Dynamic Observation of Ultrashort Pulses with Chaotic Features in a Tm-Doped Fiber Laser with a Single Mode Fiber–Grade Index Multimode Fiber–Single Mode Fiber Structure
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, J.; Yang, S. Investigation on anisotropic tribological properties of superhydrophobic/superlipophilic lead bronze surface textured by femtosecond laser. Appl. Surf. Sci. 2022, 579, 152223. [Google Scholar] [CrossRef]
- Mihailov, S.J.; Hnatovsky, C.; Abdukerim, N.; Walker, R.B.; Lu, P.; Xu, Y.; Bao, X.; Ding, H.; De Silva, M.; Coulas, D.; et al. Ultrafast Laser Processing of Optical Fibers for Sensing Applications. Sensors 2021, 21, 1447. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, S.; Wang, J.; Li, L.; Bai, Z.; Wang, Y.; Lv, Z. Recent advance of emerging low-dimensional materials for vector soliton generation in fiber lasers. Mater. Today Phys. 2022, 23, 100622. [Google Scholar] [CrossRef]
- Fermann, M.E.; Hartl, I. Ultrafast fibre lasers. Nat. Photon. 2013, 7, 868–874. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Q.-Y.; Zhu, Z.-W.; Qi, Y.-Y.; Yin, P.; Ge, Y.-Q.; Li, L.; Jin, L.; Zhang, L.; Zhang, H. Recent advances and challenges on dark solitons in fiber lasers. Opt. Laser Technol. 2022, 152, 108116. [Google Scholar] [CrossRef]
- Yang, Y.; Ji, Y.; Xie, Y.; Song, Y.; Wang, K.; Wang, Z. Generation and observation of noise-like pulses in an ultrafast fiber laser at 1.7 μm. Opt. Laser Technol. 2024, 174, 110715. [Google Scholar] [CrossRef]
- Li, W.; Huang, Z.; Xiao, X.; Yan, Z.; Luo, S.; Song, Y.; Jiang, C.; Liu, Y.; Mou, C. 0.017 nm, 143 ps passively mode-locked fiber laser based on nonlinear polarization rotation. Opt. Lett. 2023, 48, 2676–2679. [Google Scholar] [CrossRef]
- Huang, P.L.; Lin, S.-C.; Yeh, C.-Y.; Kuo, H.-H.; Huang, S.-H.; Lin, G.-R.; Li, L.-J.; Su, C.-Y.; Cheng, W.-H. Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber. Opt. Express 2012, 20, 2460–2465. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, G.; Li, W.; Wang, G.; Zeng, C. All-Fiber Saturable Absorbers for Ultrafast Fiber Lasers. IEEE Photon. J. 2019, 11, 7104019. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, J.; Jiang, Y.; Li, L.; Shen, D.; Komarov, A.; Su, L.; Tang, D.; Klimczak, M.; Zhao, L. Nonlinear Absorbing-Loop Mirror in a Holmium-Doped Fiber Laser. J. Light. Technol. 2020, 38, 6069–6075. [Google Scholar] [CrossRef]
- Lian, Y.; Wang, J.; Yang, M.; Zhang, Y.; Wang, Y. Multiwavelength Fiber Laser Using Erbium-Doped Twin-Core Fiber and Nonlinear Optical Loop Mirror. IEEE Access 2019, 7, 152478–152482. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Ye, Z.Q.; Sang, M.H.; Nie, Y.Y. Passively mode-locked fiber laser based on symmetrical nonlinear optical loop mirror. Laser Phys. Lett. 2008, 5, 364–366. [Google Scholar] [CrossRef]
- Ji, Y.; Yang, Y.; Song, Y.; Wang, K.; Du, G.; Liu, J.; Tang, D.; Wang, Z. Dynamics of pulsating solitons with chaotic behaviors from a 1.7 μm ultrafast fiber laser. Chaos Solitons Fractals 2024, 187, 115379. [Google Scholar] [CrossRef]
- Zhao, Q.; Pei, L.; Zheng, J.; Tang, M.; Xie, Y.; Li, J.; Ning, T. Tunable and interval-adjustable multi-wavelength erbium-doped fiber laser based on cascaded filters with the assistance of NPR. Opt. Laser Technol. 2020, 131, 106387. [Google Scholar] [CrossRef]
- Lang, J.; Lv, C.; Lu, B.; Bai, J. Mechanism of noise-like pulse in all-normal dispersion all-fiber laser based on nonlinear polarization rotation. Opt. Express 2024, 32, 2392–2404. [Google Scholar] [CrossRef] [PubMed]
- Aguergaray, C.; Broderick, N.G.R.; Erkintalo, M.; Chen, J.S.Y.; Kruglov, V. Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror. Opt. Express 2012, 20, 10545–10551. [Google Scholar] [CrossRef]
