Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,172)

Search Parameters:
Keywords = two-site binding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 11764 KiB  
Article
Emerging Highly Pathogenic Avian Influenza H5N1 Clade 2.3.4.4b Causes Neurological Disease and Mortality in Scavenging Ducks in Bangladesh
by Rokshana Parvin, Sumyea Binta Helal, Md Mohi Uddin, Shadia Tasnim, Md. Riabbel Hossain, Rupaida Akter Shila, Jahan Ara Begum, Mohammed Nooruzzaman, Ann Kathrin Ahrens, Timm Harder and Emdadul Haque Chowdhury
Vet. Sci. 2025, 12(8), 689; https://doi.org/10.3390/vetsci12080689 - 23 Jul 2025
Abstract
Scavenging domestic ducks significantly contribute to the transmission and maintenance of highly pathogenic H5N1 clade 2.3.4.4b avian influenza viruses in Bangladesh, a strain of growing global concern due to its broad host range, high pathogenicity, and spillover potential. This study investigates the molecular [...] Read more.
Scavenging domestic ducks significantly contribute to the transmission and maintenance of highly pathogenic H5N1 clade 2.3.4.4b avian influenza viruses in Bangladesh, a strain of growing global concern due to its broad host range, high pathogenicity, and spillover potential. This study investigates the molecular epidemiology and pathology of HPAI H5N1 viruses in unvaccinated scavenging ducks in Bangladesh, with the goal of assessing viral evolution and associated disease outcomes. Between June 2022 and March 2024, 40 scavenging duck flocks were investigated for HPAI outbreaks. Active HPAIV H5N1 infection was detected in 35% (14/40) of the flocks using RT-qPCR. Affected ducks exhibited clinical signs of incoordination, torticollis, and paralysis. Pathological examination revealed prominent meningoencephalitis, encephalopathy and encephalomalacia, along with widespread lesions in the trachea, lungs, liver, and spleen, indicative of systemic HPAIV infection. A phylogenetic analysis of full-genome sequences confirmed the continued circulation of clade 2.3.2.1a genotype G2 in these ducks. Notably, two samples of 2022 and 2023 harbored HPAIV H5N1 of clade 2.3.4.4b, showing genetic similarity to H5N1 strains circulating in Korea and Vietnam. A mutation analysis of the HA protein in clade 2.3.4.4b viruses revealed key substitutions, including T156A (loss of an N-linked glycosylation site), S141P (antigenic site A), and E193R/K (receptor-binding pocket), indicating potential antigenic drift and receptor-binding adaptation compared to clade 2.3.2.1a. The emergence of clade 2.3.4.4b with the first report of neurological and systemic lesions suggests ongoing viral evolution with increased pathogenic potential for ducks. These findings highlight the urgent need for enhanced surveillance and biosecurity to control HPAI spread in Bangladesh. Full article
28 pages, 3737 KiB  
Article
Profiling Plant circRNAs Provides Insights into the Expression of Plant Genes Involved in Viral Infection
by Ghyda Murad Hashim, Travis Haight, Xinyang Chen, Athanasios Zovoilis and Srividhya Venkataraman
Life 2025, 15(7), 1143; https://doi.org/10.3390/life15071143 - 20 Jul 2025
Viewed by 221
Abstract
Investigations of endogenous plant circular RNAs (circRNAs) in several plant species have revealed changes in their circular RNA profiles in response to biotic and abiotic stresses. Recently, circRNAs have emerged as critical regulators of gene expression. The destructive impacts on agriculture due to [...] Read more.
Investigations of endogenous plant circular RNAs (circRNAs) in several plant species have revealed changes in their circular RNA profiles in response to biotic and abiotic stresses. Recently, circRNAs have emerged as critical regulators of gene expression. The destructive impacts on agriculture due to plant viral infections necessitate better discernment of the involvement of plant circRNAs during viral infection. However, few such studies have been conducted hitherto. Sobemoviruses cause great economic impacts on important crops such as rice, turnip, alfalfa, and wheat. Our current study investigates the dynamics of plant circRNA profiles in the host Arabidopsis thaliana (A. thaliana) during infections with the sobemoviruses Turnip rosette virus (TRoV) and Rice yellow mottle virus (RYMV), as well as the small circular satellite RNA of the Lucerne transient streak virus (scLTSV), focusing on circRNA dysregulation in the host plants and its potential implications in triggering plant cellular defense responses. Towards this, two rounds of deep sequencing were conducted on the RNA samples obtained from infected and uninfected plants followed by the analysis of circular RNA profiles using RNA-seq and extensive bioinformatic analyses. We identified 760 circRNAs, predominantly encoded in exonic regions and enriched in the chloroplast chromosome, suggesting them as key sites for circRNA generation during viral stress. Gene ontology (GO) analysis indicated that these circRNAs are mostly associated with plant development and protein binding, potentially influencing the expression of their host genes. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed photosynthesis as the most affected pathway. Interestingly, the non-coding exogenous scLTSV specifically induced several circRNAs, some of which contain open reading frames (ORFs) capable of encoding proteins. Our biochemical assays demonstrated that transgenic expression of scLTSV in A. thaliana enhanced resistance to TRoV, suggesting a novel strategy for improving plant viral resistance. Our results highlight the complexity of circRNA dynamics in plant–virus interactions and offer novel insights into potential circRNA-based strategies for enhancing plant disease resistance by modulating the differential expression of circRNAs. Full article
(This article belongs to the Special Issue Investigations of Circular RNAs in Plants)
Show Figures

