Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (389)

Search Parameters:
Keywords = ultrashort pulsed laser

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 14292 KiB  
Article
Non-Fourier Thermoelastic Peridynamic Modeling of Cracked Thin Films Under Short-Pulse Laser Irradiation
by Tao Wu, Tao Xue, Yazhou Wang and Kumar Tamma
Modelling 2025, 6(3), 68; https://doi.org/10.3390/modelling6030068 - 15 Jul 2025
Viewed by 263
Abstract
In this paper, we develop a peridynamic computational framework to analyze thermomechanical interactions in fractured thin films subjected to ultrashort-pulsed laser excitation, employing nonlocal discrete material point discretization to eliminate mesh dependency artifacts. The generalized Cattaneo–Fourier thermal flux formulation uncovers contrasting dynamic responses: [...] Read more.
In this paper, we develop a peridynamic computational framework to analyze thermomechanical interactions in fractured thin films subjected to ultrashort-pulsed laser excitation, employing nonlocal discrete material point discretization to eliminate mesh dependency artifacts. The generalized Cattaneo–Fourier thermal flux formulation uncovers contrasting dynamic responses: hyperbolic heat propagation (FT=0) generates intensified temperature localization and elevates transient crack-tip stress concentrations relative to classical Fourier diffusion (FT=1). A GSSSS (Generalized Single Step Single Solve) i-Integration temporal scheme achieves oscillation-free numerical solutions across picosecond-level laser–matter interactions, effectively resolving steep thermal fronts through adaptive stabilization. These findings underscore hyperbolic conduction’s essential influence on stress-mediated fracture evolution during ultrafast laser processing, providing critical guidelines for thermal management in micro-/nano-electromechanical systems. Full article
(This article belongs to the Special Issue The 5th Anniversary of Modelling)
Show Figures

Figure 1

21 pages, 3171 KiB  
Review
Self-Mode-Locking and Frequency-Modulated Comb Semiconductor Disk Lasers
by Arash Rahimi-Iman
Photonics 2025, 12(7), 677; https://doi.org/10.3390/photonics12070677 - 5 Jul 2025
Viewed by 545
Abstract
Optically pumped semiconductor disk lasers—known as vertical-external-cavity surface-emitting lasers (VECSELs)—are promising devices for ultrashort pulse formation. For it, a “SESAM-free” approach labeled “self-mode-locking” received considerable attention in the past decade, relying solely on a chip-related nonlinear optical property which can establish adequate pulsing [...] Read more.
Optically pumped semiconductor disk lasers—known as vertical-external-cavity surface-emitting lasers (VECSELs)—are promising devices for ultrashort pulse formation. For it, a “SESAM-free” approach labeled “self-mode-locking” received considerable attention in the past decade, relying solely on a chip-related nonlinear optical property which can establish adequate pulsing conditions—thereby suggesting a reduced reliance on a semiconductor saturable-absorber mirror (the SESAM) in the cavity. Self-mode-locked (SML) VECSELs with sub-ps pulse durations were reported repeatedly. This motivated investigations on a Kerr-lensing type effect acting as an artificial saturable absorber. So-called Z-scan and ultrafast beam-deflection experiments were conducted to emphasize the role of nonlinear lensing in the chip for pulse formation. Recently, in addition to allowing stable ultrashort pulsed operation, self-starting mode-locked operation gave rise to another emission regime related to frequency comb formation. While amplitude-modulated combs relate to signal peaks in time, providing a so-called pulse train, a frequency-modulated comb is understood to cause quasi continuous-wave output with its sweep of instantaneous frequency over the range of phase-locked modes. With gain-bandwidth-enhanced chips, as well as with an improved understanding of the impacts of dispersion and nonlinear lensing properties and cavity configurations on the device output, an enhanced employment of SML VECSELs is to be expected. Full article
(This article belongs to the Special Issue Laser Technology and Applications)
Show Figures

