Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (319)

Search Parameters:
Keywords = ultrasound irradiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 1670 KB  
Review
Synergistic Interactions Between Bacteria-Derived Metabolites and Emerging Technologies for Meat Preservation
by Carlos Alberto Guerra, André Fioravante Guerra and Marcelo Cristianini
Fermentation 2026, 12(1), 43; https://doi.org/10.3390/fermentation12010043 - 10 Jan 2026
Viewed by 440
Abstract
Considering the challenges associated with implementing emerging technologies and bacterial-derived antimicrobial metabolites at an industrial scale in the meat industry, this comprehensive review investigates the interactions between lactic acid bacteria-producing antimicrobial metabolites and emerging food preservation technologies applied to meat systems. By integrating [...] Read more.
Considering the challenges associated with implementing emerging technologies and bacterial-derived antimicrobial metabolites at an industrial scale in the meat industry, this comprehensive review investigates the interactions between lactic acid bacteria-producing antimicrobial metabolites and emerging food preservation technologies applied to meat systems. By integrating evidence from microbiology, food engineering, and molecular physiology, the review characterizes how metabolites-derived compounds exert inhibitory activity through pH modulation, membrane permeabilization, disruption of proton motive force, and interference with cell wall biosynthesis. These biochemical actions are evaluated in parallel with the mechanistic effects of high-pressure processing, pulsed electric fields, cold plasma, irradiation, pulsed light, ultrasound, ohmic heating and nanotechnology. Across the literature, consistent patterns of synergy emerge: many emerging technologies induce structural and metabolic vulnerabilities in microbial cells, thereby amplifying the efficacy of antimicrobial metabolites while enabling reductions in process intensity. The review consolidates these findings to elucidate multi-hurdle strategies capable of improving microbial safety, extending shelf life, and preserving the physicochemical integrity of meat products. Remaining challenges include optimizing combinational parameters, ensuring metabolite stability within complex matrices, and aligning integrated preservation strategies with regulatory and industrial constraints. Full article
(This article belongs to the Special Issue Microbial Fermentation: A Sustainable Approach to Food Production)
Show Figures

Figure 1

11 pages, 759 KB  
Perspective
Caveolin-1 in Skin Protection Against Radiation-Induced Skin Injuries: Pathophysiological Mechanisms and New Avenues for Prevention
by Ilja L. Kruglikov
Int. J. Mol. Sci. 2026, 27(1), 415; https://doi.org/10.3390/ijms27010415 - 30 Dec 2025
Viewed by 344
Abstract
The identification of caveolin-1 (CAV1) as a universal pathophysiological factor and target for treating various cutaneous conditions and the recognition of its role as a universal factor and target in the protection of cells from genotoxic stress have opened new avenues for protecting [...] Read more.
The identification of caveolin-1 (CAV1) as a universal pathophysiological factor and target for treating various cutaneous conditions and the recognition of its role as a universal factor and target in the protection of cells from genotoxic stress have opened new avenues for protecting skin against radiation-induced skin injuries (RISIs). A significant and rapid increase in CAV1 content in irradiated cells, reaching a maximum at 30–60 min after irradiation, coupled with internalization of epidermal growth factor receptors involved in the activation of homologous recombination and non-homologous end-joining repairing of double-strand breaks in affected cells, can protect the cells from irradiation to some degree. However, a higher level of protection can be achieved when the CAV1 content in the skin is increased before irradiation. Such an enhancement in the expression and translocation of CAV1 can be induced by the local application of thermo-mechanical stress with parameters inducing reinforcement of the actin cytoskeleton in treated cells. The application of very-high-frequency ultrasound waves with frequencies above 10 MHz or combined multi-frequency ultrasound waves can provide new means of protecting against RISIs during radiation therapy without reducing the radiosensitivity of cancer cells. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 4318 KB  
Article
Energy-Optimized Degradation of 2,4,6-Trinitrotoluene in Water via Sono-Photo-Fenton-like Process and nZVI
by Hoang Van Nguyen, Tung Son Pham, Huong Van Nguyen, Woojin Chung, Duong Duc La and Dinh Duc Nguyen
Water 2026, 18(1), 37; https://doi.org/10.3390/w18010037 - 22 Dec 2025
Viewed by 371
Abstract
This work optimizes the energetic performance of 2,4,6-trinitrotoluene (TNT) abatement in water using a sono-photo-Fenton-like (SPF) process coupled with nano zero-valent iron (nZVI). A response–surface methodology (RSM) with a five-level central composite design (CCD) was applied to concurrently minimize specific energy consumption (SEC) [...] Read more.
This work optimizes the energetic performance of 2,4,6-trinitrotoluene (TNT) abatement in water using a sono-photo-Fenton-like (SPF) process coupled with nano zero-valent iron (nZVI). A response–surface methodology (RSM) with a five-level central composite design (CCD) was applied to concurrently minimize specific energy consumption (SEC) from ultrasound (US) and UV irradiation while maximizing TNT removal. The optimal conditions were US power 80 W for 2 min and UV power 10 W for 6 min, yielding 73.95% TNT removal with SEC = 101.19 kWh kg−1 TNT removed. The analysis of variance (ANOVA) test revealed that US power had the greatest effect on removal efficiency, whereas UV and US exposure times predominantly influenced SEC. Relative to the other Fenton-like configurations examined, the optimized SPF achieved superior removal at lower SEC and enabled enhanced iron recovery compared with photo-Fenton process using Fe2+. When applied to actual “yellow” wastewater, the optimized SPF again outperformed the photo-Fenton process using Fe2+, reducing SEC from 380.77 to 252.60 kWh kg−1 and increasing treatment efficiency. The high-power/short-duration US paired with a low-power/short-duration UV regime provides a favorable efficacy–energy trade-off and supports pilot-scale deployment. Full article
(This article belongs to the Special Issue Novel Advanced Oxidation Technology for Water Treatment)
Show Figures