Figure 1

24 pages, 1334 KiB  
Article
Evaluation of the Global White Lupin Collection Reveals Significant Associations Between Homologous FLOWERING LOCUS T Indels and Flowering Time, Providing Validated Markers for Tracking Spring Ecotypes Within a Large Gene Pool
by Wojciech Bielski, Anna Surma, Michał Książkiewicz and Sandra Rychel-Bielska
Int. J. Mol. Sci. 2025, 26(14), 6858; https://doi.org/10.3390/ijms26146858 - 17 Jul 2025
Viewed by 154
Abstract
FLOWERING LOCUS T (FT) is a key integrator of flowering pathways. White lupin, a grain legume, encodes four FT homologs: LalbFTa1, LalbFTa2, LalbFTc1, and LalbFTc2. Widespread distribution of white lupin implies diverse phenological adaptations to contrasting ecosystems. [...] Read more.
FLOWERING LOCUS T (FT) is a key integrator of flowering pathways. White lupin, a grain legume, encodes four FT homologs: LalbFTa1, LalbFTa2, LalbFTc1, and LalbFTc2. Widespread distribution of white lupin implies diverse phenological adaptations to contrasting ecosystems. Recent studies highlighted associations between FT indels and flowering regulation. Therefore, we surveyed the global white lupin collection for the presence of such indels and potential links to phenology. A panel of 626 white lupin genotypes, representing several European and African agro-climates, was phenotyped under a long-day photoperiod in a two-year study, showing up to 80 days of flowering time difference between early landraces from Eastern Mediterranean and late accessions from France, Madeira, the Canaries, Greece, Italy, and the Azores. As many as seventeen indel variants were identified for LalbFTc1, twelve for LalbFTa2, nine for LalbFTa1, and four for LalbFTc2, yielding roughly three hundred allelic combinations. Significant correlations with phenology were confirmed for one LalbFTa1 indel and twelve LalbFTc1 indels. A large, highly correlated LalbFTc1 indel was revealed to be conserved among all domesticated Old World lupins, carrying all FTc1-promoter candidate binding sites of the same major floral repressor, AGAMOUS-LIKE 15. A small LalbFTa1 indel, providing additional contribution to earliness, showed homology between white and yellow lupins. LalbFTc1 indel-based PCR markers revealed high discriminatory power towards early (PR_42a and PR_71b) or late (PR_58c, PR_36b, PR_80, and PR_60b) flowering. Full article
(This article belongs to the Special Issue Developing Methods and Molecular Basis in Plant Biotechnology)
Show Figures

