Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = ultrasonic flow sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3481 KB  
Article
A New and Smart Gas Meter with Blockchain Validation for Distributed Management of Energy Tokens
by Luciano Chiominto, Giulio D’Emilia, Paolo Esposito, Giuseppe Ferri, Emanuela Natale, Dario Polverini, Paolo Spinozzi, Vincenzo Stornelli and Luca Chiavaroli
Eng 2025, 6(11), 290; https://doi.org/10.3390/eng6110290 - 28 Oct 2025
Viewed by 2473
Abstract
The design philosophy of a new smart gas meter is presented, based on an ultrasonic sensor employing LoRa and/or NB-IoT protocols and blockchain technologies to overcome the data integrity and security issues with a completely modular design. The architecture is organized into two [...] Read more.
The design philosophy of a new smart gas meter is presented, based on an ultrasonic sensor employing LoRa and/or NB-IoT protocols and blockchain technologies to overcome the data integrity and security issues with a completely modular design. The architecture is organized into two separate blocks, the former for measurement and the latter for communication, and it presents original characteristics with respect to the state of the art. The accuracy of measured data is studied, paying attention to the fluid dynamic effects of the geometrical layout on the flow rate ultrasonic sensor and the environmental temperature and pressure for variable gas flow rate values. As for data security issues, the proposed solution is critically analyzed with reference to the data string organization and the procedure by which the data are stored and prepared for transmission into the blockchain. Finally, a local network of counters is designed and simulated in order to check the compliance of the provided hardware and software solutions with the predicted computational load. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

19 pages, 5202 KB  
Article
Optimizing Energy/Current Fluctuation of RF-Powered Secure Adiabatic Logic for IoT Devices
by Bendito Freitas Ribeiro and Yasuhiro Takahashi
Sensors 2025, 25(14), 4419; https://doi.org/10.3390/s25144419 - 16 Jul 2025
Viewed by 966
Abstract
The advancement of Internet of Things (IoT) technology has enabled battery-powered devices to be deployed across a wide range of applications; however, it also introduces challenges such as high energy consumption and security vulnerabilities. To address these issues, adiabatic logic circuits offer a [...] Read more.
The advancement of Internet of Things (IoT) technology has enabled battery-powered devices to be deployed across a wide range of applications; however, it also introduces challenges such as high energy consumption and security vulnerabilities. To address these issues, adiabatic logic circuits offer a promising solution for achieving energy efficiency and enhancing the security of IoT devices. Adiabatic logic circuits are well suited for energy harvesting systems, especially in applications such as sensor nodes, RFID tags, and other IoT implementations. In these systems, the harvested bipolar sinusoidal RF power is directly used as the power supply for the adiabatic logic circuit. However, adiabatic circuits require a peak detector to provide bulk biasing for pMOS transistors. To meet this requirement, a diode-connected MOS transistor-based voltage doubler circuit is used to convert the sinusoidal input into a usable DC signal. In this paper, we propose a novel adiabatic logic design that maintains low power consumption while optimizing energy and current fluctuations across various input transitions. By ensuring uniform and complementary current flow in each transition within the logic circuit’s functional blocks, the design reduces energy variation and enhances resistance against power analysis attacks. Evaluation under different clock frequencies and load capacitances demonstrates that the proposed adiabatic logic circuit exhibits lower fluctuation and improved security, particularly at load capacitances of 50 fF and 100 fF. The results show that the proposed circuit achieves lower power dissipation compared to conventional designs. As an application example, we implemented an ultrasonic transmitter circuit within a LoRaWAN network at the end-node sensor level, which serves as both a communication protocol and system architecture for long-range communication systems. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Sensors 2025)
Show Figures

