Facile Wet-Chemical Synthesis of Graphene Oxide-Hydroxyapatite Composite for Potent, Accelerated and Synergistic Sonophotocatalytic Degradation of Diclofenac Under Light and Ultrasound Irradiation †
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals, Materials and Equipment
2.2. Experimental Setup
2.3. Experimental Design
2.4. Experimental Procedure
2.4.1. Rapid Wet-Chemical Synthesis of GO/HAp Nanocomposite
2.4.2. Preparation of Diclofenac Solution
2.4.3. Sonophotocatalytic Degradation Process
3. Results and Discussion
3.1. Characterization of GO/HAp Nanocomposite
3.2. Optimization and Effects of Process Parameters on Sonophotocatalytic Degradation of DCF
3.2.1. Optimization Using Full Factorial RSM
0.0021CC − 0.034AB − 0.091AC + 0.0001BC,
3.2.2. Effects of Individual Parameters on Sonophotocatalytic Degradation of DCF
3.3. Kinetics Study
3.4. Comparison of Sonolysis, Photocatalysis, and Sonophotocatalysis
3.5. Implications of Potent, Accelerated, and Optimized Degradation of DCF Using GO/HAp Nanocomposite
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sivodia, C.; Sinha, A. Valorization of nano-scrap carbon iron filings as heterogeneous electro-Fenton catalyst for the removal of anticancer drug: Insight into degradation mechanism. Environ. Sci. Pollut. Res. 2025, 32, 4603–4618. [Google Scholar]
- Latiza, R.J.P.; Mustafa, A.; Delos Reyes, K.; Nebres, K.L.; Abrogena, S.L.; Rubi, R.V. Optimization, characterization, reversible thermodynamically favored adsorption, and mechanistic insights into low-cost mesoporous Fe-doped kapok fibers for efficient caffeine removal from water. Sep. Sci. Technol. 2025, 60, 1643–1658. [Google Scholar]
- Bognár, S.; Jovanović, D.; Despotović, V.; Finčur, N.; Putnik, P.; Šojić Merkulov, D. Advancing Wastewater Treatment: A Comparative Study of Photocatalysis, Sonophotolysis, and Sonophotocatalysis for Organics Removal. Processes 2024, 12, 1256. [Google Scholar] [CrossRef]
- Kabasa, S.; Sun, Y.; Wang, S.; Bulka, S.; Wang, J.; Chmielewski, A.G. Chloroquine degradation under Fenton-assisted electron beam irradiation in aqueous solution. Environ. Sci. Pollut. Res. 2025, 32, 4894–4909. [Google Scholar]
- Hao, Q.; Liu, S.; Wang, X.; Zhang, P.; Mao, Z.; Zhang, X. Progression from graphene and graphene oxide to high-performance epoxy resin-based composite. Polym. Degrad. Stab. 2024, 223, 110731. [Google Scholar] [CrossRef]
- Studziński, W.; Gackowska, A.; Kudlek, E.; Przybyłek, M. Environmental and toxicological aspects of sulfamethoxazole photodegradation in the presence of oxidizing agents. Environ. Sci. Pollut. Res. 2025, 32, 4733–4753. [Google Scholar]
- Pahasup-anan, T.; Suwannahong, K.; Kampeerapappun, P.; Rangkupan, R.; Dechapanya, W. Conditional Optimization on the Photocatalytic Degradation Removal Efficiency of Formaldehyde using TiO2—Nylon 6 Electrospun Composite Membrane. Appl. Sci. Eng. Prog. 2025, 18, 7509. [Google Scholar]
- Thao, T.Q.; Thu Hien, N.T.; Lam, P.T.; Huy, N.N.; Thi, P.T.; Thanh, N.T.; Toan, P.P.; Thich, L.T.; Thuy, N.T. Exploring the Mechanism for the Photocatalytic Degradation of Oxytetracycline in Water Using TiO2 and Supplementary Oxidants. Appl. Sci. Eng. Prog. 2025, 18, 7651. [Google Scholar]