Figure 1

24 pages, 2292 KiB  
Article
Integrating Molecular Dynamics, Molecular Docking, and Machine Learning for Predicting SARS-CoV-2 Papain-like Protease Binders
by Ann Varghese, Jie Liu, Tucker A. Patterson and Huixiao Hong
Molecules 2025, 30(14), 2985; https://doi.org/10.3390/molecules30142985 - 16 Jul 2025
Viewed by 359
Abstract
Coronavirus disease 2019 (COVID-19) produced devastating health and economic impacts worldwide. While progress has been made in vaccine development, effective antiviral treatments remain limited, particularly those targeting the papain-like protease (PLpro) of SARS-CoV-2. PLpro plays a key role in viral replication and immune [...] Read more.
Coronavirus disease 2019 (COVID-19) produced devastating health and economic impacts worldwide. While progress has been made in vaccine development, effective antiviral treatments remain limited, particularly those targeting the papain-like protease (PLpro) of SARS-CoV-2. PLpro plays a key role in viral replication and immune evasion, making it an attractive yet underexplored target for drug repurposing. In this study, we combined machine learning, molecular dynamics, and molecular docking to identify potential PLpro inhibitors in existing drugs. We performed long-timescale molecular dynamics simulations on PLpro–ligand complexes at two known binding sites, followed by structural clustering to capture representative structures. These were used for molecular docking, including a training set of 127 compounds and a library of 1107 FDA-approved drugs. A random forest model, trained on the docking scores of the representative conformations, yielded 76.4% accuracy via leave-one-out cross-validation. Applying the model to the drug library and filtering results based on prediction confidence and the applicability domain, we identified five drugs as promising candidates for repurposing for COVID-19 treatment. Our findings demonstrate the power of integrating computational modeling with machine learning to accelerate drug repurposing against emerging viral targets. Full article
Show Figures

Figure 1

21 pages, 2089 KiB  
Article
Neuropilin-1: A Conserved Entry Receptor for SARS-CoV-2 and a Potential Therapeutic Target
by Vivany Maydel Sierra-Sánchez, Citlali Margarita Blancas-Napoles, Aina Daniela Sánchez-Maldonado, Indira Medina, Rodrigo Romero-Nava, Fengyang Huang, Enrique Hong, Asdrúbal Aguilera-Méndez, Sergio Adrian Ocampo-Ortega and Santiago Villafaña
Biomedicines 2025, 13(7), 1730; https://doi.org/10.3390/biomedicines13071730 - 15 Jul 2025
Viewed by 282
Abstract
Background/Objectives: Neuropilin-1 (NRP1) is a key co-receptor for SARS-CoV-2, complementing the ACE2 receptor. Several investigations have documented highly conserved sequences in this receptor, supporting the implication of NRP1 as a key mediator in SARS-CoV-2 cellular entry mechanisms. Methods: To investigate this [...] Read more.
Background/Objectives: Neuropilin-1 (NRP1) is a key co-receptor for SARS-CoV-2, complementing the ACE2 receptor. Several investigations have documented highly conserved sequences in this receptor, supporting the implication of NRP1 as a key mediator in SARS-CoV-2 cellular entry mechanisms. Methods: To investigate this hypothesis, we examined 104,737 SARS-CoV-2 genome fastas from GISAID genomic data, corresponding to isolates collected between 2020 and 2025 in Mexico. Specifically, we focused on the RRAR motif, a known furin-binding site for NRP-1 and the binding site for ACE2 with the spike protein. Our analysis revealed high conservation (>98%) of the RRAR domain compared to a rapidly diminishing ACE2-binding domain. A complementary analysis, using Data from Gene Expression Omnibus (GEO, GSE150316), showed that NRP1 expression in lung tissue remains relatively stable, whereas ACE2 displayed high inter-individual variability and lower abundance compared to NRP1. Based on this evidence, we designed two humans–rats NRP1 siRNAs that were tested in vivo using a melittin-induced lung injury model. Results: The RT-PCR assays confirmed an effective NRP1 knockdown, and the siRNA-treated group showed a significant reduction in the lesions severity. These findings highlight NRP1 as a stable and relevant therapeutic target and suggest the protective potential of siRNA-mediated gene silencing. Conclusions: The evidence presented here supports the rational design of NRP1-directed therapies for multiple circulating SARS-CoV-2 variants in Mexico. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