Figure 1

15 pages, 4154 KiB  
Article
Femtosecond Laser-Modulated Oxygen Vacancies in LiFePO4 Thick Electrodes for Rapid Ion Transport
by Xiaowei Han, Lu Chen, Hongshui Wang, Ban Chen, Tai Yang, Donghui Wang and Chunyong Liang
Coatings 2025, 15(7), 738; https://doi.org/10.3390/coatings15070738 - 20 Jun 2025
Viewed by 430
Abstract
Although thick electrodes hold significant potential for enhancing battery energy density, their practical application is limited by restricted ion transport kinetics. Constructing porous structures within thick electrodes is a widely adopted strategy to address this limitation, but it often compromises mass retention and [...] Read more.
Although thick electrodes hold significant potential for enhancing battery energy density, their practical application is limited by restricted ion transport kinetics. Constructing porous structures within thick electrodes is a widely adopted strategy to address this limitation, but it often compromises mass retention and mechanical integrity. In this study, a microchannel structure that balances the electrochemical and mechanical properties of the electrode was identified through simulation and precisely fabricated using femtosecond laser technology. Furthermore, the ultra-short pulse duration and high pulse energy of femtosecond lasers introduce oxygen vacancies into the electrode material, thereby enhancing its electrical conductivity. The obtained electrode exhibited excellent electrochemical performance under high-rate charging and discharging conditions, achieving significantly enhanced cycling stability and capacity retention, with a capacity 1.99 times greater than that of the unstructured electrode after 100 cycles. Meanwhile, the mechanical stability of the laser-processed electrode was maintained. This study provides new insights into the structural design and processing of the thick electrode and contributes to advancements in the field of energy storage. Full article
Show Figures

Graphical abstract

53 pages, 7134 KiB  
Review
Effects of Process Parameters on Pulsed Laser Micromachining for Glass-Based Microfluidic Devices
by Mrwan Alayed, Nojoud Al Fayez, Salman Alfihed, Naif Alshamrani and Fahad Alghannam
Materials 2025, 18(11), 2657; https://doi.org/10.3390/ma18112657 - 5 Jun 2025
Viewed by 834
Abstract
Glass-based microfluidic devices are essential for applications such as diagnostics and drug discovery, which utilize their optical clarity and chemical stability. This review systematically analyzes pulsed laser micromachining as a transformative technique for fabricating glass-based microfluidic devices, addressing the limitations of conventional methods. [...] Read more.
Glass-based microfluidic devices are essential for applications such as diagnostics and drug discovery, which utilize their optical clarity and chemical stability. This review systematically analyzes pulsed laser micromachining as a transformative technique for fabricating glass-based microfluidic devices, addressing the limitations of conventional methods. By examining three pulse regimes—long (≥nanosecond), short (picosecond), and ultrashort (femtosecond)—this study evaluates how laser parameters (fluence, scanning speed, pulse duration, repetition rate, wavelength) and glass properties influence ablation efficiency and quality. A higher fluence improves the material ablation efficiency across all the regimes but poses risks of thermal damage or plasma shielding in ultrashort pulses. Optimizing the scanning speed balances the depth and the surface quality, with slower speeds enhancing the channel depth but requiring heat accumulation mitigation. Shorter pulses (femtosecond regime) achieve greater precision (feature resolution) and minimal heat-affected zones through nonlinear absorption, while long pulses enable rapid deep-channel fabrication but with increased thermal stress. Elevating the repetition rate improves the material ablation rates but reduces the surface quality. The influence of wavelength on efficiency and quality varies across the three pulse regimes. Material selection is critical to outcomes and potential applications: fused silica demonstrates a superior surface quality due to low thermal expansion, while soda–lime glass provides cost-effective prototyping. The review emphasizes the advantages of laser micromachining and the benefits of a wide range of applications. Future directions should focus on optimizing the process parameters to improve the efficiency and quality of the produced devices at a lower cost to expand their uses in biomedical, environmental, and quantum applications. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