Figure 1

30 pages, 17342 KB  
Article
Design and Synthesis of Dy2TmSbO7/BiHoO3 Heterojunction: The Mechanism and Application for Photocatalytic Degradation of Sulphamethoxypyridazine
by Jingfei Luan, Minghe Ma, Liang Hao, Hengchang Zeng and Anan Liu
Molecules 2026, 31(1), 24; https://doi.org/10.3390/molecules31010024 - 22 Dec 2025
Viewed by 274
Abstract
A novel Z-scheme Dy2TmSbO7/BiHoO3 heterostructure photocatalyst was synthesized with the ultrasound-assisted solvothermal method. The Dy2TmSbO7/BiHoO3 heterojunction photocatalyst (DBHP) reflected wonderful separation efficiency of photogenerated electrons and photogenerated holes owing to the efficient direct [...] Read more.
A novel Z-scheme Dy2TmSbO7/BiHoO3 heterostructure photocatalyst was synthesized with the ultrasound-assisted solvothermal method. The Dy2TmSbO7/BiHoO3 heterojunction photocatalyst (DBHP) reflected wonderful separation efficiency of photogenerated electrons and photogenerated holes owing to the efficient direct Z-scheme heterojunction structure characteristic. The lattice parameter and the bandgap energy of the Dy2TmSbO7 were 10.52419 Å and 2.58 eV, simultaneously, the lattice parameter and the bandgap energy of the BiHoO3 were 5.42365 Å and 2.25 eV, additionally, the bandgap energy of the DBHP was 2.32 eV. Above results indicated that DBHP, Dy2TmSbO7 or BiHoO3 possessed an excellent ability for absorbing visible light energy, therefore, DBHP, Dy2TmSbO7 or BiHoO3 owned superior photocatalytic activity for degrading the sulphamethoxypyridazine (SMP) under visible light irradiation. The removal rate of the SMP after visible light irradiation of 135 min with the DBHP was 99.47% for degrading the SMP during the photocatalytic degradation (PADA) process, correspondingly, the removal rate of the total organic carbon (TOC) concentration after visible light irradiation of 135 min with the DBHP was 98.02% for degrading the SMP during the PADA process. The removal rate of the SMP after visible light irradiation of 135 min with the DBHP was 1.15 times, 1.29 times or 2.60 times that with Dy2TmSbO7, BiHoO3 or nitrogen-doped TiO2 (N-T). Therefore, the DBHP displayed higher photocatalytic activity for degrading the SMP under visible light irradiation compared with Dy2TmSbO7, BiHoO3 or N-T. Specifically, the mineralization rate for removing the TOC concentration during the PADA process of the SMP with the DBHP was 1.18 times, 1.32 times or 2.79 times that with Dy2TmSbO7, BiHoO3 or N-T. In addition, the stability and reusability of the DBHP were systematically evaluated, confirming that the DBHP owned potential applicability for degrading the antibiotic pollutant, which derived from the practical industrial wastewater. Trapping radicals experiments and the electron paramagnetic resonance measurement experiments were conducted for identifying the reactive radicals, such as the hydroxyl radicals (•OH), the superoxide anions (•O2) and the photogenerated holes (h+), which were generated with the DBHP for degrading the SMP during the PADA process under visible light irradiation, as a result, the •O2 possessed the maximal oxidative capability compared with the •OH or the h+. Above results indicated the degradation mechanism and the degradation pathways which were related to the SMP. In conclusion, this study makes a significant contribution for the development of the efficient Z-scheme heterostructure photocatalysts and provides a key opinion to the development of the sustainable remediation method with the view of mitigating the antibiotic pollution. Full article
(This article belongs to the Special Issue Progress in Nanomaterials for Pollutant Removal)
Show Figures