22 pages, 13140 KiB  
Article
Development and Characterization of Optimized Drug-Loaded Niosomes for Delivery of 5-FU and Irinotecan
by Kafilat O. Agbaje, Simeon K. Adesina and Amusa S. Adebayo
Pharmaceutics 2025, 17(7), 900; https://doi.org/10.3390/pharmaceutics17070900 - 11 Jul 2025
Viewed by 314
Abstract
Background/Objectives: 5-Fluorouracil (5-FU) and Irinotecan (IRT) are two of the most used chemotherapeutic agents in CRC treatment. However, achieving treatment goals has been hampered by poor drug delivery to tumor sites and associated toxicity from off-target binding to healthy cells. Though the [...] Read more.
Background/Objectives: 5-Fluorouracil (5-FU) and Irinotecan (IRT) are two of the most used chemotherapeutic agents in CRC treatment. However, achieving treatment goals has been hampered by poor drug delivery to tumor sites and associated toxicity from off-target binding to healthy cells. Though the synergism of 5-FU-IRT has provided incremental improvements in clinical outcomes, the short elimination half-life and off-target binding to healthy cells remain significant challenges. We postulated that nanoencapsulation of a combination of 5-FU and IRT in niosomes would prolong the drugs’ half-lives, while over-encapsulation lyophilized powder in Targit® oral capsules would passively the CRC microenvironment and avoid extensive systemic distribution. Methods: Ranges of formulation and process variables were input into design of experiment (DOE Fusion One) software, to generate screening experiments. Niosomes were prepared using the thin-film hydration method and characterized by size, the polydispersity index (PDI), morphology and intrastructure, and drug loading. Blank niosomes ranged in size from 215 nm to 257 nm. Results: After loading with the 5-FU-IRT combination, the niosomes averaged 251 ± 2.20 nm with a mean PDI of 0.293 ± 0.01. The surfactant-to-cholesterol ratio significantly influenced the niosome size and the PDI. The hydrophilic 5-FU exhibited superior loading compared to the lipophilic IRT molecules, which probably competed with other lipophilic niosome components in niosomes’ palisade layers. In vitro dissolution in biorelevant media showed delayed release until lower intestinal region (IRT) or colonic region (5-FU). Conclusions: Thus, co-nanoencapsulation of 5-FU/IRT in niosomes, lyophilization, and over-encapsulation of powder in colon-specific capsules could passively target the CRC cells in the colonic microenvironment. Full article
(This article belongs to the Special Issue Combination Therapy Approaches for Cancer Treatment)
Show Figures

Figure 1

8 pages, 2004 KiB  
Article
Updating the Mechanism of Bicarbonate (HCO3) Activation of Soluble Adenylyl Cyclase (sAC)
by Jacob Ferreira, Hayden Belliveau, Clemens Steegborn, Jochen Buck and Lonny R. Levin
Int. J. Mol. Sci. 2025, 26(13), 6401; https://doi.org/10.3390/ijms26136401 - 3 Jul 2025
Viewed by 215
Abstract
Soluble adenylyl cyclase (sAC) is molecularly and biochemically distinct from other mammalian nucleotidyl cyclases. It is uniquely regulated directly by bicarbonate (HCO3) and calcium (Ca2+) ions and is responsive to physiologic fluctuations in levels of its substrate, adenosine [...] Read more.
Soluble adenylyl cyclase (sAC) is molecularly and biochemically distinct from other mammalian nucleotidyl cyclases. It is uniquely regulated directly by bicarbonate (HCO3) and calcium (Ca2+) ions and is responsive to physiologic fluctuations in levels of its substrate, adenosine triphosphate (ATP). Our initial in vitro biochemical studies suggested two mechanisms for HCO3-dependent elevation of sAC activity: increasing catalytic rate and relieving inhibition observed in the presence of supraphysiological levels of substrate, ATP. Structural and mutational studies revealed that HCO3 increases catalytic rate via the disruption of a salt bridge that facilitates productive interactions with the substrate. Here, we demonstrate that the HCO3 stimulation observed under supraphysiological ATP concentrations is due to the mitigation of ATP-dependent acidification. Therefore, we conclude that the sole physiologically relevant mechanism of HCO3 regulation of sAC is through its pH-independent effect facilitating productive substrate binding to the catalytic site. Full article
Show Figures