13 pages, 4277 KiB  
Article
Advancing Nanoscale Copper Deposition Through Ultrafast-Laser-Activated Surface Chemistry
by Modestas Sadauskas, Romualdas Trusovas, Evaldas Kvietkauskas, Viktorija Vrubliauskaitė, Ina Stankevičienė, Aldona Jagminienė, Tomas Murauskas, Dainius Balkauskas, Alexandr Belosludtsev and Karolis Ratautas
Nanomaterials 2025, 15(11), 830; https://doi.org/10.3390/nano15110830 - 30 May 2025
Viewed by 501
Abstract
Direct-writing submicron copper circuits on glass with laser precision—without lithography, vacuum deposition, or etching—represents a transformative step in next-generation microfabrication. We present a high-resolution, maskless method for metallizing glass using ultrashort pulse Bessel beam laser processing, followed by silver ion activation and electroless [...] Read more.
Direct-writing submicron copper circuits on glass with laser precision—without lithography, vacuum deposition, or etching—represents a transformative step in next-generation microfabrication. We present a high-resolution, maskless method for metallizing glass using ultrashort pulse Bessel beam laser processing, followed by silver ion activation and electroless copper plating. The laser-modified glass surface hosts nanoscale chemical defects that promote the in situ reduction of Ag+ to metallic Ag0 upon exposure to AgNO3 solution. These silver seeds act as robust catalytic and adhesion sites for subsequent copper growth. Using this approach, we demonstrate circuit traces as narrow as 0.7 µm, featuring excellent uniformity and adhesion. Compared to conventional redistribution-layer (RDL) and under-bump-metallization (UBM) techniques, this process eliminates multiple lithographic and vacuum-based steps, significantly reducing process complexity and production time. The method is scalable and adaptable for applications in transparent electronics, fan-out packaging, and high-density interconnects. Full article
Show Figures

Figure 1

13 pages, 5706 KiB  
Article
High-Repetition-Rate Targets for Plasma Mirror FROG on Chirped Picosecond Pulses
by Ștefan Popa, Andrei Nazîru, Ana-Maria Lupu, Dan Gh. Matei, Alice Dumitru, Cristian Alexe, Ioan Dăncuş, Claudiu A. Stan and Daniel Ursescu
Photonics 2025, 12(6), 533; https://doi.org/10.3390/photonics12060533 - 24 May 2025
Viewed by 449
Abstract
High-repetition-rate targets present an opportunity for developing diagnostic tools for on-demand calibration at high-power laser facilities for consistent performance and reproducibility during experimental campaigns. The non-linear change in transmission associated with a laser-driven plasma mirror, based on high-repetition rate targets, has been used [...] Read more.
High-repetition-rate targets present an opportunity for developing diagnostic tools for on-demand calibration at high-power laser facilities for consistent performance and reproducibility during experimental campaigns. The non-linear change in transmission associated with a laser-driven plasma mirror, based on high-repetition rate targets, has been used in a Frequency Resolved Optical Gating (FROG) configuration to analyze the spectral phase for near-infrared pulses far from the Fourier limit. Three types of targets were compared for characterizing pulses in the 1–8 ps range: a glass slide, a polymer tape, and a thin liquid sheet created by two impinging micrometer-scale jets. The thin liquid film had the best mechanical stability and introduced the least spectral distortion, allowing the most robust reconstruction of the temporal intensity profile. The spectral phase was reconstructed using a non-iterative algorithm, which reproduced the second-order phase distortions induced with an acousto-optic programmable dispersive filter with an RMS error of 6.2%, leading to measured pulse durations with an RMS deviation ranging from 1% for pulses of 6.8–7.8 ps up to 7.5% for pulses around 1 ps. Full article
(This article belongs to the Special Issue Recent Advances in Infrared Lasers and Applications)
Show Figures

