Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,790)

Search Parameters:
Keywords = ultrasonic processes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1404 KB  
Article
An Enhanced Low-Power Ultrasonic Bolt Axial Stress Detection Method Using the EMD-ATWD Algorithm
by Yating Liu, Chao Xu, Chunming Chen, Lianpeng Li, Yuhong Shi and Lu Yan
J. Mar. Sci. Eng. 2026, 14(3), 245; https://doi.org/10.3390/jmse14030245 - 23 Jan 2026
Abstract
Traditional ultrasonic bolt stress measurement is hindered by high power consumption. Lowering excitation voltage reduces power but degrades signal-to-noise ratio (SNR), compromising accuracy. This paper proposes a synergistic algorithm combining Empirical Mode Decomposition (EMD) with Adaptive Threshold Wavelet Denoising (ATWD). The method preserves [...] Read more.
Traditional ultrasonic bolt stress measurement is hindered by high power consumption. Lowering excitation voltage reduces power but degrades signal-to-noise ratio (SNR), compromising accuracy. This paper proposes a synergistic algorithm combining Empirical Mode Decomposition (EMD) with Adaptive Threshold Wavelet Denoising (ATWD). The method preserves transient features by reconstructing high-frequency components via EMD, then suppresses noise by precisely processing low-frequency components using ATWD. Finally, cross-correlation estimates ultrasonic delay. Evaluated at excitation voltages from 12 V to 0.5 V, the EMD-ATWD method maintains measurement errors below 10% even at 0.5 V, improving accuracy by over 48% compared to conventional Finite Impulse Response (FIR) and Threshold Wavelet Denoising (WTD) methods, while enhancing key echo waveform fidelity by over 35%. This method provides a reliable low-power bolt stress monitoring idea for engineering applications. Full article
(This article belongs to the Section Ocean Engineering)
17 pages, 1995 KB  
Article
Enhanced Settlement Thickening of Tailings Slurry by Ultrasonic Treatment: Optimization of Application Timing and Power and Insight into the Underlying Mechanism
by Liyi Zhu, Zhao Wei, Peng Yang, Xiaofei Qiao, Penglin Lang, Zhengbin Li, Kun Wang, Wensheng Lyu and Jialu Zeng
Minerals 2026, 16(2), 124; https://doi.org/10.3390/min16020124 - 23 Jan 2026
Abstract
Efficient thickening of unclassified tailings slurry (UTS) is critical for enhancing mine backfill efficiency and reducing operational costs. Ultrasonic technology has emerged as a promising approach to facilitating the solid–liquid separation process in such slurries. In this study, systematic experiments were conducted using [...] Read more.
Efficient thickening of unclassified tailings slurry (UTS) is critical for enhancing mine backfill efficiency and reducing operational costs. Ultrasonic technology has emerged as a promising approach to facilitating the solid–liquid separation process in such slurries. In this study, systematic experiments were conducted using a 20 kHz ultrasonic concentrator. The effects of ultrasonic treatment timing (applied at 0, 5, 10, 15, 20, 25, 30, and 35 min during free settling) and power (50 to 400 W in eight levels) were investigated by monitoring the solid–liquid interface settling velocity and underflow concentration. The key findings are as follows: Ultrasonic application at the 5 min mark yielded the optimal thickening performance, increasing the final mass concentration by 1.3% compared to free settling alone. The average settling velocity generally increased with ultrasonic power (with the exception of 50 W), and the final underflow concentration exhibited a steady rise. Notably, the 400 W treatment induced a significant settlement acceleration, attributed to the formation of drainage channels. Mechanistic analysis revealed that these drainage channels undergo a dynamic process of formation, expansion, contraction, and closure, driven by ultrasonically induced directional water migration, particle compaction, and energy boundary effects. This research not only enriches the theoretical framework of ultrasonic-assisted thickening but also provides practical insights for optimizing mine backfill operations. Full article
(This article belongs to the Special Issue Advances in Mine Backfilling Technology and Materials, 2nd Edition)
25 pages, 2070 KB  
Article
Evaluation of Nucleation and Growth Kinetics of Li3PO4 Reactive Crystallization from Low-Concentration Lithium-Rich Brine