Figure 1

14 pages, 2040 KiB  
Article
Phenotypic Screening of H1-Antihistamines Identifies Promethazine and Rupatadine as Active Compounds Against Toxocara canis Infective Larvae
by Taís C. Silva, Julia Godoy-Silva, Monique C. Amaro, João V. Silva-Silva, Thiago H. Doring, Leonardo L. G. Ferreira, Adriano D. Andricopulo and Josué de Moraes
Pharmaceuticals 2025, 18(7), 997; https://doi.org/10.3390/ph18070997 - 2 Jul 2025
Viewed by 472
Abstract
Background: Parasitic worm infections remain among the most prevalent and neglected health issues worldwide, affecting both humans and animals. Toxocariasis, caused by Toxocara spp., is a widespread zoonosis with significant public health and economic implications. Current anthelmintic treatments show limited efficacy, particularly [...] Read more.
Background: Parasitic worm infections remain among the most prevalent and neglected health issues worldwide, affecting both humans and animals. Toxocariasis, caused by Toxocara spp., is a widespread zoonosis with significant public health and economic implications. Current anthelmintic treatments show limited efficacy, particularly against tissue-migrating larvae, underscoring the urgent need for new therapeutic options. This study aimed to evaluate the anthelmintic potential of H1 antihistamines as repurposed drug candidates against Toxocara canis. Methods: Twenty-two H1 antihistamines were screened for larvicidal activity against infective third-stage (L3) larvae of T. canis. Larval motility and morphology were assessed, and compounds with the highest efficacy were further investigated using density functional theory (DFT) to explore their electronic properties. Molecular docking simulations were also performed to predict interactions with T. canis β-tubulin. Results: Promethazine and rupatadine exhibited significant larvicidal effects, surpassing albendazole in reducing larval motility and inducing a distinct contorted morphology not observed in control or albendazole-treated larvae. DFT analyses suggested a strong electron-acceptor capacity, indicating a potential redox-based mechanism of action. Docking studies revealed favorable binding to the colchicine site of T. canis β-tubulin. Conclusions: This is the first report of larvicidal activity of antihistamines against T. canis, supporting their potential as repurposed therapeutic agents for the treatment of zoonotic helminthiases, particularly those caused by tissue-migrating nematodes. Full article
(This article belongs to the Special Issue Advances in Antiparasitic Drug Research)
Show Figures

Figure 1

27 pages, 3232 KiB  
Article
Genomic and Functional Characterization of Multidrug-Resistant E. coli: Insights into Resistome, Virulome, and Signaling Systems
by Vijaya Bharathi Srinivasan, Naveenraj Rajasekar, Karthikeyan Krishnan, Mahesh Kumar, Chankit Giri, Balvinder Singh and Govindan Rajamohan
Antibiotics 2025, 14(7), 667; https://doi.org/10.3390/antibiotics14070667 - 30 Jun 2025
Viewed by 399
Abstract
Introduction: Genetic plasticity and adaptive camouflage in critical pathogens have contributed to the global surge in multidrug-resistant (MDR) infections, posing a serious threat to public health and therapeutic efficacy. Antimicrobial resistance, now a leading cause of global mortality, demands urgent action through diagnostics, [...] Read more.
Introduction: Genetic plasticity and adaptive camouflage in critical pathogens have contributed to the global surge in multidrug-resistant (MDR) infections, posing a serious threat to public health and therapeutic efficacy. Antimicrobial resistance, now a leading cause of global mortality, demands urgent action through diagnostics, vaccines, and therapeutics. In India, the Indian Council of Medical Research’s surveillance network identifies Escherichia coli as a major cause of urinary tract infections, with increasing prevalence in human gut microbiomes, highlighting its significance across One Health domains. Methods: Whole-genome sequencing of E. coli strain ECG015, isolated from a human gut sample, was performed using the Illumina NextSeq platform. Results: Genomic analysis revealed multiple antibiotic resistance genes, virulence factors, and efflux pump components. Phylogenomic comparisons showed close relatedness to pathovars from both human and animal origins. Notably the genome encoded protein tyrosine kinases (Etk/Ptk and Wzc) and displayed variations in the envelope stress-responsive CpxAR two-component system. Promoter analysis identified putative CpxR-binding sites upstream of genes involved in resistance, efflux, protein kinases, and the MazEF toxin–antitoxin module, suggesting a potential regulatory role of CpxAR in stress response and persistence. Conclusions: This study presents a comprehensive genomic profile of E. coli ECG015, a gut-derived isolate exhibiting clinically significant resistance traits. For the first time, it implicates the CpxAR two-component system as a potential central regulator coordinating antimicrobial resistance, stress kinase signaling, and programmed cell death. These findings lay the groundwork for future functional studies aimed at targeting stress-response pathways as novel intervention strategies against antimicrobial resistance. Full article
(This article belongs to the Special Issue Genomic Analysis of Drug-Resistant Pathogens)
Show Figures