Graphical abstract

22 pages, 4064 KB  
Article
Effect of Dispersed Particle Concentration on Photoacoustic Flowmetry Using Low-Frequency Transducers
by Haruka Tsuboi, Taichi Kaizuka and Katsuaki Shirai
Metrology 2025, 5(4), 79; https://doi.org/10.3390/metrology5040079 - 18 Dec 2025
Viewed by 279
Abstract
Photoacoustic (PA) velocimetry offers a promising solution to the limitations of conventional techniques for measuring blood flow velocity. Given its moderate penetration depth and high spatial resolution, PA imaging is considered suitable for measuring low-velocity blood flow in capillaries located at moderate depths. [...] Read more.
Photoacoustic (PA) velocimetry offers a promising solution to the limitations of conventional techniques for measuring blood flow velocity. Given its moderate penetration depth and high spatial resolution, PA imaging is considered suitable for measuring low-velocity blood flow in capillaries located at moderate depths. High-resolution measurements based on PA signals from individual blood cells can be achieved using a high-frequency transducer. However, high-frequency signals attenuate rapidly within biological tissue, restricting the measurable depth. Consequently, low-frequency transducers are required for deeper measurements. To date, PA flow velocimetry employing low-frequency transducers remains insufficiently explored. In this study, we investigated the effect of the concentration of particles that mimic blood cells within vessels under low-concentration conditions. The performance of flow velocity measurement was evaluated using an ultrasonic transducer (UST) with a center frequency of 10 MHz. The volume fraction of particles in the solution was systematically varied, and the spatially averaged flow velocity was assessed using two different distinct analysis methods. One method employed a time-shift approach based on cross-correlation analysis. Flow velocity was estimated from PA signal redpairs generated by particles dispersed in the fluid, using consecutive pulsed laser irradiations at fixed time intervals. The other method employed a pulsed Doppler method in the frequency domain, widely applied in ultrasound Doppler measurements. In this method, flow velocity redwas estimated from the Doppler-shifted frequency between the transmitted and received signals of the UST. For the initial analysis, numerical simulations were performed, followed by experiments based on displacement measurements equivalent to velocity measurements. The target was a capillary tube filled with an aqueous solution containing particles at different concentration levels. The time–domain method tended to underestimate flow velocity as particle concentration increased, whereas the pulsed Doppler method yielded estimates consistent with theoretical values, demonstrating its potential for measurements at high concentrations. Full article
(This article belongs to the Special Issue Advancements in Optical Measurement Devices and Technologies)
Show Figures

