Abstract
Traditional ultrasonic bolt stress measurement is hindered by high power consumption. Lowering excitation voltage reduces power but degrades signal-to-noise ratio (SNR), compromising accuracy. This paper proposes a synergistic algorithm combining Empirical Mode Decomposition (EMD) with Adaptive Threshold Wavelet Denoising (ATWD). The method preserves transient features by reconstructing high-frequency components via EMD, then suppresses noise by precisely processing low-frequency components using ATWD. Finally, cross-correlation estimates ultrasonic delay. Evaluated at excitation voltages from 12 V to 0.5 V, the EMD-ATWD method maintains measurement errors below 10% even at 0.5 V, improving accuracy by over 48% compared to conventional Finite Impulse Response (FIR) and Threshold Wavelet Denoising (WTD) methods, while enhancing key echo waveform fidelity by over 35%. This method provides a reliable low-power bolt stress monitoring idea for engineering applications.