Figure 1

20 pages, 3828 KB  
Article
Research on Measurement Error Distribution and Optimization Measurement Method of Clamp-On Ultrasonic Flowmeter in Downstream Pipeline Disturbance
by Zhongzhi Yang, Wei Wang, Xianjie Liu, Xin Chen, Xia Li and Xiaofeng Lu
Sensors 2025, 25(13), 4011; https://doi.org/10.3390/s25134011 - 27 Jun 2025
Viewed by 1323
Abstract
Clamp-on ultrasonic flowmeters serve as an important tool for on-site testing of gas flow meters. However, its accuracy is significantly affected by the actual flow field, thus limiting its application scenarios. To address this issue, this study focuses on typical industrial disturbance structures [...] Read more.
Clamp-on ultrasonic flowmeters serve as an important tool for on-site testing of gas flow meters. However, its accuracy is significantly affected by the actual flow field, thus limiting its application scenarios. To address this issue, this study focuses on typical industrial disturbance structures and obtains the evolution and distribution of non-ideal flow fields downstream of disturbances through experiments and numerical simulations, as well as their effects on velocity and flow measurement errors. The results indicate that when traditional reflection or diagonal measurements were used in the downstream of disturbances, the flow deviation was largely dependent on the installation position and angle of the clamp-on ultrasonic flowmeter. This introduced significant uncertainty and bias, rendering it impossible to correct measurement results through quantitative coefficients. Utilizing a dual-channel measurement method can enhance measurement accuracy. When two sets of sensors perpendicular to each other were used to combine the reflection measurement path, the deviation fluctuation downstream of disturbances can be effectively controlled within the range of ±2%, irrespective of the installation angle. This measurement approach significantly reduced the distance limitations on the distance of the straight pipe section during the use of clamp-on ultrasonic flowmeters. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

20 pages, 11233 KB  
Article
Capturing Free Surface Dynamics of Flows over a Stepped Spillway Using a Depth Camera
by Megh Raj K C, Brian M. Crookston and Daniel B. Bung
Sensors 2025, 25(8), 2525; https://doi.org/10.3390/s25082525 - 17 Apr 2025
Cited by 1 | Viewed by 1287
Abstract
Spatio-temporal measurements of turbulent free surface flows remain challenging with in situ point methods. This study explores the application of an inexpensive depth-sensing RGB-D camera, the Intel® RealSense™ D455, to capture detailed water surface measurements of a highly turbulent, self-aerated flow in [...] Read more.
Spatio-temporal measurements of turbulent free surface flows remain challenging with in situ point methods. This study explores the application of an inexpensive depth-sensing RGB-D camera, the Intel® RealSense™ D455, to capture detailed water surface measurements of a highly turbulent, self-aerated flow in the case of a stepped spillway. Ambient lighting conditions and various sensor settings, including configurations and parameters affecting data capture and quality, were assessed. A free surface profile was extracted from the 3D measurements and compared against phase detection conductivity probe (PDCP) and ultrasonic sensor (USS) measurements. Measurements in the non-aerated region were influenced by water transparency and a lack of detectable surface features, with flow depths consistently smaller than USS measurements (up to 32.5% less). Measurements in the clear water region also resulted in a “no data” region with holes in the depth map due to shiny reflections. In the aerated flow region, the camera effectively detected the dynamic water surface, with mean surface profiles close to characteristic depths measured with PDCP and within one standard deviation of the mean USS flow depths. The flow depths were within 10% of the USS depths and corresponded to depths with 80–90% air concentration levels obtained with the PDCP. Additionally, the depth camera successfully captured temporal fluctuations, allowing for the calculation of time-averaged entrapped air concentration profiles and dimensionless interface frequency distributions. This facilitated a direct comparison with PDCP and USS sensors, demonstrating that this camera sensor is a practical and cost-effective option for detecting free surfaces of high velocity, aerated, and dynamic flows in a stepped chute. Full article
(This article belongs to the Special Issue 3D Reconstruction with RGB-D Cameras and Multi-sensors)
Show Figures