Figure 1

10 pages, 3827 KiB  
Communication
Dynamic Observation of Ultrashort Pulses with Chaotic Features in a Tm-Doped Fiber Laser with a Single Mode Fiber–Grade Index Multimode Fiber–Single Mode Fiber Structure
by Zhenhong Wang, Zexin Zhou, Yubo Ji, Qiong Zeng, Yufeng Song, Geguo Du and Hongye Li
Photonics 2025, 12(5), 465; https://doi.org/10.3390/photonics12050465 - 9 May 2025
Viewed by 463
Abstract
In this study, we have demonstrated an ultrafast Tm-doped fiber laser utilizing the nonlinear multimode interference (NL-MMI) effect, with a single mode fiber–grade index multimode fiber–single mode fiber (SMF-GIMF-SMF) structure serving as the saturable absorber (SA). In addition to stable pulses, mode-locked pulses [...] Read more.
In this study, we have demonstrated an ultrafast Tm-doped fiber laser utilizing the nonlinear multimode interference (NL-MMI) effect, with a single mode fiber–grade index multimode fiber–single mode fiber (SMF-GIMF-SMF) structure serving as the saturable absorber (SA). In addition to stable pulses, mode-locked pulses with chaotic features can be obtained in this fiber laser, characterized by a high average output power and pulse energy, resembling noise-like pulses. By employing the time-stretch dispersive Fourier transform (TS-DFT) technology, it can be seen that the sub-pulses constituting these pulses exhibit noisy characteristics with random intensities and energies. Furthermore, the numerical simulations elucidate the corresponding generation mechanism and dynamic evolution. These findings significantly enhance the comprehension of pulse dynamics and offer novel insights into the technological development and application prospects of ultrafast fiber lasers. Full article
(This article belongs to the Special Issue Advances in Nonlinear Optics: From Fundamentals to Applications)
Show Figures

Figure 1

14 pages, 3836 KiB  
Article
The Impact of Laser Amplitude on the Radiation Characteristics of the Cross-Collision Between the Relativistic Electron and the Tightly Focused Linearly Polarized Laser
by Junze Shi, Junyuan Xu, Yizhang Li, Gang Yan and Youwei Tian
Appl. Sci. 2025, 15(9), 4974; https://doi.org/10.3390/app15094974 - 30 Apr 2025
Viewed by 323
Abstract
Within the framework of classical dynamics, the impact of laser amplitude on the cross-collision between a linearly polarized intense laser pulse and a relativistic electron under tight focusing conditions was investigated via numerical simulation. As the laser amplitude intensifies, the z-axis oscillation trajectory [...] Read more.
Within the framework of classical dynamics, the impact of laser amplitude on the cross-collision between a linearly polarized intense laser pulse and a relativistic electron under tight focusing conditions was investigated via numerical simulation. As the laser amplitude intensifies, the z-axis oscillation trajectory of the electron elongates. The spatial radiation angular distribution of the electron transforms from a “hill shape” to a “comet shape”, and the radiation peak shifts toward the direction of smaller polar angle, with the radiation concentrating in the forward position. The time spectrum is symmetrical; the number of peaks is reduced from multiple peaks to three peaks; and the relative height of the main peak and secondary peaks increases, with the time distribution gradually concentrating, which can be regarded as an ultrashort attosecond single pulse. The spectrum exhibits a multi-peak distribution trend. When the laser amplitude is relatively strong, radiation with a more concentrated frequency range and better quality can be output. The above research findings are beneficial for generating X-rays of higher quality and can be applied in fields such as biomedicine and atomic physics. Full article
Show Figures