by Jie Fan, Xiaoxiang He, Wanxia Ma, Chaoliang Zhu, Guowang Xu, Zhenghua He, Yifei Shi, Bo Li and Xiaochuan Deng
Molecules 2026, 31(2), 392; https://doi.org/10.3390/molecules31020392 - 22 Jan 2026
Abstract
Li3PO4 is a promising raw material for the low-cost synthesis of high-performance LiFePO4. Reactive crystallization from low-concentration lithium-rich brine is a key process for the efficient preparation of high-quality Li3PO4 products. The effect of operating [...] Read more.
Li3PO4 is a promising raw material for the low-cost synthesis of high-performance LiFePO4. Reactive crystallization from low-concentration lithium-rich brine is a key process for the efficient preparation of high-quality Li3PO4 products. The effect of operating conditions (temperature/supersaturation/impurities/ultrasonic) on the induction time was investigated using a focused beam reflectance measurement. The evaluation of the primary nucleation, growth kinetics, and parameters for the extraction of Li3PO4 from low-concentration lithium-rich brine was conducted using an induction time method. The dominant mechanisms at different stages were inferred through online monitoring of the particle size distribution during the Li3PO4 crystallization process. Results show that induction time decreases with increasing operating conditions (temperature/supersaturation/ultrasonic frequency), indicating that their increases all promote nucleation. Impurities (NaCl/KCl) did not significantly affect the induction time, whereas Na2SO4 and Na2B4O7 significantly increased it, with Na2B4O7 showing the most notable effect. Classical nucleation theory was applied to determine kinetic parameters (nucleation activation energy/interfacial tension/contact angle/critical nucleus size/surface entropy factor). Results indicate that Li3PO4 mainly nucleates through heterogeneous nucleation, with a temperature increase weakening the role of heterogeneous nucleation. Fitted models indicate that Li3PO4 predominantly follows the secondary nucleation and spiral growth mechanism. Our findings are crucial for crystallization design and control in producing high-quality Li3PO4 from lithium-rich brines. Full article
20 pages, 6904 KB  
Article
Natural Mineral Waters as Solvents for Sustainable Extraction of Polyphenolic Compounds from Aronia Stems
by Irina-Loredana Ifrim, Ionuț Avătămăniței, Oana-Irina Patriciu, Cristina-Gabriela Grigoraș and Adriana-Luminița Fînaru
Foods 2026, 15(2), 406; https://doi.org/10.3390/foods15020406 - 22 Jan 2026
Abstract
Aronia melanocarpa, a plant with nutrient-rich fruits, with application in the food and pharmaceutical industry, has been extensively investigated but, nevertheless, the exploration of the secondary metabolites profile from its by-products remains quite limited. The main objective of this study was to evaluate [...] Read more.
Aronia melanocarpa, a plant with nutrient-rich fruits, with application in the food and pharmaceutical industry, has been extensively investigated but, nevertheless, the exploration of the secondary metabolites profile from its by-products remains quite limited. The main objective of this study was to evaluate the possibility of using some different natural mineral waters from Romania, as green solvents, for the extraction of bioactive compounds from aronia stems and fruits by applying eco-compatible working techniques (maceration for 24 h, and ultrasonication at room temperature and 50 °C for 30 min). The effect of five natural mineral waters (one with medium and four with low mineral content) on the extraction capacity and phytochemical profile of stems and fruits’ extracts was monitored using fast and efficient analysis techniques (electrochemical, spectroscopic, and chromatographic) and compared with that of classical solvents. The results showed that, in the case of stems, extraction by maceration was, for all types of water used, the most efficient, followed by ultrasonication at room temperature. Also, at the same time, in most cases, all mineral waters showed better performance than distilled water, and the highest efficiency of the extraction process was recorded for natural water with a medium mineralization level. The similarity observed in the phytochemical profiles of aqueous extracts from the aronia stems and the fruits highlights both the potential of this by-product as a source of bioactive compounds and the efficiency of natural mineral waters as green extraction solvents. Full article
Show Figures

