Evaluation of the Global White Lupin Collection Reveals Significant Associations Between Homologous FLOWERING LOCUS T Indels and Flowering Time, Providing Validated Markers for Tracking Spring Ecotypes Within a Large Gene Pool
Abstract
1. Introduction
2. Results
2.1. Over 80 Days of Flowering Time Difference Was Observed Between Early and Late White Lupin Lines
2.2. Nine Indels Were Identified in the LalbFTa1 Gene Region, Including One Significantly Correlated with White Lupin Phenology
2.3. Twelve Indels Were Identified in the LalbFTa2 Gene Region, but Without Significant Correlation with Plant Phenology
2.4. Seventeen Indel Variants, Including at Least Twelve That Are Significantly Correlated with Plant Phenology, Were Identified in the LalbFTc1 Gene Region
2.5. No Indel Was Found in the LalbFTc2 Gene Promoter, While Four Indels Were Identified in the Introns, Albeit Without Significant Correlation with Phenology
2.6. LalbFTc1 Promoter Indels Carry Potential Binding Sites for Transcription Factors Involved in Flowering Control
3. Discussion
3.1. Conserved Function of FTc1 Promoter Indels in Domesticated Old World Lupin Species
3.2. AGL15 Is the Most Likely the Main Transcription Factor in Maintaining the Late-Flowering Phenotype of White Lupin
3.3. Novel Perspectives for White Lupin Breeding Towards Spring Sowing in a Changing Climate
4. Materials and Methods
4.1. White Lupin Germplasm
4.2. Phenotyping of White Lupin Growth Transition into the Generative Phase
4.3. DNA Isolation from the White Lupin Germplasm Panel
4.4. PCR-Based Genotyping of Indel Polymorphism in the FT Gene Promoters
4.5. Correlation Analysis
4.6. Annotation of Transcription Factor Binding Sites in LalbFTc1 Promoter
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van der Veen, M. Consumption, Trade and Innovation. Exploring the Botanical Remains from the Roman and Islamic Ports at Quseir a-Qadim, Egypt; Africa Magna: Frankfurt, Germany, 2012; p. 313. [Google Scholar]
- Kurlovich, B.S. Lupins: Geography, Classification, Genetic Resources and Breeding; Kurlovich, B.S., Ed.; Intan: St. Petersburg, Russia, 2002. [Google Scholar]
- Zohary, D.; Hopf, M.; Weiss, E. Domestication of Plants in the Old World, 4th ed.; Oxford University Press: Oxford, UK, 2012; p. 264. [Google Scholar]
- Gladstones, J.S. Lupins as crop plants. Field Crop Abstr. 1970, 23, 26. [Google Scholar]
- Wolko, B.; Clements, J.C.; Naganowska, B.; Nelson, M.N.; Yang, H.A. Lupinus. In Wild Crop Relatives: Genomic and Breeding Resources; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 153–206. [Google Scholar]
- Gladstones, J.S. The Mediterranean white lupin. J. Dep. Agric. West. Aust. Ser. 4 1976, 17, 70–74. [Google Scholar]
- Gresta, F.; Wink, M.; Prins, U.; Abberton, M.T.; Capraro, J.; Scarafoni, A.; Hill, G. Lupins in European cropping systems. In Lupins in European Cropping Systems. Legumes in Cropping Systems; Murphy-Bokern, D., Stoddard, F., Watson, C., Eds.; CABI Publishing: Wallingford, UK, 2017; pp. 88–108. [Google Scholar]
- Adhikari, K.N.; Thomas, G.; Diepeveen, D.; Trethowan, R. Overcoming the barriers of combining early flowering and anthracnose resistance in white lupin (Lupinus albus L.) for the Northern Agricultural Region of Western Australia. Crop Pasture Sci. 2013, 64, 914–921. [Google Scholar] [CrossRef]
- Yeheyis, L.; Mekonnen, W.; Nelson, M.; McNaughton, D.; Tarekegn, A.; Yadelew, Z.; Sanders, H. The search for commercial sweet white lupin (Lupinus albus L.) adaptive to Ethiopian growing condition seems not successful: What should be done? Z. Naturforsch C J. Biosci. 2023, 78, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Książkiewicz, M.; Nazzicari, N.; Yang, H.; Nelson, M.N.; Renshaw, D.; Rychel, S.; Ferrari, B.; Carelli, M.; Tomaszewska, M.; Stawiński, S.; et al. A high-density consensus linkage map of white lupin highlights synteny with narrow-leafed lupin and provides markers tagging key agronomic traits. Sci. Rep. 2017, 7, 15335. [Google Scholar] [CrossRef] [PubMed]
- Alkemade, J.A.; Nazzicari, N.; Messmer, M.M.; Annicchiarico, P.; Ferrari, B.; Voegele, R.T.; Finckh, M.R.; Arncken, C.; Hohmann, P. Genome-wide association study reveals white lupin candidate gene involved in anthracnose resistance. Theor. Appl. Genet. 2022, 135, 1011–1024. [Google Scholar] [CrossRef] [PubMed]
- Alkemade, J.; Messmer, M.; Arncken, C.; Leska, A.; Annicchiarico, P.; Nazzicari, N.; Książkiewicz, M.; Voegele, R.T.; Finckh, M.; Hohmann, P. A high-throughput phenotyping tool to identify field-relevant anthracnose resistance in white lupin. Plant Dis. 2021, 105, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Arnoldi, A.; Greco, S. Nutritional and nutraceutical characteristics of lupin protein. Nutrafoods 2011, 10, 23–29. [Google Scholar] [CrossRef]