Figure 1

21 pages, 6975 KB  
Article
A Real-Time Water Level and Discharge Monitoring Station: A Case Study of the Sakarya River
by Fatma Demir and Osman Sonmez
Appl. Sci. 2025, 15(4), 1910; https://doi.org/10.3390/app15041910 - 12 Feb 2025
Cited by 2 | Viewed by 3624
Abstract
This study details the design and implementation of a real-time river monitoring station established on the Sakarya River, capable of instantaneously tracking water levels and flow rates. The system comprises an ultrasonic distance sensor, a GSM module (Global System for Mobile Communications), which [...] Read more.
This study details the design and implementation of a real-time river monitoring station established on the Sakarya River, capable of instantaneously tracking water levels and flow rates. The system comprises an ultrasonic distance sensor, a GSM module (Global System for Mobile Communications), which enables real-time wireless data transmission to a server via cellular networks, a solar panel, a battery, and a microcontroller board. The river monitoring station operates by transmitting water level data collected by the ultrasonic distance sensor to a server via a communication module developed on a microcontroller board using an Arduino program, and then sharing these data through a web interface. The developed system performs regular and continuous water level readings without the need for human intervention. During the installation and calibration of the monitoring station, laboratory and field tests were conducted, and the obtained data were validated by comparison with data from the hydropower plant located upstream. This system, mounted on a bridge, measures water levels twice per minute and sends these data to the relevant server via the GSM module. During this process, precipitation data were utilized as a critical reference point for validating measurement data for the 2023 hydrological year, with changes in precipitation directly correlated with river water levels and calculated flow values, which were analyzed accordingly. The real-time river monitoring station allows for instantaneous monitoring of the river, achieving a measurement accuracy of within 0.1%. The discharge values recorded by the system showed a high correlation (r2 = 0.92) with data from the hydropower plant located upstream of the system, providing an accurate and comprehensive database for water resource management, natural disaster preparedness, and environmental sustainability. Additionally, the system incorporates early warning mechanisms that activate when critical water levels are reached, enabling rapid response to potential flood risks. By combining energy-independent operation with IoT (Internet Of Things)-based communication infrastructure, the developed system offers a sustainable solution for real-time environmental monitoring. The system demonstrates strong applicability in field conditions and contributes to advancing technologies in flood risk management and water resource monitoring. Full article
Show Figures

Figure 1

13 pages, 833 KB  
Article
Low-Complexity Ultrasonic Flowmeter Signal Processor Using Peak Detector-Based Envelope Detection
by Myeong-Geon Yu and Dong-Sun Kim
J. Sens. Actuator Netw. 2025, 14(1), 12; https://doi.org/10.3390/jsan14010012 - 30 Jan 2025
Cited by 4 | Viewed by 2679
Abstract
Ultrasonic flowmeters are essential sensor devices widely used in remote metering systems, smart grids, and monitoring systems. In these environments, a low-power design is critical to maximize energy efficiency. Real-time data collection and remote consumption monitoring through remote metering significantly enhance network flexibility [...] Read more.
Ultrasonic flowmeters are essential sensor devices widely used in remote metering systems, smart grids, and monitoring systems. In these environments, a low-power design is critical to maximize energy efficiency. Real-time data collection and remote consumption monitoring through remote metering significantly enhance network flexibility and efficiency. This paper proposes a low-complexity structure that ensures an accurate time-of-flight (ToF) estimation within an acceptable error range while reducing computational complexity. The proposed system utilizes Hilbert envelope detection and a differentiator-based parallel peak detector. It transmits and collects data through ultrasonic transmitter and receiver transducers and is designed for seamless integration as a node into wireless sensor networks (WSNs). The system can be involved in various IoT and industrial applications through high energy efficiency and real-time data transmission capabilities. The proposed structure was validated using the MATLAB software, with an LPG gas flowmeter as the medium. The results demonstrated a mean relative deviation of 5.07% across a flow velocity range of 0.1–1.7 m/s while reducing hardware complexity by 78.9% compared to the conventional FFT-based cross-correlation methods. This study presents a novel design integrating energy-efficient ultrasonic flowmeters into remote metering systems, smart grids, and industrial monitoring applications. Full article
Show Figures