Figure 1

34 pages, 1255 KB  
Review
Harnessing the Synergy Between Edible Coatings and Non-Thermal Technologies for Improved Food Quality and Sustainable Preservation
by Xiaoyu Tian, Hui Dong, Qin Fang, Xiaorui Zhang, Chunxia Dai and Joshua Harrington Aheto
Horticulturae 2025, 11(12), 1466; https://doi.org/10.3390/horticulturae11121466 - 4 Dec 2025
Viewed by 598
Abstract
This review explores the synergistic integration of edible coatings and non-thermal preservation technologies as a multifaceted approach to maintaining food quality, safety, and sustainability. Edible coatings—composed of polysaccharides, proteins, lipids, or composite biopolymers—serve as biodegradable barriers that control moisture, gas, and solute transfer [...] Read more.
This review explores the synergistic integration of edible coatings and non-thermal preservation technologies as a multifaceted approach to maintaining food quality, safety, and sustainability. Edible coatings—composed of polysaccharides, proteins, lipids, or composite biopolymers—serve as biodegradable barriers that control moisture, gas, and solute transfer while acting as carriers for bioactive compounds such as antimicrobials and antioxidants. Meanwhile, non-thermal techniques, including high-pressure processing, cold plasma, ultrasound, photodynamic inactivation, modified atmosphere packaging, and irradiation, offer microbial inactivation and enzymatic control without compromising nutritional and sensory attributes. When combined, these technologies exhibit complementary effects: coatings enhance the stability of bioactives and protect surface quality, while non-thermal treatments boost antimicrobial efficacy and promote active compound penetration. The review highlights their comparative advantages over individual treatments—improved microbial inhibition, nutrient retention, and sensory quality. It further discusses the possible mechanisms through which edible coatings and selected hurdles induced microbial decontamination. Finally, the study identified major drawbacks and provided strategic recommendations to overcome these limitations, including optimizing coating formulations for specific food matrices, tailoring process parameters to minimize adverse physicochemical changes, and conducting pilot-scale validations to bridge the gap between laboratory success and industrial application. Full article
Show Figures

Figure 1

8 pages, 2412 KB  
Proceeding Paper
Facile Wet-Chemical Synthesis of Graphene Oxide-Hydroxyapatite Composite for Potent, Accelerated and Synergistic Sonophotocatalytic Degradation of Diclofenac Under Light and Ultrasound Irradiation
by Joe Mari Biag, Justin Carl Briones, Crystal Cayena Dancel, Florely De Villa, Christian Ibarra Durante, Rugi Vicente Rubi and Rich Jhon Paul Latiza
Eng. Proc. 2025, 117(1), 8; https://doi.org/10.3390/engproc2025117008 - 3 Dec 2025
Viewed by 265
Abstract
The widespread disposal of pharmaceutical waste, particularly diclofenac (DCF), poses a significant threat to aquatic ecosystems. The current degradation methods, including biological treatments and standalone advanced oxidation processes, often prove insufficient, leaving residual DCF concentrations. This study proposes a novel solution using a [...] Read more.
The widespread disposal of pharmaceutical waste, particularly diclofenac (DCF), poses a significant threat to aquatic ecosystems. The current degradation methods, including biological treatments and standalone advanced oxidation processes, often prove insufficient, leaving residual DCF concentrations. This study proposes a novel solution using a rapidly synthesized graphene oxide/hydroxyapatite (GO/HAp) nanocomposite via wet-chemical precipitation to enhance DCF degradation through synergistic sonophotocatalysis. The synthesized nanocomposite’s structure was confirmed using Fourier transform infrared spectroscopy FTIR, x-ray diffraction XRD, and scanning electron microscope SEM analyses, revealing the successful formation of a hexagonal HAp phase on GO sheets. Optimization of the sonophotocatalytic parameters revealed that pH and loading significantly influenced degradation, while time had a less pronounced effect. The optimal conditions (a pH pf 4, 45 mg GO/HAp, 30 min) achieved a remarkable 93.86% DCF degradation, significantly outperforming standalone photocatalysis (72.76%) and sonolysis (63.76%). This enhanced performance is attributed to the synergistic effect of sonophotocatalysis, which increases the active surface area and radical generation, coupled with the high surface area and adsorption capacity of the GO/HAp nanocomposite. This research demonstrates that rapid wet-chemical synthesis of the GO/HAp nanocomposite, coupled with an optimized sonophotocatalytic process, offers a potent, accelerated, and efficient method for degrading DCF, paving the way for improved pharmaceutical wastewater treatment. Ultimately, this research provides a foundation for developing effective water treatment solutions to combat pharmaceutical contaminants. Full article
Show Figures