- Sayem, M.A.; Hossen Suvo, M.A.; Syed, I.M.; Bhuiyan, M.A. Effective adsorption and visible light driven enhanced photocatalytic degradation of rhodamine B using ZnO nanoparticles immobilized on graphene oxide nanosheets. Results Phys. 2024, 58, 107471. [Google Scholar] [CrossRef]
- Pruna, A.; Poliac, I.; Busquets Mataix, D.; Ruotolo, A. Synergistic effects in ZnO nanorod films by pulsed electrodeposition on graphene oxide towards enhanced photocatalytic degradation. Ceram. Int. 2024, 50, 4622–4631. [Google Scholar] [CrossRef]
- Mizar, K.; Mulyati, S.; Aprilia, S.; Aulia, M.P.; Arahman, N. Preparation of tungsten trioxide/graphene oxide/hydroxyapatite (WO3/GO/HAp) for photocatalytic removal of methylene blue under visible light. Case Stud. Chem. Environ. Eng. 2024, 10, 100870. [Google Scholar] [CrossRef]
- Usman, M.; Ahmed, A.; Khalid, A.; Rafiq, M.; Algarni, M.; Albalawi, A.N.; Aldhafeeri, Z.M.; Hasan, M. Unveiling the synthesis of magnetically separable magnetite nanoparticles anchored over reduced graphene oxide for enhanced visible-light-driven photocatalytic degradation of dyes. Diamond Relat. Mater. 2024, 149, 111575. [Google Scholar] [CrossRef]
- Kahraman, E.; Nasun-Saygili, G. 5-Fluorouracil adsorption on graphene oxide-amine modified graphene oxide/hydroxyapatite composite for drug delivery applications: Optimization and release kinetics studies. Heliyon 2024, 10, e38494. [Google Scholar] [CrossRef] [PubMed]
- Batista, J.A.F.; Mendes, J.; Moretto, W.E.; Quadro, M.S.; Dos Santos, J.H.Z.; De Escobar, C.C. Sunlight removal of diclofenac using g-C3N4, g-C3N4/Cl, g-C3N4/Nb2O5 and g-C3N4/TiO2 photocatalysts. J. Environ. Chem. Eng. 2024, 12, 113016. [Google Scholar] [CrossRef]
- Castro, M.A.M.; Tranquilin, R.L.; Paiva, A.E.M.; Teodoro, M.D.; Correa, M.A.; Motta, F.V.; Bomio, M.R.D. Improvement of dye degradation by photocatalysis and synergistic effect of sonophotocatalysis processes using CaMoO4/g-C3N4 heterojunction. Optik 2024, 300, 171682. [Google Scholar] [CrossRef]
- Dihingia, H.; Pathak, S.; Lalmalsawmdawngliani; Tiwari, D.; Kim, D.-J. A sustainable solution for diclofenac degradation from water by heterojunction bimetallic nanocatalyst. J. Taiwan Inst. Chem. Eng. 2025, 166, 105096. [Google Scholar] [CrossRef]
- Monjezi, Z.; Tarlani, A.; Esfahani, H.; Asghar, A.; Salemi, A.; Zadmard, R.; Vosough, M. Simultaneous photocatalytic degradation of remdesivir, favipiravir, and diclofenac from aqueous solutions using a quaternary plasmonic Ag/Ag-SG-TiO2-rGO photocatalyst: Synthesis, characterization, optimization, and toxicity assessment. J. Water Process. Eng. 2024, 67, 106267. [Google Scholar] [CrossRef]
- Ghosh, S.; Sahu, M. Ultrasound for the degradation of endocrine disrupting compounds in aqueous solution: A review on mechanisms, influence of operating parameters and cost estimation. Chemosphere 2024, 349, 140864. [Google Scholar] [CrossRef]
- Latiza, R.J.P.; Rubi, R.V. Circular Economy Integration in 1G+2G Sugarcane Bioethanol Production: Application of Carbon Capture, Utilization and Storage, Closed-Loop Systems, and Waste Valorization for Sustainability. Appl. Sci. Eng. Prog. 2025, 18, 7448. [Google Scholar]