Figure 1

20 pages, 5477 KB  
Article
Development of Virtual Water Flow Sensor Using Valve Performance Curve
by Taeyang Kim, Hyojun Kim, Jinhyun Lee and Younghum Cho
J. Sens. Actuator Netw. 2025, 14(1), 1; https://doi.org/10.3390/jsan14010001 - 24 Dec 2024
Viewed by 2136
Abstract
This research focuses on addressing the limitations of conventional physical sensors and developing a virtual water flow rate prediction technology. With HVAC systems being increasingly adopted, research on optimizing control settings based on load variations is critical. Existing systems often operate based on [...] Read more.
This research focuses on addressing the limitations of conventional physical sensors and developing a virtual water flow rate prediction technology. With HVAC systems being increasingly adopted, research on optimizing control settings based on load variations is critical. Existing systems often operate based on peak load conditions, leading to energy overconsumption in partial load scenarios. Physical sensors used for water flow measurement face challenges such as installation difficulties in constrained spaces and increased costs in large buildings. Virtual water flow rate prediction technology offers a cost-effective solution by leveraging in situ measurement data instead of extensive physical sensors. To achieve this, a test bed with a pump, valve, and heat pump was used, controlled via a BAS. Water flow rate was measured using an ultrasonic flow meter, and differential pressure was recorded using pressure gauges. Equations were developed to replace differential pressure values with valve opening rates and pump speeds by deriving performance curves and differential pressure ratio equations. Measurement uncertainty was calculated to assess the reliability of the experimental setup. Various test numbers were created to evaluate the virtual water flow rate model under controlled conditions. The results showed that relative errors ranged from 0.32% to 10.54%, with RMSE, MBE, and CvRMSE meeting all threshold criteria. The virtual water flow rate model demonstrated strong predictive accuracy and reliability, supported by an R2 value close to 1. This research confirms the effectiveness of the proposed model for reducing the dependence on physical sensors while enabling accurate water flow rate predictions in HVAC systems. Full article
Show Figures

Figure 1

6 pages, 1117 KB  
Proceeding Paper
Development and Prototyping of Oxygen Analyzer
by Bidheyak Pokharel, Deepa Beeta Thiyam, Sachin Devkota and Devanand Kumar Sah
Eng. Proc. 2024, 82(1), 82; https://doi.org/10.3390/ecsa-11-20447 - 25 Nov 2024
Viewed by 1279
Abstract
In the context of developing countries, medical instruments are imported from foreign countries. To overcome this challenge, herein the design of an oxygen analyzer using ultrasonic flow sensor technology and a microcontroller while promoting local innovation and reducing dependency on imported equipment is [...] Read more.
In the context of developing countries, medical instruments are imported from foreign countries. To overcome this challenge, herein the design of an oxygen analyzer using ultrasonic flow sensor technology and a microcontroller while promoting local innovation and reducing dependency on imported equipment is presented. Moreover, this design aims to enhance patient care by ensuring accurate oxygen concentration and flow rate measurements on ventilators and oxygen concentrators. The data measured using the proposed system have been validated by comparison with data obtained using standard oxygen analyzer equipment like the VT-900 Gas Flow Analyzer from Fluke Biomedical and the Ultra Max oxygen analyzer. Measurements were conducted on hospital ventilators, with oxygen concentration (FiO2) being set to range from 21% to 100%, with increments of 5%, and the flow rate was set to range from 1 L/m to 10 L/m. The results show an error value of 2.1% for oxygen concentration measurements and a value of 0.6 L/m for flow rate measurements. Based on our analysis, it can be concluded that the proposed system works well. Additionally, it offers portability, affordability, and user-friendliness, overcoming the limitations of existing options. This project seeks to contribute to the healthcare infrastructure in developing countries like Nepal, India, Bangladesh, etc., by providing a domestically produced solution for oxygen analysis. Full article
Show Figures

Figure 1

18 pages, 17071 KB  
Article
Multiphysics Measurements for Detection of Gas Hydrate Formation in Undersaturated Oil Coreflooding Experiments with Seawater Injection
by Bianca L. S. Geranutti, Mathias Pohl, Daniel Rathmaier, Somayeh Karimi, Manika Prasad and Luis E. Zerpa
Energies 2024, 17(13), 3280; https://doi.org/10.3390/en17133280 - 4 Jul 2024
Cited by 6 | Viewed by 1655
Abstract
A solid phase of natural gas hydrates can form from dissolved gas in oil during cold water injection into shallow undersaturated oil reservoirs. This creates significant risks to oil production due to potential permeability reduction and flow assurance issues. Understanding the conditions under [...] Read more.
A solid phase of natural gas hydrates can form from dissolved gas in oil during cold water injection into shallow undersaturated oil reservoirs. This creates significant risks to oil production due to potential permeability reduction and flow assurance issues. Understanding the conditions under which gas hydrates form and their impact on reservoir properties is important for optimizing oil recovery processes and ensuring the safe and efficient operation of oil reservoirs subject to waterflooding. In this work, we present two fluid displacement experiments under temperature control using Bentheimer sandstone core samples. A large diameter core sample of 3 inches in diameter and 10 inches in length was instrumented with multiphysics sensors (i.e., ultrasonic, electrical conductivity, strain, and temperature) to detect the onset of hydrate formation during cooling/injection steps. A small diameter core sample of 1.5 inches in diameter and 12 inches in length was used in a coreflooding apparatus with high-precision pressure transducers to determine the effect of hydrate formation on rock permeability. The fluid phase transition to solid hydrate phase was detected during the displacement of live-oil with injected water. The experimental procedure consisted of cooling and injection steps. Gas hydrate formation was detected from ultrasonic measurements at 7 °C, while strain measurements registered changes at 4 °C after gas hydrate concentration increased further. Ultrasonic velocities indicated the pore-filling morphology of gas hydrates, resulting in a high hydrate saturation of theoretically up to 38% and a substantial risk of intrinsic permeability reduction in the reservoir rock due to pore blockage by hydrates. Full article
Show Figures