Figure 1

17 pages, 1796 KB  
Article
Ultrasonic–Laser Hybrid Treatment for Cleaning Gasoline Engine Exhaust: An Experimental Study
by Bauyrzhan Sarsembekov, Madi Issabayev, Nursultan Zharkenov, Altynbek Kaukarov, Isatai Utebayev, Akhmet Murzagaliyev and Baurzhan Zhamanbayev
Vehicles 2026, 8(1), 22; https://doi.org/10.3390/vehicles8010022 - 20 Jan 2026
Viewed by 205
Abstract
Vehicle exhaust gases remain one of the key sources of atmospheric air pollution and pose a serious threat to ecosystems and public health. This study presents an experimental investigation into reducing the toxicity of gasoline internal combustion engine exhaust using ultrasonic waves and [...] Read more.
Vehicle exhaust gases remain one of the key sources of atmospheric air pollution and pose a serious threat to ecosystems and public health. This study presents an experimental investigation into reducing the toxicity of gasoline internal combustion engine exhaust using ultrasonic waves and infrared (IR) laser exposure. An original hybrid system integrating an ultrasonic emitter and an IR laser module was developed. Four operating modes were examined: no treatment, ultrasound only, laser only, and combined ultrasound–laser treatment. The concentrations of CH, CO, CO2, and O2, as well as exhaust gas temperature, were measured at idle and under operating engine speeds. The experimental results show that ultrasound provides a substantial reduction in CO concentration (up to 40%), while IR laser exposure effectively decreases unburned hydrocarbons CH (by 35–40%). The combined treatment produces a synergistic effect, reducing CH and CO by 38% and 43%, respectively, while increasing the CO2 fraction and decreasing O2 content, indicating more complete post-oxidation of combustion products. The underlying physical mechanisms responsible for the purification were identified as acoustic coagulation of particulates, oxidation, and photodissociation of harmful molecules. The findings support the hypothesis that combined ultrasonic and laser treatment can enhance real-time exhaust gas purification efficiency. It is demonstrated that physical treatment of the gas phase not only lowers the persistence of by-products but also promotes more complete oxidation processes within the flow. Full article
(This article belongs to the Special Issue Intelligent Mobility and Sustainable Automotive Technologies)
Show Figures

Figure 1

18 pages, 4995 KB  
Article
The Effect of Ultrasonic Vibration Assistance During Laser Lap Welding on the Microstructure and Properties of Galvanized Steel/Mg Joints
by Dan Wang, Chengsen Zhu, Juming Gao, Hongliang Li, Dongdong Zhuang, Nan Xu, Xinyi Zhao, Ke Han and Zeyu Wang
Metals 2026, 16(1), 120; https://doi.org/10.3390/met16010120 - 20 Jan 2026
Viewed by 80
Abstract
In this work, a laser lap-welded joint of galvanized steel/Mg and a laser lap-welded joint of galvanized steel/Mg assisted by ultrasonic vibration were compared. By adjusting the laser beam power and ultrasonic amplitude, the appropriate welding process parameters were obtained. The weld formation, [...] Read more.
In this work, a laser lap-welded joint of galvanized steel/Mg and a laser lap-welded joint of galvanized steel/Mg assisted by ultrasonic vibration were compared. By adjusting the laser beam power and ultrasonic amplitude, the appropriate welding process parameters were obtained. The weld formation, microstructure and mechanical properties were studied and analyzed. The results indicated that the addition of ultrasonic vibration generated an excitation force with a certain frequency and amplitude on the weldment, making the molten metal in the molten pool produce ultrasonic forced vibration, and producing the effects of cavitation, acoustic streaming, mechanical stirring and heat, thus reducing welding residual stress and welding-deformation, porosity and incomplete-fusion defects. In addition, it can make the fusion zone transition evenly, improve the wettability, refine the weld grain, and reduce the average grain area from 583 μm2 to 324 μm2. Moreover, the distribution of Mg-Zn reinforcing phase at the interface was more uniform and denser, and the maximum tensile shear strength increased from 179.9 N/mm to 290 N/mm, indicating that the addition of ultrasonic vibration was conducive to improving the comprehensive mechanical properties of the joint. Full article
Show Figures

