 1187
Abstract
This paper deals with the experimental procedures of lock-in thermography (LIT) for polyetheretherketone (PEEK), which is used as a lightweight material in various industrial fields. The LIT has limitations due to non-uniform heating by external optic sources and the non-uniformity correction (NUC) of [...] Read more.
This paper deals with the experimental procedures of lock-in thermography (LIT) for polyetheretherketone (PEEK), which is used as a lightweight material in various industrial fields. The LIT has limitations due to non-uniform heating by external optic sources and the non-uniformity correction (NUC) of the infrared (IR) camera. It is generating unintended contrast in the IR image in thermal imaging inspection, reducing detection performance. In this study, the non-uniformity effect was primarily improved by producing an equivalent array halogen lamp. Then, we presented absolute temperature compensation (ATC) and temperature ratio compensation (TRC) techniques, which can equalize the thermal contrast of the test samples by compensating for them using reference samples. By applying compensation techniques to data acquired from the test samples, defect detectability improvement was quantitatively presented. In addition, binarization was performed and detection performance was verified by evaluating the roundness of the detected defects. As a result, the contrast of the IR image was greatly improved by applying the compensation technique. In particular, raw data were enhanced by up to 54% using the ATC compensation technique. Additionally, due to improved contrast, the signal-to-noise ratio (SNR) was improved by 7.93%, and the R2 value of the linear trend equation exceeded 0.99, demonstrating improved proportionality between the defect condition and SNR. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

13 pages, 1622 KiB  
Article
Comparison of Mutations Induced by Different Doses of Fast-Neutron Irradiation in the M1 Generation of Sorghum (Sorghum bicolor)
by Na Yuan, Shuaiqiang Liang, Ling Zhou, Xingxing Yuan, Chunhong Li, Xin Chen and Han Zhao
Genes 2024, 15(8), 976; https://doi.org/10.3390/genes15080976 - 24 Jul 2024
Cited by 3 | Viewed by 1572
Abstract
Sorghum is an important C4 crop with various food and nonfood uses. Although improvements through hybridization and selection have been exploited, the introduction of genetic variation and the development of new genotypes in sorghum are still limited. Fast-neutron (FN) mutagenesis is a [...] Read more.
Sorghum is an important C4 crop with various food and nonfood uses. Although improvements through hybridization and selection have been exploited, the introduction of genetic variation and the development of new genotypes in sorghum are still limited. Fast-neutron (FN) mutagenesis is a very effective method for gene functional studies and to create genetic variability. However, the full spectrum of FN-induced mutations in sorghum is poorly understood. To address this, we generated an FN-induced mutant population from the inbred line ‘BTx623’ and sequenced 40 M1 seedlings to evaluate the mutagenic effects of FNs on sorghum. The results show that each line had an average of 43.7 single-base substitutions (SBSs), 3.7 InDels and 35.15 structural variations (SVs). SBSs accounted for approximately 90.0% of the total number of small mutations. Among the eight treatment groups, FN irradiation at a dose of 19 Gy generated the highest number of mutations. The ratio of transition/transversion ranged from 1.77 to 2.21, and the G/C to A/T transition was the most common substitution in all mutant lines. The distributions of the identified SBSs and InDels were similar and uneven across the genome. An average of 3.63 genes were mutated in each mutant line, indicating that FN irradiation resulted in a suitable density of mutated genes, which can be advantageous for improving elite material for one specific or a few traits. These results provide a basis for the selection of the suitable dose of mutagen and new genetic resources for sorghum breeding. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