Figure 1

21 pages, 6252 KB  
Article
A Cold Flow Model of Interconnected Slurry Bubble Columns for Sorption-Enhanced Fischer–Tropsch Synthesis
by Wiebke Asbahr, Robin Lamparter and Reinhard Rauch
ChemEngineering 2024, 8(3), 52; https://doi.org/10.3390/chemengineering8030052 - 8 May 2024
Cited by 2 | Viewed by 2837
Abstract
For technical application with continuous operation of sorption-enhanced (SE) reactions, e.g., Fischer–Tropsch, a special reactor concept is required. SE processes are promising due to the negative effects of water on conversion and catalyst. The reactor concept of two interconnected slurry bubble columns combines [...] Read more.
For technical application with continuous operation of sorption-enhanced (SE) reactions, e.g., Fischer–Tropsch, a special reactor concept is required. SE processes are promising due to the negative effects of water on conversion and catalyst. The reactor concept of two interconnected slurry bubble columns combines the reaction with in situ water removal in the first, and sorbent regeneration in the second column with continuous exchange of slurry between the two. The liquid circulation rate (LCR) between the columns is studied in a cold flow model, measured by an ultrasonic sensor. The effects of different operating and geometric parameters, e.g., superficial gas velocity, liquid level and tube diameter on gas holdup and LCR are discussed and modelled via artificial intelligence methods, i.e., extremely randomized trees and neural networks. It was found that the LCR strongly depends on the gas holdup. The maximum of 4.28 L min−1 was reached with the highest exit, widest tube and highest superficial gas velocity of 0.15 m s−1. The influence of liquid level above the exit was marginal but water quality has to be considered. Both models offer predictions of the LCR with errors < 6%. With an extension of the models, particle circulation can be studied in the future. Full article
Show Figures

Figure 1

30 pages, 5445 KB  
Article
End-to-End Ultrasonic Hand Gesture Recognition
by Elfi Fertl, Do Dinh Tan Nguyen, Martin Krueger, Georg Stettinger, Rubén Padial-Allué, Encarnación Castillo and Manuel P. Cuéllar
Sensors 2024, 24(9), 2740; https://doi.org/10.3390/s24092740 - 25 Apr 2024
Cited by 2 | Viewed by 3939
Abstract
As the number of electronic gadgets in our daily lives is increasing and most of them require some kind of human interaction, this demands innovative, convenient input methods. There are limitations to state-of-the-art (SotA) ultrasound-based hand gesture recognition (HGR) systems in terms of [...] Read more.
As the number of electronic gadgets in our daily lives is increasing and most of them require some kind of human interaction, this demands innovative, convenient input methods. There are limitations to state-of-the-art (SotA) ultrasound-based hand gesture recognition (HGR) systems in terms of robustness and accuracy. This research presents a novel machine learning (ML)-based end-to-end solution for hand gesture recognition with low-cost micro-electromechanical (MEMS) system ultrasonic transducers. In contrast to prior methods, our ML model processes the raw echo samples directly instead of using pre-processed data. Consequently, the processing flow presented in this work leaves it to the ML model to extract the important information from the echo data. The success of this approach is demonstrated as follows. Four MEMS ultrasonic transducers are placed in three different geometrical arrangements. For each arrangement, different types of ML models are optimized and benchmarked on datasets acquired with the presented custom hardware (HW): convolutional neural networks (CNNs), gated recurrent units (GRUs), long short-term memory (LSTM), vision transformer (ViT), and cross-attention multi-scale vision transformer (CrossViT). The three last-mentioned ML models reached more than 88% accuracy. The most important innovation described in this research paper is that we were able to demonstrate that little pre-processing is necessary to obtain high accuracy in ultrasonic HGR for several arrangements of cost-effective and low-power MEMS ultrasonic transducer arrays. Even the computationally intensive Fourier transform can be omitted. The presented approach is further compared to HGR systems using other sensor types such as vision, WiFi, radar, and state-of-the-art ultrasound-based HGR systems. Direct processing of the sensor signals by a compact model makes ultrasonic hand gesture recognition a true low-cost and power-efficient input method. Full article
Show Figures