Figure 1

20 pages, 4309 KB  
Article
Characterization and Optimization of the Ultrasound-Assisted Extraction Process of an Unexplored Amazonian Drupe (Chondrodendron tomentosum): A Novel Source of Anthocyanins and Phenolic Compounds
by Disbexy Huaman-Huaman, Segundo G. Chavez, Laydy Mena-Chacon, José Marcelo-Peña, Hans Minchán-Velayarce and Ralph Rivera-Botonares
Processes 2026, 14(2), 357; https://doi.org/10.3390/pr14020357 - 20 Jan 2026
Viewed by 135
Abstract
This study presents the first comprehensive physicochemical and bioactive characterization of the fruit of Chondrodendron tomentosum Ruiz & Pav. (Menispermaceae). Biometric and physicochemical parameters were characterized across three fruit ripening stages (green, turning, ripe). Additionally, proximate composition was determined in ripe fruits, and [...] Read more.
This study presents the first comprehensive physicochemical and bioactive characterization of the fruit of Chondrodendron tomentosum Ruiz & Pav. (Menispermaceae). Biometric and physicochemical parameters were characterized across three fruit ripening stages (green, turning, ripe). Additionally, proximate composition was determined in ripe fruits, and methanol concentration (25–75%), ultrasonic amplitude (30–70%), and time (1–15 min) were optimized using response surface methodology with a Box–Behnken design. During ripening, weight increased by +47.7% (3.89 to 5.74 g; p < 0.0001), TSS by +26.1% (7.00 to 8.83 °Brix), pH decreased by 32.0% (6.28 to 4.27), and acidity increased by 276% (0.25 to 0.94%). The quadratic models demonstrated high predictive accuracy (R2 > 96.5%; p < 0.004). Optimal conditions (57% methanol, 70% amplitude, and 15 min) maximized total anthocyanin content (120.71 ± 1.89 mg cyanidin-3-glucoside/L), total phenols (672.46 ± 5.84 mg GAE/100 g), and DPPH radical scavenging capacity (5857.55 ± 60.20 µmol Trolox/100 g) in ripe fruits. Unripe fruits do not contain anthocyanins, reaching 46.01 mg C3G/L in turning fruits and 120.71 mg/L in ripe fruits (162% higher than turning fruits). Principal component analysis (90.6% variance) revealed synchronized co-accumulation of anthocyanins and phenols, enhanced by vacuolar acidification. These results suggest ripe C. tomentosum fruits as a potential source for natural colorants, nutraceuticals, and functional foods, pending prior development of green, human-safe extraction processes. Full article
(This article belongs to the Special Issue Advances in Green Extraction and Separation Processes)
Show Figures

Graphical abstract

12 pages, 1899 KB  
Article
Packaging of 128-Channel Optical Phased Array for LiDAR
by Abu Sied, Eun-Su Lee, Kwon-Wook Chun, Jinung Jin and Min-Cheol Oh
Photonics 2026, 13(1), 88; https://doi.org/10.3390/photonics13010088 - 20 Jan 2026
Viewed by 138
Abstract
We developed a complete packaging strategy for a 128-channel optical phased array (OPA) for Light Detection and Ranging (LiDAR) applications operating at a 1550 nm wavelength. The process comprised three major steps: waveguide end-facet polishing, fiber-to-optical waveguide pigtailing, and electrical wire bonding. Sequential [...] Read more.
We developed a complete packaging strategy for a 128-channel optical phased array (OPA) for Light Detection and Ranging (LiDAR) applications operating at a 1550 nm wavelength. The process comprised three major steps: waveguide end-facet polishing, fiber-to-optical waveguide pigtailing, and electrical wire bonding. Sequential polishing with silicon carbide paper followed by colloidal silica reduced coupling losses to 0.74 dB per facet. An automated fiber alignment setup was used to perform edge coupling. The electrical connections, formed under optimized wire-bonding conditions (18 mW ultrasonic power), achieved a bond strength of 4.66 gf while maintaining electrode-pad integrity. The final packaged device demonstrated uniform optical throughput, with a throughput power variation maintained below 0.2 dB following the packaging process, and a uniform electrical resistance of 0.48% across all 128 channels, verifying the process stability and packaging integrity. These results confirmed that the proposed packaging scheme offers a dependable route for photonic integration in LiDAR applications. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics and Future Prospects)
Show Figures