- Liu, W.; Shi, H.; Cui, J.; Xie, C.; Song, Y.; Wang, C.; Hu, M. Single-polarization large-mode-area fiber laser mode-locked with a nonlinear amplifying loop mirror. Opt. Lett. 2018, 43, 2848–2851. [Google Scholar] [CrossRef]
- Łaszczych, Z.; Soboń, G. Dispersion management of a nonlinear amplifying loop mirror-based erbium-doped fiber laser. Opt. Express 2021, 29, 2690–2702. [Google Scholar] [CrossRef]
- Didychenko, D.; Kovalchuk, O.; Uddin, S.; Lee, S.; Song, Y.-W. Chromatic dispersion-tolerant mode-locking of directly synthesized graphene for the control of laser pulse energy. Opt. Mater. 2024, 150, 115259. [Google Scholar] [CrossRef]
- Alghamdi, T.A.; Adwan, S.; Arof, H.; Harun, S.W. Q-switched triple-wavelength erbium-doped fiber laser with black phosphorus absorber. Optik 2024, 311, 171874. [Google Scholar] [CrossRef]
- Li, L.; Pang, L.; Wang, R.; Zhang, X.; Hui, Z.; Han, D.; Zhao, F.; Liu, W. Ternary Transition Metal Dichalcogenides for High Power Vector Dissipative Soliton Ultrafast Fiber Laser. Laser Photon. Rev. 2022, 16, 2100255. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, F.; Wang, H.; Zhang, W.; Hu, X.; Li, X.; Wang, Y. Generation of dark solitons in erbium-doped fiber laser based on black phosphorus nanoparticles. Opt. Mater. 2019, 89, 100–105. [Google Scholar] [CrossRef]
- Cheng, P.; Han, M.; Li, Q.; Shu, X. Generation of different mode-locked states in a Yb-doped fiber laser based on nonlinear multimode interference. Opt. Express 2022, 30, 35911–35922. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Liu, M.; Luan, N.; Yang, S.; Bai, Z.; Yan, B.; Jie, D.; Wang, Y.; Lu, Z. Recent research progress of nonlinear multimode interference mode-locking technology based on multimode fibers. Infrared Phys. Technol. 2022, 121, 104017. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, Z.; Wang, D.N.; Yang, F.; Li, L. Observation of controllable tightly and loosely bound solitons with an all-fiber saturable absorber. Photon. Res. 2019, 7, 61–68. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Li, L.; Wang, D.N.; Zhu, T.; Gao, F.; Cao, S.; Fang, Z. GIMF-Based SA for Generation of High Pulse Energy Ultrafast Solitons in a Mode-Locked Linear-Cavity Fiber Laser. J. Light. Technol. 2020, 38, 1480–1485. [Google Scholar] [CrossRef]
- Ahmad, H.; Mansor, N.H.; Samion, M.Z.; Reduan, S.A. High power mode-locked erbium–ytterbium doped fiber laser using GIMF–SIMF–GIMF fiber structure as saturable absorber. Opt. Quantum Electron. 2023, 55, 213. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Li, C.; Tian, Y.; Xiao, Z.; Zhang, J.; Xu, S. Self-Starting Mode-Locked Tm-Doped Fiber Laser Using a Hybrid Structure of No Core-Graded Index Multimode Fiber as the Saturable Absorber. Opt. Laser Technol. 2019, 113, 317–321. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, M.; Li, H.; Wang, K.; Li, C.; Zhang, J.; Xu, S. Mode-Locked Thulium-Doped Fiber Laser Using a Stretched Few-Mode Fiber as a Saturable Absorber. Laser Phys. 2024, 34, 045102. [Google Scholar] [CrossRef]
- Smith, N.J.; Blow, K.J.; Andonovic, I. Sideband generation through perturbations to the average soliton model. J. Light. Technol. 1992, 10, 1329–1333. [Google Scholar] [CrossRef]
- Nelson, L.; Jones, D.; Tamura, K.; Haus, H.A.; Ippen, E.P. Ultrashort-pulse fiber ring lasers. Appl. Phys. B 1997, 65, 277–294. [Google Scholar] [CrossRef]
- Goda, K.; Jalali, B. Dispersive Fourier Transformation for Fast Continuous Single-Shot Measurements. Nat. Photon. 2013, 7, 102–112. [Google Scholar] [CrossRef]
- Lecaplain, C.; Grelu, P. Rogue Waves among Noiselike-Pulse Laser Emission: An Experimental Investigation. Phys. Rev. A 2014, 90, 013805. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear Fiber Optics, 5th ed.; Academic Press: San Diego, CA, USA, 2013. [Google Scholar]