Figure 1

23 pages, 7790 KB  
Article
Ultrasound-Induced Embedded-Silica Migration to Biochar Surface: Applications in Agriculture and Environmental Sustainability
by Muhammad Abdullah, Shanza Baig, Maria Paula Hernández Martinez and Baharak Sajjadi
Sustainability 2025, 17(23), 10813; https://doi.org/10.3390/su172310813 - 2 Dec 2025
Viewed by 369
Abstract
Silicon (Si)–containing compounds, such as silica (SiO2), play a crucial role as fillers, binding phases, and linking agents in sustainable materials. Coating biochar with SiO2 can enhance its performance as a carbon-negative filler in composites such as bioplastics, rubber, asphalt, [...] Read more.
Silicon (Si)–containing compounds, such as silica (SiO2), play a crucial role as fillers, binding phases, and linking agents in sustainable materials. Coating biochar with SiO2 can enhance its performance as a carbon-negative filler in composites such as bioplastics, rubber, asphalt, and cement, making it more competitive with conventional fillers. Biochar, derived from biomass pyrolysis, contains a high concentration of biogenic SiO2—typically 50–80% of its total inorganic content. However, conventional extraction methods such as solvent extraction or gasification detach SiO2 from the biochar matrix, leading to energy-intensive and environmentally unfavorable processes. The objective of this study was to develop an environmentally friendly and energy-efficient approach to induce the migration of embedded biogenic SiO2 from within biochar to its surface—without detachment—using ultrasonic treatment. Fifteen biochar samples were produced by pyrolyzing five biomass types (sugarcane bagasse, miscanthus, wheat straw, corn stover, and railroad ties) at 650, 750, and 850 °C. Each sample was subsequently subjected to ultrasonic irradiation in an isopropanol–water mixture for 1 and 2 min. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) analyses confirmed that ultrasound treatment significantly enhanced SiO2 migration to the biochar surface, with up to a 2.5-fold increase in surface Si and O concentrations after 2 min of sonication. The effect was most pronounced for biochar synthesized at 850 °C, corresponding to higher surface porosity and structural stability. Fourier Transform Infrared (FTIR) spectroscopy revealed an increased intensity of the Si–O–Si asymmetric stretching band at 1030 cm−1, indicating surface enrichment of siloxane networks and rearrangement of Si-containing functional groups. Overall, the results demonstrate that ultrasound-assisted treatment is a viable and sustainable technique for enhancing SiO2 surface concentration and modifying the surface chemistry of biochar. This SiO2-enriched biochar shows potential for advanced applications in soil amendment, CO2 capture, water purification, and as a reactive additive in cementitious and asphalt composites. Full article
(This article belongs to the Special Issue Sustainable Development and Application of Biochar: 2nd Edition)
Show Figures

Figure 1

32 pages, 10206 KB  
Article
Construction and Performance Characterization of BiTmFeSbO7/BiTmO3 Heterojunction Photocatalyst and the Photocatalytic Degradation of Sulfathiazole Under Visible Light Irradiation
by Jingfei Luan, Xiqi Gou, Ye Yao, Liang Hao and Minghe Ma
Nanomaterials 2025, 15(23), 1756; https://doi.org/10.3390/nano15231756 - 23 Nov 2025
Viewed by 492
Abstract
In this study, a novel photocatalytic nanomaterial BiTmFeSbO7 was successfully synthesized for the first time by using the solvothermal method. On account of the effective Z-scheme mechanism, the BiTmFeSbO7/BiTmO3 heterojunction photocatalyst (BTBTHP) could effectively separate the photoinduced electrons and [...] Read more.
In this study, a novel photocatalytic nanomaterial BiTmFeSbO7 was successfully synthesized for the first time by using the solvothermal method. On account of the effective Z-scheme mechanism, the BiTmFeSbO7/BiTmO3 heterojunction photocatalyst (BTBTHP) could effectively separate the photoinduced electrons and the photoinduced holes, concurrently, the high oxidation potential and reduction potential of the BiTmFeSbO7 and the BiTmO3 were retained. Additionally, a Z-scheme BTBTHP was synthesized by using an ultrasound-assisted solvothermal approach. As a result, the BTBTHP exhibited excellent photocatalytic performance during the degradation process of the sulfathiazole (STZ). The morphological features, composition distribution, photochemistry properties and photoelectric properties of the prepared samples were investigated by using the comprehensive characterization techniques. Under the condition of visible light irradiation, the BTBTHP demonstrated an excellent removal efficiency of 99.50% for degrading the STZ. Contrastive analysis results indicated that the removal efficiency of the STZ by using the BTBTHP was substantially higher than that by using the BiTmFeSbO7, the BiTmO3, and the N-doped TiO2. The removal rate of the STZ by using the BTBTHP was 1.14 times that by using the BiTmFeSbO7, 1.28 times that by using the BiTmO3, and 2.71 times that by using the N-doped TiO2. Moreover, the stability and the reusability of the BTBTHP were verified through five successive photocatalytic cyclic degradation experiments, indicating that the BTBTHP owned potential for the practical application. The active species which was produced by the BTBTHP were identified as hydroxyl radicals (•OH), superoxide anions (•O2), and photoinduced holes (h+) by capturing radicals experiments and electron paramagnetic resonance testing experiments. Therefore, the degradation mechanism and the pathway of the STZ could be more comprehensively elucidated. In summary, this study lays a solid foundation for the development and further research of high efficient Z-scheme heterojunction photocatalysts and offers novel insights into sustainable remediation strategies for the STZ pollution. Full article
Show Figures