Figure 1

20 pages, 3949 KB  
Article
Endogenous Curing Mechanism and Self-Healing Properties of an Epoxy Resin (E-51) in Alkaline Environments of Cement-Based Materials
by Qianjin Mao, Yuanlong Wang, Runfeng Li, Yuhuan Zhou, Shuqing Shi and Suping Cui
Polymers 2026, 18(2), 262; https://doi.org/10.3390/polym18020262 - 18 Jan 2026
Viewed by 190
Abstract
Regarding the issues arising from the addition of external curing agents in the application of epoxy resin in cement-based materials, this paper explores the feasibility of endogenous curing of epoxy resin in the alkaline environment of cement-based systems. It further analyzes and investigates [...] Read more.
Regarding the issues arising from the addition of external curing agents in the application of epoxy resin in cement-based materials, this paper explores the feasibility of endogenous curing of epoxy resin in the alkaline environment of cement-based systems. It further analyzes and investigates the curing characteristics of epoxy resin without external curing agents and their impact on the performance of cement-based materials. Differential scanning calorimetry, mechanical property testing, microstructural observation, and electrochemical impedance spectroscopy were used to study the mechanism of sodium hydroxide (NaOH) catalyzing the process of bisphenol-A epoxy resin (E-51)-based curing, the influence of moisture and temperature on curing kinetics, and the performance of epoxy resins in mortar and self-healing concrete. The results showed that E-51 achieved self-curing under alkaline conditions in the absence of an external hardener. However, moisture significantly inhibited the reaction process. Elevating the temperature and reducing environmental humidity effectively promoted the curing reaction. In cement-based materials, E-51 exhibited endogenous curing by the inherent alkalinity of the system, remarkably enhancing the compressive strength of mortar. At 60 °C, mortar containing 10% E-51 (by cement mass) exhibited a 1.5-fold higher compressive strength than that of the control group without E-51 at 14 days of curing. It demonstrated higher healing efficiency in a microencapsulated self-healing concrete system than the traditional curing agent systems. Concrete specimens with damage induced by loading at 60% of their compressive strength exhibited 100% recovery of ultrasonic pulse velocity after storing indoors for 28 d. The findings of this study can provide theoretical basis and technical support for the application of epoxy resins in cement-based materials without the need for curing agents. Full article
Show Figures

Figure 1

17 pages, 2450 KB  
Article
Design, Fabrication and Characterization of Multi-Frequency MEMS Transducer for Photoacoustic Imaging
by Alberto Prud’homme and Frederic Nabki
Micromachines 2026, 17(1), 122; https://doi.org/10.3390/mi17010122 - 17 Jan 2026
Viewed by 188
Abstract
This work presents the design, fabrication, and experimental characterization of microelectromechanical system (MEMS) ultrasonic transducers engineered for multi-frequency operation in photoacoustic imaging (PAI). The proposed devices integrate multiple resonant geometries, including circular diaphragms, floated crosses, anchored cross membranes, and cantilever arrays, within compact [...] Read more.
This work presents the design, fabrication, and experimental characterization of microelectromechanical system (MEMS) ultrasonic transducers engineered for multi-frequency operation in photoacoustic imaging (PAI). The proposed devices integrate multiple resonant geometries, including circular diaphragms, floated crosses, anchored cross membranes, and cantilever arrays, within compact footprints to overcome the inherently narrow frequency response of conventional MEMS transducers. All devices were fabricated using the PiezoMUMPs commercial microfabrication process, with finite element simulations guiding modal optimization and laser Doppler vibrometry used for experimental validation in air. The circular diaphragm exhibited a narrowband response with a dominant resonance at 1.69 MHz and a quality factor (Q) of 268, confirming the bandwidth limitations of traditional geometries. In contrast, complex designs such as the floated cross and cantilever arrays achieved significantly broader spectral responses, with resonances spanning from 275 kHz to beyond 7.5 MHz. The cantilever array, with systematically varied arm lengths, achieved the highest modal density through asynchronous activation across the spectrum. Results demonstrate that structurally diverse MEMS devices can overcome the bandwidth constraints of traditional piezoelectric transducers. The integration of heterogeneous MEMS geometries offers a viable approach for broadband sensitivity in PAI, enabling improved spatial resolution and depth selectivity without compromising miniaturization or manufacturability. Full article
Show Figures