- Latiza, R.J.P.; Olay, J.; Eguico, C.; Yan, R.J.; Rubi, R.V. Environmental applications of carbon dots: Addressing microplastics, air and water pollution. J. Hazard. Mater. Adv. 2025, 17, 100591. [Google Scholar] [CrossRef]
- Oliveira, R.A.; Castro, M.A.M.; Porto, D.L.; Aragão, C.F.S.; Souza, R.P.; Silva, U.C.; Bomio, M.R.D.; Motta, F.V. Immobilization of Bi2MoO6/ZnO heterojunctions on glass substrate: Design of drug and dye mixture degradation by solar-driven photocatalysis. J. Photochem. Photobiol. A 2024, 452, 115619. [Google Scholar] [CrossRef]



| Levels | |||
|---|---|---|---|
| Factors | −1 | 0 | 1 |
| pH | 4 | 5.5 | 7 |
| GO/HAp Loading | 7.5 | 26.25 | 45 |
| Time | 5 | 15 | 30 |
| ANOVA | |||||
|---|---|---|---|---|---|
| Source | DF | Adj SS | Adj MS | F-Value | p-Value |
| Model | 9 | 26,280.4 | 2920 | 11.19 | 0 |
| Linear | 3 | 24,758.2 | 8252.7 | 31.64 | 0 |
| A | 1 | 22,378.7 | 22,378.7 | 85.8 | 0 |
| B | 1 | 2115.1 | 2115.1 | 8.11 | 0.011 |
| C | 1 | 263.7 | 263.7 | 1.01 | 0.329 |
| Square | 3 | 1466.7 | 488.9 | 1.87 | 0.172 |
| A2 | 1 | 781.9 | 781.9 | 3 | 0.101 |
| B2 | 1 | 684.2 | 684.2 | 2.62 | 0.124 |
| C2 | 1 | 0.6 | 0.6 | 0 | 0.962 |
| Interaction | 3 | 46.3 | 15.4 | 0.06 | 0.981 |
| AB | 1 | 10.9 | 10.9 | 0.04 | 0.841 |
| AC | 1 | 35.4 | 35.4 | 0.14 | 0.717 |
| BC | 1 | 0 | 0 | 0 | 0.996 |
| Error | 17 | 4434.2 | 260.8 | ||
| Total | 26 | 30,714.6 | |||
| Model Summary | |||||
| S | R-sq | R-sq(adj) | R-sq(pred) | ||
| 16.1504 | 85.56% | 77.92% | 64.65% | ||
| Optimal Solution | |||||
| pH | Loading | Time | Degradation | Desirability | |
| 4 | 45 | 30 | 100 | 1 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biag, J.M.; Briones, J.C.; Dancel, C.C.; De Villa, F.; Durante, C.I.; Rubi, R.V.; Latiza, R.J.P. Facile Wet-Chemical Synthesis of Graphene Oxide-Hydroxyapatite Composite for Potent, Accelerated and Synergistic Sonophotocatalytic Degradation of Diclofenac Under Light and Ultrasound Irradiation. Eng. Proc. 2025, 117, 8. https://doi.org/10.3390/engproc2025117008
Biag JM, Briones JC, Dancel CC, De Villa F, Durante CI, Rubi RV, Latiza RJP. Facile Wet-Chemical Synthesis of Graphene Oxide-Hydroxyapatite Composite for Potent, Accelerated and Synergistic Sonophotocatalytic Degradation of Diclofenac Under Light and Ultrasound Irradiation. Engineering Proceedings. 2025; 117(1):8. https://doi.org/10.3390/engproc2025117008
Chicago/Turabian StyleBiag, Joe Mari, Justin Carl Briones, Crystal Cayena Dancel, Florely De Villa, Christian Ibarra Durante, Rugi Vicente Rubi, and Rich Jhon Paul Latiza. 2025. "Facile Wet-Chemical Synthesis of Graphene Oxide-Hydroxyapatite Composite for Potent, Accelerated and Synergistic Sonophotocatalytic Degradation of Diclofenac Under Light and Ultrasound Irradiation" Engineering Proceedings 117, no. 1: 8. https://doi.org/10.3390/engproc2025117008
APA StyleBiag, J. M., Briones, J. C., Dancel, C. C., De Villa, F., Durante, C. I., Rubi, R. V., & Latiza, R. J. P. (2025). Facile Wet-Chemical Synthesis of Graphene Oxide-Hydroxyapatite Composite for Potent, Accelerated and Synergistic Sonophotocatalytic Degradation of Diclofenac Under Light and Ultrasound Irradiation. Engineering Proceedings, 117(1), 8. https://doi.org/10.3390/engproc2025117008