Figure 1

15 pages, 1298 KiB  
Review
Medical Applications of Picosecond Lasers for Removal of Non-Tattoo Skin Lesions—A Comprehensive Review
by Anna Kroma-Szal, Mariola Pawlaczyk, Maria Urbańska, Julia Cieślawska, Daria Sobkowska, Iwona Pordąb and Justyna Gornowicz-Porowska
Appl. Sci. 2025, 15(9), 4719; https://doi.org/10.3390/app15094719 - 24 Apr 2025
Viewed by 2360
Abstract
Picosecond lasers are gaining increasing popularity in dermatology and aesthetic medicine due to their favorable safety profile and a wide range of therapeutic applications. While originally employed primarily for tattoo removal, their versatility has extended their use to the treatment of various aesthetic [...] Read more.
Picosecond lasers are gaining increasing popularity in dermatology and aesthetic medicine due to their favorable safety profile and a wide range of therapeutic applications. While originally employed primarily for tattoo removal, their versatility has extended their use to the treatment of various aesthetic skin conditions, including hyperpigmentation, acne scars, stretch marks, and signs of photoaging. Owing to their ultra-short pulse duration, picosecond lasers effectively target pigment particles and stimulate dermal remodeling, offering patients a safe and effective solution to improve the appearance of their skin. The introduction of the picosecond laser into clinical dermatology practice marks a notable advancement in addressing a broad spectrum of skin problems. Full article
9 pages, 1394 KiB  
Article
Sub-200 fs Polarization-Maintaining All-Fiber Thulium-Doped Dissipative Soliton Fiber Laser System at 1920 nm
by Timothy Lim, Shutao Xu, Lachlan Hooper, Maria Davey and Michelle Y. Sander
Photonics 2025, 12(4), 361; https://doi.org/10.3390/photonics12040361 - 10 Apr 2025
Viewed by 571
Abstract
A polarization-maintaining all-fiber laser source based on a nonlinear amplifying loop mirror with broadband operation (64 nm) around 1920 nm is demonstrated. The oscillator can generate 66 pJ up-chirped dissipative soliton pulses at a repetition rate of 22.8 MHz with a high polarization [...] Read more.
A polarization-maintaining all-fiber laser source based on a nonlinear amplifying loop mirror with broadband operation (64 nm) around 1920 nm is demonstrated. The oscillator can generate 66 pJ up-chirped dissipative soliton pulses at a repetition rate of 22.8 MHz with a high polarization extinction ratio of 17 dB. By adding a polarization controller to the polarization-maintaining dispersion-compensating fiber, the filter behavior can be adjusted allowing for the tuning of the emission to a center wavelength of 1878 nm, 1907 nm, and 1926 nm. Using an all-polarization-maintaining single-mode fiber amplifier with anomalous dispersion, the pulses are amplified to 0.9 nJ and compressed to a near Fourier-limited pulse duration of 170 fs with a peak power of 4.3 kW. Such all-fiber-based sources are attractive due to their compact size, high beam quality, and good environment stability. Full article
(This article belongs to the Special Issue Optical Fiber Lasers and Laser Technology)
Show Figures

Figure 1

16 pages, 1659 KiB  
Article
Electron-Ion Radiative Recombination Assisted by Bicircular Laser Pulses
by Deeksha Kanti, Jerzy Z. Kamiński, Liang-You Peng and Katarzyna Krajewska
Photonics 2025, 12(4), 320; https://doi.org/10.3390/photonics12040320 - 29 Mar 2025
Viewed by 355
Abstract
Electron–ion radiative recombination in the presence of a bicircular laser pulse is analyzed beyond the dipole approximation. A bicircular pulse consists of two counter-rotating circularly polarized laser pulses with commensurate carrier frequencies. It is demonstrated that the broad bandwidth radiation can be generated [...] Read more.
Electron–ion radiative recombination in the presence of a bicircular laser pulse is analyzed beyond the dipole approximation. A bicircular pulse consists of two counter-rotating circularly polarized laser pulses with commensurate carrier frequencies. It is demonstrated that the broad bandwidth radiation can be generated in the process and that its spectrum can be significantly enhanced by tailoring the laser field. A special emphasis is put on analyzing temporal properties of generated radiation. Full article
(This article belongs to the Special Issue Ultrashort Laser Pulses)
Show Figures

Figure 1

15 pages, 2229 KiB  
Article
Relative Intensity Noise of Gain-Switched Dual-State Lasing for an Insein(113)B Quantum Dot Laser
by Nuran Dogru, Erkan Cengiz and Hilal S. Duranoglu Tunc
Nanomaterials 2025, 15(7), 511; https://doi.org/10.3390/nano15070511 - 28 Mar 2025
Viewed by 339
Abstract
The RIN of an InAs/InP(113)B quantum-dot laser for direct- and cascade-relaxation models is investigated under the gain-switching condition via the application of an optical Gaussian pulse to an excited state. A new method is proposed to obtain RIN curves by eliminating the cross-correlation [...] Read more.
The RIN of an InAs/InP(113)B quantum-dot laser for direct- and cascade-relaxation models is investigated under the gain-switching condition via the application of an optical Gaussian pulse to an excited state. A new method is proposed to obtain RIN curves by eliminating the cross-correlation between noise sources. In this way, the noise sources are described independently and simulated with independent white Gaussian random variables. The results revealed that the RIN spectrum of both models was the same, apart from the fact that the cascade-relaxation model generated somewhat shorter pulses than the direct-relaxation model. Nevertheless, the direct-relaxation model had a lower RIN than that of the cascade-relaxation model. Excited- and ground-state carrier noises strongly affected the RIN spectrum, whereas the wetting-layer carrier noise had a negligible effect. In addition, the capture and escape times significantly affected the RIN spectrum. The output pulses had a long pulse width for both models due to the long pulse width of the ground-state photons. Nevertheless, applying an optical Gaussian pulse to an excited state reduced the RIN of both models and produced narrower gain-switched output pulses. Full article
Show Figures