Figure 1

11 pages, 3451 KB  
Communication
Ultrasonic Monitoring of the Processes of Blast Freezing and Thawing of Meat
by Alexey Tatarinov, Marija Osipova and Viktors Mironovs
Foods 2026, 15(2), 328; https://doi.org/10.3390/foods15020328 - 16 Jan 2026
Viewed by 224
Abstract
Freezing and thawing affect the structural integrity and quality of meat, yet these processes remain difficult to monitor due to spatial temperature gradients and non-uniform phase transitions. This study investigates the ability of ultrasound to detect dynamic freezing and thawing events in pork [...] Read more.
Freezing and thawing affect the structural integrity and quality of meat, yet these processes remain difficult to monitor due to spatial temperature gradients and non-uniform phase transitions. This study investigates the ability of ultrasound to detect dynamic freezing and thawing events in pork tissues with different fat contents. Specimens of water, lean meat, marbled meat, layered lean–fat structures, and lard were subjected to controlled freeze–thaw cycles while ultrasonic signals and internal temperatures were continuously monitored. Consistent amplitude drops in the megahertz range at entering the freezing phase formed characteristic signal patterns that differed sharply between lean and fatty tissues. Lean meat, dominated by water content, exhibited rapid signal loss at the onset of ice crystallization and a clear recovery of amplitude once fully frozen. Fat-rich tissues demonstrated prolonged attenuation and near disappearance of high-frequency signals, with incomplete recovery even at deep-frozen states. A jump of ultrasound velocity from 1.4–1.6 km/s in a warm state to 2.6–3.7 km/s in a frozen state indicated complete freezing. Hysteresis between temperature readings and actual phase transition moments was found. Distinct ultrasonic freeze–thaw signatures reflecting tissue composition suggest a novel approach for monitoring the true onset and completion of freezing and thawing in meat. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