Figure 1

41 pages, 6434 KB  
Review
Sodium Alginate Modifications: A Critical Review of Current Strategies and Emerging Applications
by Wenning Wang, Yuanyuan Huang, Yun Pan, Mokhtar Dabbour, Chunhua Dai, Man Zhou and Ronghai He
Foods 2025, 14(22), 3931; https://doi.org/10.3390/foods14223931 - 17 Nov 2025
Cited by 1 | Viewed by 2584
Abstract
Sodium alginate, a natural anionic polysaccharide, exhibits broad potential applications in food, biomedicine, and environmental engineering due to its favorable biocompatibility, degradability, and functional tunability. This review systematically summarizes its chemical structure, physicochemical characteristics, sources, and extraction methods. It also focused on modification [...] Read more.
Sodium alginate, a natural anionic polysaccharide, exhibits broad potential applications in food, biomedicine, and environmental engineering due to its favorable biocompatibility, degradability, and functional tunability. This review systematically summarizes its chemical structure, physicochemical characteristics, sources, and extraction methods. It also focused on modification strategies, including chemical approaches (e.g., esterification, oxidation, sulfation, graft copolymerization), physical methods (composite modification, irradiation cross-linking, ultrasound treatment), and biological (e.g., enzyme regulation), and elucidated their underlying mechanisms. In the context of food science, special emphasis is placed on food-compatible chemistries and mild modification routes (such as phenolic crosslinking, enzyme-assisted coupling, and other green reactions) that enable the development of edible films, coatings, and functional carriers, while distinguishing these from non-food-oriented chemical strategies. The review further highlights novel applications of modified sodium alginate in areas including food packaging, functional delivery systems, drug release, tissue engineering, and environmental remediation (heavy metal and dye removal). Overall, this work provides a comprehensive perspective linking modification pathways to food-relevant applications and clarifies how chemical tailoring of alginate contributes to the design of safe, sustainable, and high-performance bio-based materials. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

6 pages, 550 KB  
Proceeding Paper
Sonochemical Synthesis of Imidazo[1, 2-a]pyridines via Groebke–Blackburn–Bienaymé Reaction Catalyzed by TSOH
by Alejandro Corona-Díaz, David Calderón-Rangel, Diana García-García, Manuel A. Rentería-Gómez and Rocío Gámez-Montaño
Chem. Proc. 2025, 18(1), 25; https://doi.org/10.3390/ecsoc-29-26681 - 11 Nov 2025
Viewed by 274
Abstract
The synthesis of Imidazo[1, 2-a]pyridine (IMP) analogs is a research field constantly growing due potential applications of Groebke–Blackburn–Bienaymé (GBB) products in several fields, focusing on the development of novel greener strategies. To date, the ultrasound assisted synthesis of IMP analogs via [...] Read more.
The synthesis of Imidazo[1, 2-a]pyridine (IMP) analogs is a research field constantly growing due potential applications of Groebke–Blackburn–Bienaymé (GBB) products in several fields, focusing on the development of novel greener strategies. To date, the ultrasound assisted synthesis of IMP analogs via Groebke–Blackburn–Bienaymé reaction (GBBR) under green inexpensive catalysts such p-toluenesulfonic acid (TsOH) is practically unreported. In the present work, we describe the TsOH catalyzed GBB reaction assisted by ultrasound irradiation (USI) to access IMP analogs in excellent overall yields 77–91%. Full article
Show Figures