Figure 1

18 pages, 7501 KiB  
Article
Probing the Active Site of Class 3 L-Asparaginase by Mutagenesis: Mutations of the Ser-Lys Tandems of ReAV
by Kinga Pokrywka, Marta Grzechowiak, Joanna Sliwiak, Paulina Worsztynowicz, Joanna I. Loch, Milosz Ruszkowski, Miroslaw Gilski and Mariusz Jaskolski
Biomolecules 2025, 15(7), 944; https://doi.org/10.3390/biom15070944 - 29 Jun 2025
Viewed by 293
Abstract
The ReAV enzyme from Rhizobium etli, a representative of Class 3 L-asparaginases, is sequentially and structurally different from other known L-asparaginases. This distinctiveness makes ReAV a candidate for novel antileukemic therapies. ReAV is a homodimeric protein, with each subunit containing a highly [...] Read more.
The ReAV enzyme from Rhizobium etli, a representative of Class 3 L-asparaginases, is sequentially and structurally different from other known L-asparaginases. This distinctiveness makes ReAV a candidate for novel antileukemic therapies. ReAV is a homodimeric protein, with each subunit containing a highly specific zinc-binding site created by two cysteines, a lysine, and a water molecule. Two Ser-Lys tandems (Ser48-Lys51, Ser80-Lys263) are located in the close proximity of the metal binding site, with Ser48 hypothesized to be the catalytic nucleophile. To further investigate the catalytic process of ReAV, site-directed mutagenesis was employed to introduce alanine substitutions at residues from the Ser-Lys tandems and at Arg47, located near the Ser48-Lys51 tandem. These mutational studies, along with enzymatic assays and X-ray structure determinations, demonstrated that substitution of each of these highly conserved residues abolished the catalytic activity, confirming their essential role in enzyme mechanism. Full article
(This article belongs to the Special Issue State-of-the-Art Protein X-Ray Crystallography)
Show Figures

Figure 1

50 pages, 1169 KiB  
Article
Entropies of the Classical Dimer Model
by John C. Baker, Marilyn F. Bishop and Tom McMullen
Entropy 2025, 27(7), 693; https://doi.org/10.3390/e27070693 - 28 Jun 2025
Viewed by 173
Abstract
Biological processes often involve the attachment and detachment of extended molecules to substrates. Here, the classical dimer model is used to investigate these geometric effects on the free energy, which governs both the equilibrium state and the reaction dynamics. We present a simplified [...] Read more.
Biological processes often involve the attachment and detachment of extended molecules to substrates. Here, the classical dimer model is used to investigate these geometric effects on the free energy, which governs both the equilibrium state and the reaction dynamics. We present a simplified version of Fisher’s derivation of the partition function of a two-dimensional dimer model at filling factor ν=1, which takes into account the blocking of two adjacent sites by each dimer. Physical consequences of the dimer geometry on the entropy that are not reflected in simpler theories are identified. Specifically, for dimers adsorbing on the DNA double helix, the dimer geometry gives a persistently nonzero entropy and there is a significant charge inversion as the force binding the particles to the lattice increases relative to the thermal energy, which is not true of the simple lattice gas model for the dimers, in which all the sites are independent. Full article
(This article belongs to the Section Entropy and Biology)
Show Figures