20 pages, 3786 KB  
Article
Mechanical Behavior of CFRP Laminates Manufactured from Plasma-Assisted Solvolysis Recycled Carbon Fibers
by Ilektra Tourkantoni, Konstantinos Tserpes, Dimitrios Marinis, Ergina Farsari, Eleftherios Amanatides, Nikolaos Koutroumanis and Panagiotis Nektarios Pappas
J. Compos. Sci. 2026, 10(1), 49; https://doi.org/10.3390/jcs10010049 - 14 Jan 2026
Viewed by 211
Abstract
The mechanical behavior of carbon-fiber-reinforced polymer (CFRP) laminates manufactured using plasma-assisted solvolysis recycled fibers was evaluated experimentally through a comprehensive mechanical testing campaign. The plasma-assisted solvolysis parameters were selected based on an earlier sensitivity analysis. Prepregs made from both virgin and recycled carbon [...] Read more.
The mechanical behavior of carbon-fiber-reinforced polymer (CFRP) laminates manufactured using plasma-assisted solvolysis recycled fibers was evaluated experimentally through a comprehensive mechanical testing campaign. The plasma-assisted solvolysis parameters were selected based on an earlier sensitivity analysis. Prepregs made from both virgin and recycled carbon fibers were fabricated via a hand lay-up process and manually stacked to produce unidirectional laminates. Longitudinal tension tests, longitudinal compression tests, and interlaminar shear strength (ILSS) tests were performed to assess the fundamental mechanical response of the recycled laminates and quantify the retention of mechanical properties relative to the virgin-reference material. Prior to mechanical testing, all laminates underwent ultrasonic C-scan inspection to assess manufacturing quality. While both laminate types exhibited generally satisfactory quality, the recycled-fiber laminates showed a higher density of defects. The recycled laminates preserved around 80% of their original tensile strength and maintained an essentially unchanged elastic modulus. Compressive strength was more susceptible to imperfections introduced during remanufacturing, with the recycled laminates exhibiting roughly a 14% decrease compared with the virgin material. On the contrary, the compressive modulus was largely retained. The most substantial reduction occurred in ILSS, which dropped by 58%. Overall, the results demonstrate that plasma-assisted solvolysis enables the recovery of carbon fibers suitable for remanufacturing CFRP laminates, while the observed reduction in mechanical properties of recycled CFRPs is mainly attributed to defects in manufacturing quality rather than to intrinsic degradation of the recycled carbon fibers. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

16 pages, 1555 KB  
Article
Off-the-Shelf Masked Ultrasonic Atomization for Hydrophilic Droplet Microarrays and Gradient Screening
by Xiaochen Lai, Xicheng Wang, Yanfei Sun, Yong Zhu and Mingpeng Yang
Appl. Sci. 2026, 16(2), 737; https://doi.org/10.3390/app16020737 - 10 Jan 2026
Viewed by 167
Abstract
Droplet microarrays are increasingly used for miniaturized, high-throughput biochemical assays, yet their fabrication commonly relies on complex lithographic processes, custom masks, or specialized coatings. Here we present a simple method for generating hydrophilic arrays on hydrophobic plastic substrates by combining ultrasonic atomization with [...] Read more.
Droplet microarrays are increasingly used for miniaturized, high-throughput biochemical assays, yet their fabrication commonly relies on complex lithographic processes, custom masks, or specialized coatings. Here we present a simple method for generating hydrophilic arrays on hydrophobic plastic substrates by combining ultrasonic atomization with off-the-shelf perforated masks. A fine mist of poly(vinyl alcohol) (PVA) solution is directed through commercial diamond sieves onto polypropylene (PP) sheets and polystyrene (PS) sheets, forming hydrophilic spots surrounded by the native hydrophobic background. Static contact angle measurements confirm a strong local contrast in wettability (from 100.85 ± 0.91° on untreated PP to 39.96 ± 0.71° on patterned spots, from 95.68 ± 3.61° on untreated PS to 52.00 ± 0.85° on patterned spots), while Image analysis shows droplet CVs of 6–8% in aqueous dye solutions for 1.2–2.0 mm masks; in complex media (LB), droplet uniformity decreases. By mounting the moving mask on a motorized stage, we generate one-dimensional reagent gradients simply by controlling the moving mask motion during atomization. We further demonstrate biological compatibility by culturing Escherichia coli in LB droplets containing resazurin, and by performing localized antibiotic screening using a moving mask-guided streptomycin gradient. The resulting droplet-wise viability data yield an on-chip dose–response curve with an IC50 of 5.1 µg · mL−1 (95% CI: 4.5–5.6 µg·mL−1), obtained from a single array. Covering droplets with Electronic Fluorinated Fluid maintains volumes within 5% of their initial value over 24 h. Compared with conventional droplet microarray fabrication, the proposed method eliminates custom mask production and cleanroom steps, is compatible with standard plastic labware, and intrinsically supports spatial gradients. These attributes make masked ultrasonic atomization a practical platform for high-throughput microfluidic assays, especially in resource-limited settings. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