13 pages, 4230 KiB  
Article
A Compensation Method for Full-Field-of-View Energy Nonuniformity in Dark-and-Weak-Target Simulators
by Fenghuan Quan, Shi Liu, Gaofei Sun, Jian Zhang, Yu Zhang, Bin Zhao and Jierui Zhang
Sensors 2024, 24(13), 4147; https://doi.org/10.3390/s24134147 - 26 Jun 2024
Cited by 1 | Viewed by 1361
Abstract
Dark-and-weak-target simulators are used as ground-based calibration devices to test and calibrate the performance metrics of star sensors. However, these simulators are affected by full-field-of-view energy nonuniformity. This problem impacts the quality of output images and the calibration accuracy of sensors and inhibits [...] Read more.
Dark-and-weak-target simulators are used as ground-based calibration devices to test and calibrate the performance metrics of star sensors. However, these simulators are affected by full-field-of-view energy nonuniformity. This problem impacts the quality of output images and the calibration accuracy of sensors and inhibits further improvements in navigational accuracy. In the study reported in this paper, we sought to analyze the factors which affect full-field-of-view energy uniformity in dark-and-weak-target simulators. These include uneven irradiation in backlight sources, the leakage of light from LCD display panels, and the vignetting of collimating optical systems. We then established an energy transfer model of a dark-and-weak-target simulator based on the propagation of a point light source and proposed a self-adaptive compensation algorithm based on pixel-by-pixel fitting. This algorithm used a sensor to capture the output image of a dark-and-weak-target simulator and iteratively calculated the response error matrix of the simulator. Finally, we validated the feasibility and effectiveness of the compensation algorithm by acquiring images using a self-built test system. The results showed that, after compensating an output image of the dark-and-weak-target simulator, the grayscale standard display function (SDF) of the acquired sensor image was reduced by about 50% overall, so the acquisition image was more accurately compensated, and the desired level of grayscale distribution was obtained. This study provides a reference for improving the quality of output images from dark-and-weak-target simulators, so that the working environments of star sensors may be more realistically simulated, and their detection performance improved. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

25 pages, 36685 KiB  
Article
Laser Cleaning Combined with Cladding Improves Cladding Quality for Repairing Steel Plates in Pressure Vessels
by Kaijun Fan, Yongjun Shi, Youfan Xu, Shuyao Wang, Qin Wang, Ying Li, Cheng Zhang and Zhaojian Li
Coatings 2024, 14(4), 508; https://doi.org/10.3390/coatings14040508 - 19 Apr 2024
Cited by 1 | Viewed by 2056
Abstract
Good-quality metallurgical bonding and a high degree of automation are critical for using laser cladding technology in on-site repairs. At present, most of the on-site repairs are carried out manually, which can bring about problems such as complicated operation procedures, uneven repair quality, [...] Read more.
Good-quality metallurgical bonding and a high degree of automation are critical for using laser cladding technology in on-site repairs. At present, most of the on-site repairs are carried out manually, which can bring about problems such as complicated operation procedures, uneven repair quality, and personnel injuries. In this study, a surface repair method that combined laser cleaning with cladding (LCC) was proposed. First, the plates were scanned with a high-frequency pulsed laser to remove the surface impurity layer. The surface was then coated with Inconel 625 powder while irradiated with a continuous laser for the cladding. Both the macro-morphology and microstructure of the surface were examined, and mechanical property tests were also conducted. The metallographic and scanning electron microscope images indicated that, compared to the manual polishing and laser cladding process, the LCC specimens had a better metallurgical bonding quality and a thicker clad layer. The average hardness of the clad layer on the LCC specimens was high at 256.47 HV, 36.2% higher than that of the Q345R substrate. Compared to the Q345R specimens of the same size, the LCC specimens showed an increased impact on the energy absorption, yield strength, and tensile strength. This study provides a new approach for improving the automation and cladding quality of on-site repairs. Full article
(This article belongs to the Special Issue Laser Surface Engineering: Technologies and Applications)
Show Figures