Figure 1

14 pages, 2711 KB  
Article
Mechanistic Insights into Radical-Mediated Moxifloxacin Degradation Using Ultrasound-Assisted Persulfate Activation by Iron-Rich Soil
by Mahamadou Kamagate, Fekri Abdulraqeb Ahmed Ali, Traore Lancine, Coulibaly Gnougon Nina, Amine Aymen Assadi, Coulibaly Lacina, Goné Droh Lanciné and Oussama Baaloudj
Catalysts 2025, 15(11), 1056; https://doi.org/10.3390/catal15111056 - 5 Nov 2025
Viewed by 645
Abstract
Fluoroquinolones are a major issue in aquatic ecosystems due to their persistence, potential to induce antibiotic resistance, and inability to be effectively removed using conventional treatment methods. Several advanced oxidation processes have been studied for their degradation; however, there is still a lack [...] Read more.
Fluoroquinolones are a major issue in aquatic ecosystems due to their persistence, potential to induce antibiotic resistance, and inability to be effectively removed using conventional treatment methods. Several advanced oxidation processes have been studied for their degradation; however, there is still a lack of knowledge about their degradation mechanisms and the precise roles played by reactive species. In this context, the study investigated the heterogeneous activation of persulfate (PS) to degrade fluoroquinolones (FQs), such as moxifloxacin (MFX), in iron-rich soil (Cat) under ultrasound irradiation (US). The analysis of the soil catalyst revealed the presence of quartz (35%), iron oxides (33%), and alumina (26%) as the predominant constituents of the sample. The mineral phase analysis indicated the presence of magnetite, hematite, and alumina. Then, the outcomes of the specific surface area, micropore volume, and total pore volume were determined to be 19 m2 g−1, 6 m3 g−1 and 9.10 m3 g−1, respectively. The MFX/PS/US/Cat system demonstrated 89% degradation and 56% mineralization after 300 min. However, the optimized concentrations of i-PrOH, t-BuOH, and CHCl3 were 50, 100, and 50 mM, respectively, in order to trap the radicals SO4•−, OH, and O2•−. The study examined the individual contributions of SO4•−, OH, and O2•− radicals to the overall process of MFX degradation. The results indicated that SO4•− was the primary radical, with a contribution of 52%, followed by OH with 43%, and O2•− with 5%. Finally, the investigation revealed that laterite exhibited both good catalytic activity and reusability over several cycles. The development of this new process could stimulate the creation of cost-effective technology for water remediation through the effective removal of fluoroquinolones. Full article
(This article belongs to the Collection Catalysis in Advanced Oxidation Processes for Pollution Control)
Show Figures

Graphical abstract

61 pages, 15525 KB  
Review
Transesterification/Esterification Reaction Catalysed by Functional Hybrid MOFs for Efficient Biodiesel Production
by Luis P. Amador-Gómez, Delia Hernández-Romero, José M. Rivera-Villanueva, Sharon Rosete-Luna, Carlos A. Cruz-Cruz, Enrique Méndez-Bolaina, Elena de la C. Herrera-Cogco, Rafael Melo-González, Agileo Hernández-Gordillo and Raúl Colorado-Peralta
Reactions 2025, 6(4), 58; https://doi.org/10.3390/reactions6040058 - 1 Nov 2025
Viewed by 2275
Abstract
Biodiesel is an alternative, sustainable, renewable, and environmentally friendly energy source, which has generated interest from the scientific community due to its low toxicity, rapid biodegradability, and zero carbon footprint. Biodiesel is a biofuel produced by the transesterification of triglycerides or the esterification [...] Read more.
Biodiesel is an alternative, sustainable, renewable, and environmentally friendly energy source, which has generated interest from the scientific community due to its low toxicity, rapid biodegradability, and zero carbon footprint. Biodiesel is a biofuel produced by the transesterification of triglycerides or the esterification of free fatty acids (FFA). Both reactions require catalysts with numerous active sites (basic, acidic, bifunctional, or enzymatic) for efficient biodiesel production. On the other hand, since the late 1990s, metal–organic frameworks (MOFs) have emerged as a new class of porous materials and have been successfully used in various fields due to their multiple properties. For this reason, MOFs have been used as heterogeneous catalysts or as a platform for designing active sites, thus improving stability and reusability. This literature review presents a comprehensive analysis of using MOFs as heterogeneous catalysts or supports for biodiesel production. The optimal parameters for transesterification/esterification are detailed, such as the alcohol/feedstock molar ratio, catalyst amount, reaction time and temperature, conversion percentage, biodiesel yield, fatty acid and water content, etc. Additionally, novel methodologies such as ultrasound and microwave irradiation for obtaining MOF-based catalysts are described. It is important to note that most studies have shown biodiesel yields >90% and multiple reuse cycles with minimal activity loss. The bibliographic analysis was conducted using the American Chemical Society (ACS) Scifinder® database, the Elsevier B.V. Scopus® database, and the Clarivate Analytics Web of Science® database, under the institutional license of the Universidad Veracruzana. Keywords were searched for each section, generally limiting the document type to “reviews” and “journals,” and the language to English, and published between 2000 and 2025. Full article
Show Figures