Figure 1

15 pages, 802 KiB  
Article
Plant Lectin, MoMo30, Pressures HIV-1 to Select for Variants with Deleted N-Linked Glycosylation Sites
by Morgan I. Coleman, Mahfuz B. Khan, Erick Gbodossou, Amad Diop, Kenya DeBarros, Vincent C. Bond, Virginia Floyd, Kofi Kondwani, Valerie Montgomery Rice and Michael D. Powell
Viruses 2025, 17(7), 910; https://doi.org/10.3390/v17070910 - 27 Jun 2025
Viewed by 270
Abstract
Momordica balsamina, a plant traditionally used in African medicine, contains a 30 kDa protein, MoMo30, previously identified by our group as an anti-HIV agent that binds glycan residues on the gp120 envelope protein, thereby acting as an entry inhibitor. In this study, we [...] Read more.
Momordica balsamina, a plant traditionally used in African medicine, contains a 30 kDa protein, MoMo30, previously identified by our group as an anti-HIV agent that binds glycan residues on the gp120 envelope protein, thereby acting as an entry inhibitor. In this study, we investigated whether prolonged exposure to MoMo30 exerts selective pressure on HIV-1 and induces mutations in the viral envelope (env) gene. T-lymphocyte cells were infected with HIV-1NL4-3 and continuously treated with MoMo30 over a 24-day period. Viral RNA was isolated at regular intervals, and env genes were sequenced using the Illumina platform. RNA sequence variant calling was performed using iVar, which uses a frequency-based binomial test with a default allele frequency threshold of 3% and a minimum base quality of 20 and applies Bonferroni correction for multiple testing. The infectivity of the MoMo30-exposed virus was assessed using MAGI-CXCR4 cells, visualized by β-galactosidase staining, and compared to untreated controls. Statistical significance was determined via two-way ANOVA. MoMo30-treated HIV-1 exhibited multiple detrimental mutations in gp120 and gp41, including missense, nonsense, and frameshift changes. Notably, 32% of N-linked glycosylation sites were deleted in the treated virus, while no such changes were observed in controls. Functionally, the MoMo30-treated virus demonstrated a sixfold reduction in infectivity compared to untreated HIV-1NL4-3. These findings suggest that MoMo30 imposes genetic pressure on HIV-1NL4-3, selecting for mutations that reduce viral fitness. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Graphical abstract

19 pages, 2053 KiB  
Article
Multifaceted Pollutant Removal by Salicornia brachiata: A Phytoremediation Approach
by Piyoni Ruwanpathirana, Imalshi Gunawardana, Hasini Navodya, Ajith C. Herath, Dinum Perera and Manavi S. Ekanayake
Plants 2025, 14(13), 1963; https://doi.org/10.3390/plants14131963 - 26 Jun 2025
Viewed by 318
Abstract
The increasing discharge of nutrient and metal-laden effluents into saline environments demands sustainable remediation strategies. This study evaluated the phytoremediation potential of Salicornia brachiata, a halophytic plant, under hydroponic conditions using varying concentrations of three macronutrients—nitrate (NO3), phosphate (PO [...] Read more.
The increasing discharge of nutrient and metal-laden effluents into saline environments demands sustainable remediation strategies. This study evaluated the phytoremediation potential of Salicornia brachiata, a halophytic plant, under hydroponic conditions using varying concentrations of three macronutrients—nitrate (NO3), phosphate (PO43−), and calcium (Ca2+)—and three heavy metals—lead (Pb2+), chromium (Cr6+), and copper (Cu2+). The plant exhibited high removal efficiencies across all treatments, with Pb2+ and Cr6+ reaching nearly 99% removal within two days, while macronutrient removal showed a steady, time-dependent increase over the 14-day period. Several biochemical parameters, including proline content and antioxidant enzyme activities (catalase, superoxide dismutase, peroxidase, polyphenol oxidase), were significantly affected by treatments, with most showing dose-dependent responses to heavy metal exposure, indicating strong biochemical resilience. Fourier transform infrared spectroscopy revealed pollutant-specific structural shifts and identified –OH, –NH, and –COO groups as key binding sites. The study quantifies the removal efficiency of S. brachiata for both nutrients and metals and provides mechanistic insight into its ionic stress response and binding pathways. These findings establish S. brachiata as a viable candidate for integrated phytoremediation in saline, contaminated water systems. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