Figure 1

14 pages, 5054 KB  
Article
Piezoelectric Micromachined Ultrasonic Transducers with Micro-Hole Inter-Etch and Sealing Process on (111) Silicon Wafer
by Yunhao Wang, Sheng Wu, Wenjing Wang, Tao Wu and Xinxin Li
Micromachines 2024, 15(4), 482; https://doi.org/10.3390/mi15040482 - 30 Mar 2024
Cited by 5 | Viewed by 5850
Abstract
Piezoelectric micromachined ultrasound transducers (PMUTs) have gained significant popularity in the field of ultrasound ranging and medical imaging owing to their small size, low power consumption, and affordability. The scar-free “MIS” (micro-hole inter-etch and sealing) process, a novel bulk-silicon manufacturing technique, has been [...] Read more.
Piezoelectric micromachined ultrasound transducers (PMUTs) have gained significant popularity in the field of ultrasound ranging and medical imaging owing to their small size, low power consumption, and affordability. The scar-free “MIS” (micro-hole inter-etch and sealing) process, a novel bulk-silicon manufacturing technique, has been successfully developed for the fabrication of pressure sensors, flow sensors, and accelerometers. In this study, we utilize the MIS process to fabricate cavity diaphragm structures for PMUTs, resulting in the formation of a flat cavity diaphragm structure through anisotropic etching of (111) wafers in a 70 °C tetramethylammonium hydroxide (TMAH) solution. This study investigates the corrosion characteristics of the MIS technology on (111) silicon wafers, arranges micro-pores etched on bulk silicon around the desired cavity structure in a regular pattern, and takes into consideration the distance compensation for lateral corrosion, resulting in a fully connected cavity structure closely approximating an ortho-hexagonal shape. By utilizing a sputtering process to deposit metallic molybdenum as upper and lower electrodes, as well as piezoelectric materials above the cavity structure, we have successfully fabricated aluminum nitride (AlN) piezoelectric ultrasonic transducer arrays of various sizes and structures. The final hexagonal PMUT cells of various sizes that were fabricated achieved a maximum quality factor (Q) of 251 and a displacement sensitivity of 18.49 nm/V across a range of resonant frequencies from 6.28 MHz to 11.99 MHz. This fabrication design facilitates the achievement of IC-compatible and cost-effective mass production of PMUT array devices with high resonance frequencies. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

14 pages, 1241 KB  
Article
Reliability of Domestic Gas Flow Sensors with Hydrogen Admixtures
by Giorgio Ficco, Marco Dell’Isola, Giorgio Graditi, Giulia Monteleone, Paola Gislon, Pawel Kulaga and Jacek Jaworski
Sensors 2024, 24(5), 1455; https://doi.org/10.3390/s24051455 - 23 Feb 2024
Cited by 4 | Viewed by 2388
Abstract
Static flow sensors (e.g., thermal gas micro electro-mechanical sensors—MEMS—and ultrasonic time of flight) are becoming the prevailing technology for domestic gas metering and billing since they show advantages in respect to the traditional volumetric ones. However, they are expected to be influenced in-service [...] Read more.
Static flow sensors (e.g., thermal gas micro electro-mechanical sensors—MEMS—and ultrasonic time of flight) are becoming the prevailing technology for domestic gas metering and billing since they show advantages in respect to the traditional volumetric ones. However, they are expected to be influenced in-service by changes in gas composition, which in the future could be more frequent due to the spread of hydrogen admixtures in gas networks. In this paper, the authors present the results of an experimental campaign aimed at analyzing the in-service reliability of both static and volumetric gas meters with different hydrogen admixtures. The results show that the accuracy of volumetric and ultrasonic meters is always within the admitted limits for subsequent verification and even within those narrower of the initial verification. On the other hand, the accuracy of the first generation of thermal mass gas flow sensors is within the limits of the verification only when the hydrogen admixture is below 2%vol. At higher hydrogen content, in fact, the absolute weighted mean error ranges between 3.5% (with 5%vol of hydrogen) and 15.8% (with 10%vol of hydrogen). Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