Graphical abstract

12 pages, 1141 KB  
Article
Bitumen Extraction from Bituminous Sands by Ultrasonic Irradiation
by Yerzhan Imanbayev, Yerdos Ongarbayev, Akerke Abylaikhan, Binur Mussabayeva, Dinara Muktaly and Zhannur Myltykbayeva
ChemEngineering 2025, 9(5), 109; https://doi.org/10.3390/chemengineering9050109 - 10 Oct 2025
Viewed by 748
Abstract
This paper discusses the efficiency of ultrasonic-assisted bitumen extraction from bituminous sands of the Beke deposit (Mangistau region, Kazakhstan) using alkaline aqueous solutions. The process parameters, including ultrasonic frequency (22 kHz), power (up to 1500 W), solution pH (>12), and optimal NaOH concentration [...] Read more.
This paper discusses the efficiency of ultrasonic-assisted bitumen extraction from bituminous sands of the Beke deposit (Mangistau region, Kazakhstan) using alkaline aqueous solutions. The process parameters, including ultrasonic frequency (22 kHz), power (up to 1500 W), solution pH (>12), and optimal NaOH concentration (1 wt.%) were optimized to achieve a maximum bitumen recovery of 98 wt.% within 8 min. The most effective sand-to-solution mass ratio was determined as 1:2, while the optimal process temperature was 75 °C. The application of ultrasound significantly enhances cavitation and reagent penetration, enabling efficient separation of bitumen with minimal chemical usage. Fourier-transform infrared (FTIR) spectroscopy and GC–MS analyses revealed the presence of aromatic hydrocarbons, paraffinic and naphthenic structures, as well as sulfur- and oxygen-containing functional groups (e.g., sulfoxides, carboxylic acids). These characteristics suggest moderate maturity and a high degree of aromaticity of the organic matter. Despite suitable thermal and compositional properties, the extracted bitumen exhibits a relatively low stiffness and softening point, indicating the need for additional upgrading (e.g., oxidation) prior to use in road construction. Although standard rheological tests (e.g., dynamic shear rhinometry) were not conducted in this study, the penetration and softening point values suggest a relatively soft binder, possibly unsuitable for high-temperature paving applications without modification. Future research will focus on rheological evaluation and oxidative upgrading to meet the ST RK 1373-2013 specification requirements. Full article
Show Figures

Figure 1

14 pages, 961 KB  
Article
Fast and Efficient Synthesis of Fluoro Phenyl 1,2,3-Triazoles via Click Chemistry with Ultrasound Irradiation and Their Biological Efficacy Against Candida albicans
by Elisa Leyva, Johana Aguilar, Silvia E. Loredo-Carrillo and Ismael Acosta-Rodríguez
Organics 2025, 6(3), 42; https://doi.org/10.3390/org6030042 - 8 Sep 2025
Viewed by 1004
Abstract
Several fluoro phenyl triazoles were synthesized using click chemistry between fluoro phenyl azides and phenyl acetylene. Under ultrasound irradiation, this synthetic procedure was performed with Cu (I) in the presence of 1,10-phenanthroline. It is fast with high yields of target compounds. In addition, [...] Read more.
Several fluoro phenyl triazoles were synthesized using click chemistry between fluoro phenyl azides and phenyl acetylene. Under ultrasound irradiation, this synthetic procedure was performed with Cu (I) in the presence of 1,10-phenanthroline. It is fast with high yields of target compounds. In addition, fluoro phenyl triazoles were evaluated against Candida albicans. The inhibition percentage of yeast growth was investigated using different concentrations of triazoles. Compounds containing a fluorine atom in 2, 4, 2,6, and 2,4,6 positions inhibited a higher percentage of yeast growth. All of the triazoles showed inhibition of the yeast–mycelium transition, which was related to pathogenicity of yeast strain C. albicans. Full article
Show Figures

Figure 1

Back to TopTop