10 pages, 2807 KB  
Article
Dual-Electrodes PMUTs on Glasses for Wearable Human Blink Monitoring
by Xiao-Xin Liang, Haochen Wu and Yong Wang
Micromachines 2026, 17(1), 90; https://doi.org/10.3390/mi17010090 - 9 Jan 2026
Viewed by 369
Abstract
Blink monitoring has demonstrated significant application value in fields such as safety assessments, medical monitoring, and intelligent technologies. Traditional eye monitoring methods are limited by restricted adaptability, insufficient comfort, or potential risks. MEMS-based ultrasonic technology, as a non-contact approach, has garnered attention due [...] Read more.
Blink monitoring has demonstrated significant application value in fields such as safety assessments, medical monitoring, and intelligent technologies. Traditional eye monitoring methods are limited by restricted adaptability, insufficient comfort, or potential risks. MEMS-based ultrasonic technology, as a non-contact approach, has garnered attention due to its strong environmental adaptability, privacy, and security. However, existing designs require high-sensitivity processing circuits and are incompatible with standard fabrication processes. This work proposes a dual-electrode piezoelectric micro-mechanical ultrasonic transducer (PMUT) design based on aluminum nitride (AlN) piezoelectric thin films, integrated into a glasses device to enable real-time blink activity monitoring. The design successfully identifies blink states through time-of-flight (TOF) pulse-echo technology and dynamic unsupervised learning methods. Fabricated using cost-effective standard multi-user MEMS processes, this device offers distinct merits in terms of wearability comfort, information security, biosafety, and reliability. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

15 pages, 10135 KB  
Article
Cooling and Lubrication Performance Analysis in Ultrasonic Vibration-Assisted Grinding by Heat Pipe Grinding Wheel
by Shuai Wang, Yongchen Xie, Bo Pan, Ning Qian, Sławomir Pietrowicz, Wenfeng Ding and Yucan Fu
Lubricants 2026, 14(1), 30; https://doi.org/10.3390/lubricants14010030 - 9 Jan 2026
Viewed by 222
Abstract
Due to low thermal conductivity and high specific strength, nickel-based superalloys are prone to service performance degradation caused by thermal damage during traditional high-efficiency grinding processes. Although the heat pipe grinding wheel with minimum quantity lubrication (HPGW-MQL) technology can reduce the probability of [...] Read more.
Due to low thermal conductivity and high specific strength, nickel-based superalloys are prone to service performance degradation caused by thermal damage during traditional high-efficiency grinding processes. Although the heat pipe grinding wheel with minimum quantity lubrication (HPGW-MQL) technology can reduce the probability of thermal damage to a certain extent, further breakthroughs are still needed. Therefore, this study proposes a new integrated process of ultrasonic vibration-assisted grinding by heat pipe grinding wheel with minimum quantity lubrication (UVAG-HPGW-MQL), aiming to balance the requirements of green grinding and the optimization of grinding performance for nickel-based superalloys. However, the mechanism of action of ultrasonic vibration on the cooling and lubrication performance of the proposed process remains unclear. Given that, comparative experiments between UVAG-HPGW-MQL and HPGW-MQL were conducted, focusing on exploring the influence of ultrasonic vibration on their cooling and lubrication performance. The experimental results, obtained when the grinding speed, workpiece feed rate, and grinding depth were set at 15–35 m/s, 40–120 mm/min, and 0.05–0.25 mm, respectively, indicate that, compared with HPGW-MQL, ultrasonic vibration causes periodic “contact-separation” between grains and workpiece. This dynamic process shortens the contact length between grains and workpiece, leading to maximum reductions of 43.85%, 22.15%, 34.16%, and 30.77% in grinding force, grinding force ratio, grinding temperature, and specific grinding energy, respectively. On the other hand, the ultrasonic cavitation effect causes atomization of the lubricating oil film adsorbed on the workpiece surface, leading to a decrease in lubrication performance and resulting in a maximum increase of 27.27% in the friction coefficient. This study provides new theoretical support and technical approaches for the green grinding of nickel-based superalloys. Full article
(This article belongs to the Special Issue Tribology in Cryogenic Machining)
Show Figures

Figure 1

Back to TopTop