- Tang, D.; Zhao, L.; Zhao, B. Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser. Opt. Express 2005, 13, 2289–2294. [Google Scholar] [CrossRef]
- Chernykh, A.I.; Turitsyn, S.K. Soliton and collapse regimes of pulse generation in passively mode-locking laser systems. Opt. Lett. 1995, 20, 398–400. [Google Scholar] [CrossRef]
- Vazquez-Zuniga, L.A.; Jeong, Y. Super-Broadband Noise-like Pulse Erbium-Doped Fiber Ring Laser with a Highly Nonlinear Fiber for Raman Gain Enhancement. IEEE Photon. Technol. Lett. 2012, 24, 1549–1551. [Google Scholar] [CrossRef]
- Horowitz, M.; Barad, Y.; Silberberg, Y. Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser. Opt. Lett. 1997, 22, 799–801. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, T.; Zhang, B.; Li, M.; Lu, Y.; Chen, K.P. All-Fiber Passively Mode-Locked Thulium-Doped Fiber Ring Laser Using Optically Deposited Graphene Saturable Absorbers. Appl. Phys. Lett. 2013, 102, 131117. [Google Scholar] [CrossRef]
- Ahmad, H.; Aidit, S.N.; Yusoff, N.; Ismail, N.N.; Ismail, M.F.; Zamzuri, A.K.; Thambiratnam, K. All-Fiberized, Mode-Locked Laser at 1.95μm Using Copper Chalcogenide Cu2Te-Based Evanescent Field Interaction. Opt. Commun. 2020, 476, 126329. [Google Scholar] [CrossRef]
- Ahmad, H.; Zaini, M.K.A.; Samion, M.Z.; Yusoff, N. Generation of Mode-Locked Thulium-Doped Fiber Laser in 2.0-μm Wavelength Operation by Polymer-Coated Iron Phosphorus Trisulfide (FePS3)-Based Saturable Absorber. IEEE J. Quantum Electron. 2022, 58, 1600208. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Y.; Wu, X.; Li, J.; Yan, F.; Li, X.; Qyyum, A.; Hu, Z.; Zhu, C.; Liu, Y. Lead Sulfide Saturable Absorber Based Passively Mode-Locked Tm-Doped Fiber Laser. IEEE Photon. J. 2020, 12, 1500910. [Google Scholar] [CrossRef]
TDF | SMF | SMF-GIMF-SMF SA |
---|---|---|
β2 = −69 ps2/km | β2 = −65 ps2/km | ΔT = 75.8% |
γ = 3 W−1 km−1 | γ = 3 W−1 km−1 | Tns = 20% |
L = 2 m | L = 30.2 m | Psat = 50 W |
Wavelength/nm | Material | Width/ps | Repetition/MHz | Output/mW | Energy/nJ | Ref. |
---|---|---|---|---|---|---|
1953 | Graphene | 2.1 | 16.93 | 0.08 | 1.41 | [39] |
1951 | Cu2Te | 1.58 | 8.1 | ~3.2 | 0.39 | [40] |
1935.7 | FePS3 | 1.47 | 10.95 | 1.28 | 0.117 | [41] |
1961.2 | PbS | 1.09 | 43.86 | 9.06 | 0.207 | [42] |
1911 | SMF-FMF-SMF | 1.96 | 15.69 | 2.8 | 0.178 | [29] |
1910 | SMF-GIMF-SMF | 1.43 | 6.21 | 42.72 | ~6.88 | Our |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhou, Z.; Ji, Y.; Zeng, Q.; Song, Y.; Du, G.; Li, H. Dynamic Observation of Ultrashort Pulses with Chaotic Features in a Tm-Doped Fiber Laser with a Single Mode Fiber–Grade Index Multimode Fiber–Single Mode Fiber Structure. Photonics 2025, 12, 465. https://doi.org/10.3390/photonics12050465
Wang Z, Zhou Z, Ji Y, Zeng Q, Song Y, Du G, Li H. Dynamic Observation of Ultrashort Pulses with Chaotic Features in a Tm-Doped Fiber Laser with a Single Mode Fiber–Grade Index Multimode Fiber–Single Mode Fiber Structure. Photonics. 2025; 12(5):465. https://doi.org/10.3390/photonics12050465
Chicago/Turabian StyleWang, Zhenhong, Zexin Zhou, Yubo Ji, Qiong Zeng, Yufeng Song, Geguo Du, and Hongye Li. 2025. "Dynamic Observation of Ultrashort Pulses with Chaotic Features in a Tm-Doped Fiber Laser with a Single Mode Fiber–Grade Index Multimode Fiber–Single Mode Fiber Structure" Photonics 12, no. 5: 465. https://doi.org/10.3390/photonics12050465
APA StyleWang, Z., Zhou, Z., Ji, Y., Zeng, Q., Song, Y., Du, G., & Li, H. (2025). Dynamic Observation of Ultrashort Pulses with Chaotic Features in a Tm-Doped Fiber Laser with a Single Mode Fiber–Grade Index Multimode Fiber–Single Mode Fiber Structure. Photonics, 12(5), 465. https://doi.org/10.3390/photonics12050465