18 pages, 6004 KiB  
Article
Targeting Topoisomerase I and DNA with LCS1269 Drives Glioblastoma Cell Death Despite ATM/Chk1/BRCA1/RAD51 Signaling Pathway Activation
by Nikolay Kalitin, Ekaterina Savchenko, Nadezhda Samoylenkova, Natalia Koroleva, Anna Lushnikova, Aida Karamysheva and Galina Pavlova
Int. J. Mol. Sci. 2025, 26(13), 6014; https://doi.org/10.3390/ijms26136014 - 23 Jun 2025
Viewed by 311
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults. The success of modern multimodal standards approved in anti-glioblastoma therapy remains limited. Consequently, new therapeutics are urgently needed. In this study, utilizing ex vivo, in silico, and in vitro approaches, we investigated [...] Read more.
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults. The success of modern multimodal standards approved in anti-glioblastoma therapy remains limited. Consequently, new therapeutics are urgently needed. In this study, utilizing ex vivo, in silico, and in vitro approaches, we investigated the LCS1269 effects on two potential targets, DNA and Top I. We also elucidated the influence of LCS1269 on signaling pathways and GBM cell viability. Based on our docking data and competition studies results, we demonstrated that LCS1269 may bind to DNA, demonstrating selectivity toward AT-rich regions. We also showed that LCS1269 could dock both Top I/DNA binary complex and Top I active sites. LCS1269 caused Top I dysfunction and downregulated the expression of Top I. Moreover, the LCS1269 treatment of GBM cells facilitated DNA damage and the activation of the ATM/Chk1/BRCA1/Rad51 pathway. Meanwhile, DNA damage response induction and ATM/Chk1/BRCA1/Rad51 pathway activation were insufficient to prevent GBM cell death triggered by LCS1269 treatment. Our work shows that DNA and Top I are promising molecular targets of LCS1269, thus providing insight on several novel mechanisms of its anti-tumor activity. Nonetheless, we did not perform a biophysical validation of the LCS1269–DNA interaction, which is a limitation of our study. Full article
(This article belongs to the Special Issue Molecular Modeling: Latest Advances and Applications)
Show Figures

Figure 1

22 pages, 12120 KiB  
Article
Identification of Glucose-6-Phosphate Dehydrogenase Family Members Associated with Cold Stress in Pepper (Capsicum annuum L.)
by Jianwei Zhang, Jianxin Fan, Zhiying Tan, Yao Jiang, Xianjun Chen, Qin Yang and Huanxiu Li
Horticulturae 2025, 11(7), 719; https://doi.org/10.3390/horticulturae11070719 - 20 Jun 2025
Viewed by 304
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) is a critical enzyme in the pentose phosphate pathway, playing an essential role in plant growth, development, and adaptation to abiotic stress. In this study, we identified four members of the G6PDH gene family in the ‘Zunla-1’ genome, designating them [...] Read more.
Glucose-6-phosphate dehydrogenase (G6PDH) is a critical enzyme in the pentose phosphate pathway, playing an essential role in plant growth, development, and adaptation to abiotic stress. In this study, we identified four members of the G6PDH gene family in the ‘Zunla-1’ genome, designating them as CaG6PDH1-CaG6PDH4. Multiple sequence alignment revealed that the four protein sequences of pepper contain three unique binding sites characteristic of G6PDH: the substrate binding site, the NADP binding site and the Rossmann fold. The phylogenetic tree, motifs, and gene structure analysis indicate that the CaG6PDH gene sequence is relatively conserved and structurally similar, with a close relationship to the sequence of Solanaceae G6PDH members. The collinearity analysis showed that there were two pairs of collinearity between the CaG6PDH genes and the AtG6PDH genes, as well as the SiG6PDH genes. Additionally, numerous cis-elements associated with stress responses, hormone regulation, development, and light responses were identified in the promoter region of the CaG6PDH gene. Furthermore, the various members of the pepper CaG6PDH gene family exhibit specific expression patterns across different tissues and demonstrate significant variations in response to abiotic stress and phytohormone treatments, particularly the CaG6PDH1 and CaG6PDH2 genes. Subcellular localization studies indicate that CaG6PDH2 is located in chloroplasts. We conducted further investigations into the role of CaG6PDH2 in response to cold stress using Virus-Induced Gene Silencing (VIGS) technology. The tissues of seedlings with silenced CaG6PDH2 exhibited significant damage and displayed a more pronounced cold damage phenotype. This observation is further supported by the accumulation of reactive oxygen species (ROS), the activity of antioxidant enzymes, and a reduction in the expression of cold-responsive genes. In conclusion, the findings of this study indicate that CaG6PDH2 plays an important role in cold stress response and may serve as a potential gene for cultivating cold-tolerant pepper varieties. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

Back to TopTop