Figure 1

11 pages, 4910 KiB  
Article
Femtosecond Laser-Induced Phase Transformation on Single-Crystal 6H-SiC
by Hongsheng Quan, Ruishi Wang, Weifeng Ma, Zhonghuai Wu, Lirong Qiu, Kemi Xu and Weiqian Zhao
Micromachines 2024, 15(2), 242; https://doi.org/10.3390/mi15020242 - 6 Feb 2024
Cited by 6 | Viewed by 2489
Abstract
Silicon carbide (SiC) is widely used in many research fields because of its excellent properties. The femtosecond laser has been proven to be an effective method for achieving high-quality and high-efficiency SiC micromachining. In this article, the ablation mechanism irradiated on different surfaces [...] Read more.
Silicon carbide (SiC) is widely used in many research fields because of its excellent properties. The femtosecond laser has been proven to be an effective method for achieving high-quality and high-efficiency SiC micromachining. In this article, the ablation mechanism irradiated on different surfaces of 6H-SiC by a single pulse under different energies was investigated. The changes in material elements and the geometric spatial distribution of the ablation pit were analyzed using micro-Raman spectroscopy, Energy Dispersive Spectrum (EDS), and an optical microscope, respectively. Moreover, the thresholds for structural transformation and modification zones of 6H-SiC on different surfaces were calculated based on the diameter of the ablation pits created by a femtosecond laser at different single-pulse energies. Experimental results show that the transformation thresholds of the Si surface and the C surface are 5.60 J/cm2 and 6.40 J/cm2, corresponding to the modification thresholds of 2.26 J/cm2 and 2.42 J/cm2, respectively. The Raman and EDS results reveal that there are no phase transformations or material changes on different surfaces of 6H-SiC at low energy, however, decomposition and oxidation occur and then accumulate into dense new phase material under high-energy laser irradiation. We found that the distribution of structural phase transformation is uneven from the center of the spot to the edge. The content of this research reveals the internal evolution mechanism of high-quality laser processing of hard material 6H-SiC. We expect that this research will contribute to the further development of SiC-based MEMS devices. Full article
Show Figures

Figure 1

11 pages, 3180 KiB  
Article
Alteration in Melanin Content in Retinal Pigment Epithelial Cells upon Hydroquinone Exposure
by Takeyuki Nishiyama, Hiroki Tsujinaka, Tetsuo Ueda and Nahoko Ogata
Int. J. Mol. Sci. 2023, 24(23), 16801; https://doi.org/10.3390/ijms242316801 - 27 Nov 2023
Cited by 5 | Viewed by 1899
Abstract
Abnormal pigmentation or depigmentation of the retinal pigment epithelium (RPE) is a precursor to neovascular age-related macular degeneration (nAMD). In this study, we evaluated the effects of hydroquinone (HQ), the most potent reductant in cigarette smoke, on the melanin production in RPE cells. [...] Read more.
Abnormal pigmentation or depigmentation of the retinal pigment epithelium (RPE) is a precursor to neovascular age-related macular degeneration (nAMD). In this study, we evaluated the effects of hydroquinone (HQ), the most potent reductant in cigarette smoke, on the melanin production in RPE cells. Induced pluripotent stem cell (iPS)-derived RPE and adult retinal pigment epithelial (ARPE-19) cells were cultured with HQ. Real-time reverse transcription polymerase chain reaction revealed that the expression of melanin-related genes decreased due to the addition of HQ for 1 day. Enzyme-linked immunosorbent immunoassay showed that the concentration of melanin significantly decreased due to the addition of HQ for 24 h. A suspension of RPE cells with HQ for 24 h was prepared, and the absorbance was measured. The absorbance decreased particularly under blue light, suggesting that blue light may reach the choroid and cause choroidal inflammation. Additionally, melanin levels significantly decreased due to the addition of HQ for 1 week. After blue light irradiation on the RPE with HQ for 1 week, the vascular endothelial growth factor in the medium was significantly higher in the HQ group than in the control group. HQ-induced changes in melanin production may be responsible for the uneven pigmentation of the RPE, and these changes may cause nAMD. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