Figure 1

14 pages, 9037 KiB  
Article
Evaluation of Fracture Toughness of γ-Phase Containing Cemented Carbides by Using Through-Thickness Micronotches Shaped by Ultrashort Pulsed Laser Ablation
by Marc Serra, Ramon Batista, Núria Cinca, Elena Tarrés, Emilio Jiménez-Piqué, Pablo Moreno and Luis Llanes
Crystals 2025, 15(3), 279; https://doi.org/10.3390/cryst15030279 - 18 Mar 2025
Viewed by 562
Abstract
WC-Co cemented carbides, commonly known as hardmetals, are composite materials constituted by hard ceramic particles embedded in a ductile metal matrix. Due to their unique microstructural assemblage, these materials exhibit excellent combinations of hardness, strength, and toughness, consolidating them as a first choice [...] Read more.
WC-Co cemented carbides, commonly known as hardmetals, are composite materials constituted by hard ceramic particles embedded in a ductile metal matrix. Due to their unique microstructural assemblage, these materials exhibit excellent combinations of hardness, strength, and toughness, consolidating them as a first choice for tools, structural and wear components. During recent decades, extensive research and technological advancements have driven the development of alternative cemented carbide grades, where traditionally used WC or Co are partially or entirely replaced. Within this context, hardmetals containing a third γ-phase (mixed cubic carbides) represent an interesting alternative. However, accurate evaluation of their fracture toughness remains a significant issue, especially as conventional methods using either indentation or precracking approaches are limited by either restricted implementation of fracture mechanics analysis or testing challenges. Within this context, this study proposes, implements, and validates the use of a novel laser-micronotching methodology to evaluate the fracture toughness of a γ-phase containing cemented carbide grade. For comparison purposes, the investigation also includes assessment of such a property by means of two other well-established testing methodologies. Moreover, similar experimental work was conducted in a plain WC-Co system with similar microstructural features. It is shown that machining of a through-thickness micronotch by means of ultra-short pulsed laser ablation is a reliable and efficient method for fracture toughness evaluation of γ-phase containing hardmetals. The main reason behind this is its capability for providing a precise and reproducible micronotch, with minimal thermal damage, that finally acts as a real through-thickness crack for which a stress-intensity factor is well-defined under flexural testing. Furthermore, toughness values obtained are in satisfactory agreement with those determined using precracked specimens with machined large notches and/or indentation techniques. Full article
(This article belongs to the Special Issue Advances in New Multifunctional Hard Materials)
Show Figures