15 pages, 3154 KB  
Article
Hydrodynamic Modeling for Flow and Velocity Estimation from an Arduino Ultrasonic Sensor
by Tatiane Souza Rodrigues Pereira, Thiago Pires de Carvalho, Thiago Augusto Mendes, Guilherme da Cruz dos Reis and Klebber Teodomiro Martins Formiga
Hydrology 2024, 11(2), 12; https://doi.org/10.3390/hydrology11020012 - 23 Jan 2024
Cited by 2 | Viewed by 3767
Abstract
Flow is a crucial variable in water resources, although its determination is challenging. Rating curves are standard but have conceptual limitations, leading to significantly high uncertainties. Hydrodynamic models offer a more precise alternative, but they necessitate continuous measurements of velocities, which are complex [...] Read more.
Flow is a crucial variable in water resources, although its determination is challenging. Rating curves are standard but have conceptual limitations, leading to significantly high uncertainties. Hydrodynamic models offer a more precise alternative, but they necessitate continuous measurements of velocities, which are complex and expensive to obtain. Thus, this article aimed to validate a hydrodynamic model that estimates flows and velocities in transient conditions based on water levels measured using a low-cost ultrasonic sensor. The results indicated that these estimates can be reliable if (1) hydrodynamic models are used to represent the flow, (2) the channel bed slope is well represented in the geometric data, and (3) Manning’s coefficients are accurately estimated during calibration. The calculated flow and velocity showed a maximum variation of 40% for the same water level compared to estimates using the rating curve. The model exhibited higher sensitivity in terms of the flow when varying the channel bed slope, highlighting the importance of topographic surveys for the estimates. The validity of the implemented model was assessed with experimental data, indicating precision and reliability for practical applications in natural channels. Full article
(This article belongs to the Special Issue Advances in River Monitoring)
Show Figures

Figure 1

14 pages, 5159 KB  
Article
A Gas Flow Measurement System Based on Lead Zirconate Titanate Piezoelectric Micromachined Ultrasonic Transducer
by Tao Liu, Zhihao Li, Jiahuan Zhang, Dongxiao Li, Hanjie Dou, Pengfan Wu, Jiaqian Yang, Wangyang Zhang and Xiaojing Mu
Micromachines 2024, 15(1), 45; https://doi.org/10.3390/mi15010045 - 25 Dec 2023
Cited by 15 | Viewed by 2806
Abstract
Ultrasonic flowmeter is one of the most widely used devices in flow measurement. Traditional bulk piezoelectric ceramic transducers restrict their application to small pipe diameters. In this paper, we propose an ultrasonic gas flowmeter based on a PZT piezoelectric micromachined ultrasonic transducer (PMUT) [...] Read more.
Ultrasonic flowmeter is one of the most widely used devices in flow measurement. Traditional bulk piezoelectric ceramic transducers restrict their application to small pipe diameters. In this paper, we propose an ultrasonic gas flowmeter based on a PZT piezoelectric micromachined ultrasonic transducer (PMUT) array. Two PMUT arrays with a resonant frequency of 125 kHz are used as the sensitive elements of the ultrasonic gas flowmeter to realize alternate transmission and reception of ultrasonic signals. The sensor contains 5 × 5 circular elements with a size of 3.7 × 3.7 mm2. An FPGA with a resolution of ns is used to process the received signal, and a flow system with overlapping acoustic paths and flow paths is designed. Compared with traditional measurement methods, the sensitivity is greatly improved. The flow system achieves high-precision measurement of gas flow in a 20 mm pipe diameter. The flow measurement range is 0.5–7 m/s and the relative error of correction is within 4%. Full article
(This article belongs to the Special Issue MEMS Ultrasonic Transducers and Their Applications)
Show Figures

Figure 1

Back to TopTop