27 pages, 8031 KiB  
Article
CFD-Assisted Process Optimization of an Integrated Photocatalytic Membrane System for Water Treatment
by Vimbainashe Mercy Chakachaka, Charmaine Sesethu Tshangana, Bhekie Brilliance Mamba and Adolph Anga Muleja
Membranes 2023, 13(10), 827; https://doi.org/10.3390/membranes13100827 - 9 Oct 2023
Cited by 6 | Viewed by 2538
Abstract
An integrated photocatalytic membrane system (IPMS) was developed for potential use in the remediation of naproxen using real water samples from a drinking water treatment plant. Key parameters such as time, pH, water matrix, mixing speeds, flow rate, and light intensity undeniably affected [...] Read more.
An integrated photocatalytic membrane system (IPMS) was developed for potential use in the remediation of naproxen using real water samples from a drinking water treatment plant. Key parameters such as time, pH, water matrix, mixing speeds, flow rate, and light intensity undeniably affected photocatalytic and membrane separation processes. The system optimization was based on improving irradiation to generate a more reactive species and mass transfer to increase the reaction rate. Upon optimization, IPMS achieved 99% naproxen removal efficiency. Computational fluid dynamics (CFD) simulated the flow patterns and radiation distribution inside the photocatalytic membrane reactor to improve irradiation and mass transfer during operation. The simulated flow field revealed the presence of dead zones with different velocities in the photocatalytic membrane reactor; this limited the mass transfer of reactive species in the reactor, resulting in uneven distribution of reactive radicals. The dead zones were mitigated by increasing the mixing speed, and as a result, convective mass flow improved process performance. The governing parameters (flow patterns and radiation distribution) of the simulated and experimental data were in agreement. The absorption of irradiation by the active site of the membranes improved with light intensity; at higher light intensities, the light irradiated deeper into the membrane. As such, the CoFe2O4 nanoparticles incorporated inside the membrane pores became highly activated, thus enhancing degradation. The obtained space–time yield (STY) (1.23 × 1011 mol/cm2.s) and photocatalytic space–time yield (PSTY) (4.39 × 1011 mol/W.s) showed that the developed IPMS was efficient regarding energy intensiveness and throughput for treatment of pollutants in water. Full article
(This article belongs to the Special Issue Advance in Photocatalytic Membrane Reactor (2nd Edition))
Show Figures

Figure 1

15 pages, 6812 KiB  
Article
Improving Photovoltaic MPPT Performance through PSO Dynamic Swarm Size Reduction
by Adel O. Baatiah, Ali M. Eltamaly and Majed A. Alotaibi
Energies 2023, 16(18), 6433; https://doi.org/10.3390/en16186433 - 5 Sep 2023
Cited by 22 | Viewed by 3184
Abstract
Efficient energy extraction in photovoltaic (PV) systems relies on the effective implementation of Maximum Power Point Tracking (MPPT) techniques. Conventional MPPT techniques often suffer from slow convergence speeds and suboptimal tracking performance, particularly under dynamic variations of environmental conditions. Smart optimization algorithms (SOA) [...] Read more.
Efficient energy extraction in photovoltaic (PV) systems relies on the effective implementation of Maximum Power Point Tracking (MPPT) techniques. Conventional MPPT techniques often suffer from slow convergence speeds and suboptimal tracking performance, particularly under dynamic variations of environmental conditions. Smart optimization algorithms (SOA) using metaheuristic optimization algorithms can avoid these limitations inherent in conventional MPPT methods. The problem of slow convergence of the SOA is avoided in this paper using a novel strategy called Swarm Size Reduction (SSR) utilized with a Particle Swarm Optimization (PSO) algorithm, specifically designed to achieve short convergence time (CT) while maintaining exceptional tracking accuracy. The novelty of the proposed MPPT method introduced in this paper is the dynamic reduction of the swarm size of the PSO for improved performance of the MPPT of the PV systems. This adaptive reduction approach allows the algorithm to efficiently explore the solution space of PV systems and rapidly exploit it to identify the global maximum power point (GMPP) even under fast fluctuations of uneven solar irradiance and temperature. This pioneering ultra-fast MPPT method represents a significant advancement in PV system efficiency and promotes the wider adoption of solar energy as a reliable and sustainable power source. The results obtained from this proposed strategy are compared with several optimization algorithms to validate its superiority. This study aimed to use SSR with different swarm sizes and then find the optimum swarm size for the MPPT system to find the lowest CT. The output accentuates the exceptional performance of this innovative method, achieving a time reduction of as much as 75% when compared with the conventional PSO technique, with the optimal swarm size determined to be six. Full article
(This article belongs to the Special Issue Renewable Energy System Technologies)
Show Figures