Graphical abstract

15 pages, 2251 KiB  
Article
Reliable Determination of Pulses and Pulse-Shape Instability in Ultrashort Laser Pulse Trains Using Polarization-Gating and Transient-Grating Frequency-Resolved Optical Gating Using the RANA Approach
by Rana Jafari, Elizabeth Grace and Rick Trebino
Appl. Sci. 2025, 15(5), 2617; https://doi.org/10.3390/app15052617 - 28 Feb 2025
Viewed by 914
Abstract
Devices that measure the presence of instability in the pulse shapes in trains of ultrashort laser pulses do not exist, so this task necessarily falls to pulse-measurement devices, like Frequency-Resolved Optical Gating (FROG) and its variations, which have proven to be a highly [...] Read more.
Devices that measure the presence of instability in the pulse shapes in trains of ultrashort laser pulses do not exist, so this task necessarily falls to pulse-measurement devices, like Frequency-Resolved Optical Gating (FROG) and its variations, which have proven to be a highly reliable class of techniques for measuring stable trains of ultrashort laser pulses. Fortunately, multi-shot versions of FROG have also been shown to sensitively distinguish trains of stable from those of unstable pulse shapes by displaying readily visible systematic discrepancies between the measured and retrieved traces in the presence of unstable pulse trains. However, the effects of pulse-shape instability and algorithm stagnation can be indistinguishable, so a never-stagnating algorithm—even when instability is present—is required and is generally important. In previous work, we demonstrated that our recently introduced Retrieved-Amplitude N-grid Algorithmic (RANA) approach produces highly reliable (100%) pulse-retrieval in the second-harmonic-generation (SHG) version of FROG for thousands of sample trains of pulses with stable pulse shapes. Further, it does so even for trains of unstable pulse shapes and thus both reliably distinguishes between the two cases and provides a rough measure of the degree of instability as well as a reasonable estimate of most typical pulse parameters. Here, we perform the analogous study for the polarization-gating (PG) and transient-grating (TG) versions of FROG, which are often used for higher-energy pulse trains. We conclude that PG and TG FROG, coupled with the RANA approach, also provide reliable indicators of pulse-shape instability. In addition, for PG and TG FROG, the RANA approach provides an even better estimate of a typical pulse in an unstable pulse train than SHG FROG does, even in cases of significant pulse-shape instability. Full article
(This article belongs to the Special Issue Recent Advances in Ultrafast Laser Pulses)
Show Figures

Figure 1

17 pages, 5184 KiB  
Article
Ultrashort Pulse Laser Fabrication and Evaluation of Innovative Resorbable Barbed Sutures
by Karuna Nambi Gowri, Walid Al Asad, Shubha Majumder, Xin Zhao and Martin William King
Polymers 2025, 17(4), 544; https://doi.org/10.3390/polym17040544 - 19 Feb 2025
Viewed by 696
Abstract
Laser micro-machining is a rapidly growing technique to create, manufacture and fabricate microstructures on different materials ranging from metals and ceramics to polymers. Micro- and nano-machining on different materials has been helpful and useful for various biomedical applications. This study focuses on the [...] Read more.
Laser micro-machining is a rapidly growing technique to create, manufacture and fabricate microstructures on different materials ranging from metals and ceramics to polymers. Micro- and nano-machining on different materials has been helpful and useful for various biomedical applications. This study focuses on the micro-machining of innovative barbed sutures using an ultrashort pulse laser, specifically a femtosecond (fs) laser system. Two bioresorbable polymeric materials, namely, catgut and poly (4-hydroxybutyrate) (P4HB), were studied and micro-machined using the femtosecond (fs) laser system. The optimized laser parameter was used to fabricate two different barb geometries, namely, straight and curved barbs. The mechanical properties were evaluated via tensile testing, and the anchoring performance was studied by means of a suture–tissue pull-out protocol using porcine dermis tissue which was harvested from the medial dorsal site. Along with the evaluation of the mechanical and anchoring properties, the thermal characteristics and degradation profiles were assessed and compared against mechanically cut barbed sutures using a flat blade. The mechanical properties of laser-fabricated barbed sutures were significantly improved when compared to the mechanical properties of the traditionally/mechanically cut barbed sutures, while there was not any significant difference in the anchoring properties of the barbed sutures fabricated through either of the fabrication techniques. Based on the differential scanning calorimetry (DSC) results for thermal transitions, there was no major impact on the inherent material properties due to the laser treatment. This was also observed in the degradation results, where both the mechanically cut and laser-fabricated barbed sutures exhibited similar profiles throughout the evaluation time period. It was concluded that switching the fabrication technique from mechanical cutting to laser fabrication would be beneficial in producing a more reproducible and consistent barb geometry with more precision and accuracy. Full article
(This article belongs to the Topic Advanced Biomaterials: Processing and Applications)
Show Figures

Graphical abstract

Back to TopTop