Figure 1

23 pages, 7197 KiB  
Article
Revolutionizing Photovoltaic Systems: An Innovative Approach to Maximum Power Point Tracking Using Enhanced Dandelion Optimizer in Partial Shading Conditions
by Elmamoune Halassa, Lakhdar Mazouz, Abdellatif Seghiour, Aissa Chouder and Santiago Silvestre
Energies 2023, 16(9), 3617; https://doi.org/10.3390/en16093617 - 22 Apr 2023
Cited by 13 | Viewed by 1967
Abstract
Partial shading (PS) is a prevalent phenomenon that often affects photovoltaic (PV) installations, leads to the appearance of numerous peaks in the power-voltage characteristics of PV cells, caused by the uneven distribution of solar irradiance on the PV module surface, known as global [...] Read more.
Partial shading (PS) is a prevalent phenomenon that often affects photovoltaic (PV) installations, leads to the appearance of numerous peaks in the power-voltage characteristics of PV cells, caused by the uneven distribution of solar irradiance on the PV module surface, known as global and local maximum power point (GMPP and LMPP). In this paper, a new technique for achieving GMPP based on the dandelion optimizer (DO) algorithm is proposed, inspired by the movement of dandelion seeds in the wind. The proposed technique aimed to enhance the efficiency of power generation in PV systems, particularly under PS conditions. However, the DO-based MPPT is compared with other advanced maximum power point tracker (MPPT) algorithms, such as Particle Swarm Optimization (PSO), Grey Wolf Optimization (GWO), Artificial Bee Colony (ABC), Cuckoo Search Algorithm (CSA), and Bat Algorithm (BA). Simulation results establish the superiority and effectiveness of the used MPPT in terms of tracking efficiency, speed, robustness, and simplicity of implementation. Additionally, these results reveal that the DO algorithm exhibits higher performance, with a root mean square error (RMSE) of 1.09 watts, a convergence time of 2.3 milliseconds, and mean absolute error (MAE) of 0.13 watts. Full article
Show Figures

Figure 1

16 pages, 5200 KiB  
Article
Degradation of Tetracycline with Photocatalysis by CeO2-Loaded Soybean Powder Carbon
by Xinze He, Wenzhen Qin and Yu Xie
Nanomaterials 2023, 13(6), 1076; https://doi.org/10.3390/nano13061076 - 16 Mar 2023
Cited by 6 | Viewed by 2341
Abstract
In the process of using photocatalysts to treat tetracycline (TC) wastewater, the degradation efficiency of soybean powder carbon material (SPC) can be improved by loading it with cerium oxide (CeO2). In this study, firstly, SPC was modified by phytic acid. Then, [...] Read more.
In the process of using photocatalysts to treat tetracycline (TC) wastewater, the degradation efficiency of soybean powder carbon material (SPC) can be improved by loading it with cerium oxide (CeO2). In this study, firstly, SPC was modified by phytic acid. Then, the CeO2 was deposited on modified SPC using the self-assembly method. Catalyzed cerium (III) nitrate hexahydrate (CeH3NO4) was treated with alkali and calcined at 600 °C under nitrogen. XRD, XPS, SEM, EDS, UV-VIS /DRS, FTIR, PL and N2 adsorption–desorption methods were used to characterize the crystal structure, chemical composition, morphology, surface physical and chemical properties. The effects of catalyst dosage, monomer contrast, pH value and co-existing anions on TC oxidation degradation were investigated, and the reaction mechanism of a 600 Ce-SPC photocatalytic reaction system was discussed. The results show that the 600 Ce-SPC composite presents uneven gully morphology, which is similar to the natural “briquettes”. The degradation efficiency of 600 Ce-SPC reached about 99% at 60 min under light irradiation when the optimal catalyst dosage and pH were 20 mg and 7. Meanwhile, the reusability of the 600 Ce-SPC samples showed good stability and catalytic activity after four cycles. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

17 pages, 7958 KiB  
Review
Flexible Cold Atmospheric Plasma Jet Sources
by Carles Corbella, Sabine Portal and Michael Keidar
Plasma 2023, 6(1), 72-88; https://doi.org/10.3390/plasma6010007 - 16 Feb 2023
Cited by 10 | Viewed by 8377
Abstract
The properties of non-thermal atmospheric pressure plasma jets (APPJs) make them suitable for industrial and biomedical applications. They show many advantages when it comes to local and precise surface treatments, and there is interest in upgrading their performance for irradiation on large areas [...] Read more.
The properties of non-thermal atmospheric pressure plasma jets (APPJs) make them suitable for industrial and biomedical applications. They show many advantages when it comes to local and precise surface treatments, and there is interest in upgrading their performance for irradiation on large areas and uneven surfaces. The generation of charged species (electrons and ions) and reactive species (radicals), together with emitted UV photons, enables a rich plasma chemistry that should be uniform on arbitrary sample profiles. Lateral gradients in plasma parameters from multi-jets should, therefore, be minimized and addressed by means of plasma monitoring techniques, such as electrical diagnostics and optical emission spectroscopy analysis (OES). This article briefly reviews the main strategies adopted to build morphing APPJ arrays and ultra-flexible and long tubes to project cold plasma jets. Basic aspects, such as inter-jet interactions and nozzle shape, have also been discussed, as well as potential applications in the fields of polymer processing and plasma medicine. Full article
(This article belongs to the Special Issue Latest Review Papers in Plasma Science 2023)
Show Figures

Figure 1

11 pages, 3173 KiB  
Article
Photoalignment and Photofixation of Chromonic Mesophase in Ionic Linear Polysiloxanes Using a Dual Irradiation System
by Mitsuo Hara, Ayaka Masuda, Shusaku Nagano and Takahiro Seki
Crystals 2023, 13(2), 326; https://doi.org/10.3390/cryst13020326 - 15 Feb 2023
Cited by 3 | Viewed by 3269
Abstract
Photoalignment technology enables macroscopic alignment of liquid crystalline molecules and their aggregates in a non-contact process by irradiating photo-responsive liquid crystalline compounds with linearly polarized light. Because photoalignment techniques prevent dust generation and uneven stretching, and accomplish fine and complex patterning, they are [...] Read more.
Photoalignment technology enables macroscopic alignment of liquid crystalline molecules and their aggregates in a non-contact process by irradiating photo-responsive liquid crystalline compounds with linearly polarized light. Because photoalignment techniques prevent dust generation and uneven stretching, and accomplish fine and complex patterning, they are involved in the practical process of fabricating display panels, and continue to be applied in the research and creation of various anisotropic materials. Brilliant yellow (BY), a chromonic liquid crystal, has attracted considerable attention as the photoalignment sublayer in recent years, because of its ability to induce a high dichroic nature among many photo-responsive liquid crystalline materials. However, its dichroism is not maintained after prolonged exposure to a humid environment because of its intrinsic strong hygroscopicity of ionic BY molecules. In this study, to overcome this drawback, the photoalignment and successive photo-fixation of the BY columnar phase is proposed using UV-curable ionic polysiloxane as a matrix. Visible light was used for the photoalignment of the BY columnar phase, and UV light for photo-fixation. Consequently, the columnar chromonic phase is found to retain its orientation even after 4 h of exposure to a highly humid environment. Full article
(This article belongs to the Special Issue State-of-the-Art Liquid Crystals Research in Japan)
Show Figures

Figure 1

Back to TopTop