- Boschin, G.; D’Agostina, A.; Annicchiarico, P.; Arnoldi, A. The fatty acid composition of the oil from Lupinus albus cv. Luxe as affected by environmental and agricultural factors. Eur. Food Res. Technol. 2007, 225, 769–776. [Google Scholar] [CrossRef]
- Kroc, M.; Rybiński, W.; Wilczura, P.; Kamel, K.A.; Kaczmarek, Z.; Barzyk, P.; Święcicki, W. Quantitative and qualitative analysis of alkaloids composition in the seeds of a white lupin (Lupinus albus L.) collection. Genet. Resour. Crop Evol. 2017, 64, 1853–1860. [Google Scholar] [CrossRef]
- Pereira, A.; Ramos, F.; Sanches Silva, A. Lupin (Lupinus albus L.) seeds: Balancing the good and the bad and addressing future challenges. Molecules 2022, 27, 8557. [Google Scholar] [CrossRef] [PubMed]
- Prusinski, J. White lupin (Lupinus albus L.)—Nutritional and health values in human nutrition—A review. Czech J. Food Sci. 2017, 35, 95–105. [Google Scholar] [CrossRef]
- Adhikari, K.N.; Buirchell, B.J.; Sweetingham, M.W. Length of vernalization period affects flowering time in three lupin species. Plant Breed. 2012, 131, 631–636. [Google Scholar] [CrossRef]
- Huyghe, C. Winter growth of autumn-sown white lupin (Lupinus albus L.) main apex growth model. Ann. Bot. 1991, 67, 429–434. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Iannucci, A. Winter survival of pea, faba bean and white lupin cultivars across contrasting Italian locations and sowing times, and implications for selection. J. Agric. Sci. 2007, 145, 611–622. [Google Scholar] [CrossRef]
- Shield, I.F.; Scott, T.; Stevenson, H.J.; Leach, J.E.; Todd, A.D. The causes of over-winter plant losses of autumn-sown white lupins (Lupinus albus) in different regions of the UK over three seasons. J. Agric. Sci. 2000, 135, 173–183. [Google Scholar] [CrossRef]
- Huyghe, C.; Papineau, J. Winter development of autumn sown white lupin: Agronomic and breeding consequences. Agronomie 1990, 10, 709–716. [Google Scholar] [CrossRef]
- Rahman, M.; Gladstones, J. Control of lupin flower initiation by vernalization, photoperiod and temperature under controlled environment. Aust. J. Exp. Agric. 1972, 12, 638–645. [Google Scholar] [CrossRef]
- Clapham, W.M.; Willcott, J.B. Thermosensitivity in Spring White Lupin. Ann. Bot. 1995, 76, 349–357. [Google Scholar] [CrossRef]
- Putnam, D.H.; Simmons, S.R.; Hardman, L.L. Vernalization and Seeding Date Effects on Yield and Yield Components of White Lupin. Crop Sci. 1993, 33, 1076–1083. [Google Scholar] [CrossRef]
- Rahman, M.; Gladstones, J. Effects of temperature and photoperiod on flowering and yield components of lupin genotypes in the field. Aust. J. Exp. Agric. 1974, 14, 205–213. [Google Scholar] [CrossRef]
- Rychel-Bielska, S.; Bielski, W.; Surma, A.; Annicchiarico, P.; Belter, J.; Kozak, B.; Galek, R.; Harzic, N.; Książkiewicz, M. A GWAS study highlights significant associations between a series of indels in a FLOWERING LOCUS T gene promoter and flowering time in white lupin (Lupinus albus L.). BMC Plant Biol. 2024, 24, 722. [Google Scholar] [CrossRef] [PubMed]
- Rychel-Bielska, S.; Surma, A.; Bielski, W.; Kozak, B.; Galek, R.; Książkiewicz, M. Quantitative control of early flowering in white lupin (Lupinus albus L.). Int. J. Mol. Sci. 2021, 22, 3856. [Google Scholar] [CrossRef] [PubMed]
- López-Bellido, L.; Fuentes, M.; Lhamby, J.C.B.; Castillo, J.E. Growth and yield of white lupin (Lupinus albus) under Mediterranean conditions: Effect of sowing date. Field Crop. Res. 1994, 36, 87–94. [Google Scholar] [CrossRef]
- Yakovenko, G.L.; Lukashevisn, M.I.; Ageeva, P.A.; Novik, N.V.; Zakharova, M.V. Status and prospects of breeding of cultivated species of Lupin in Russia. IOP Conf. Ser. Earth Environ. Sci. 2021, 663, 012014. [Google Scholar] [CrossRef]
- Faluyi, M.A.; Zhou, X.M.; Zhang, F.; Leibovitch, S.; Migner, P.; Smith, D.L. Seed quality of sweet white lupin (Lupinus albus) and management practice in eastern Canada. Eur. J. Agron. 2000, 13, 27–37. [Google Scholar] [CrossRef]
- Carton, N.; Naudin, C.; Piva, G.; Corre-Hellou, G. Intercropping Winter Lupin and Triticale Increases Weed Suppression and Total Yield. Agriculture 2020, 10, 316. [Google Scholar] [CrossRef]
- Adhikari, K.; Buirchell, B.; Yan, G.; Sweetingham, M. Two complementary dominant genes control flowering time in albus lupin (Lupinus albus L.). Plant Breed. 2011, 130, 496–499. [Google Scholar] [CrossRef]
- Zafeiriou, I.; Polidoros, A.N.; Baira, E.; Kasiotis, K.M.; Machera, K.; Mylona, P.V. Mediterranean White Lupin Landraces as a Valuable Genetic Reserve for Breeding. Plants 2021, 10, 2403. [Google Scholar] [CrossRef] [PubMed]
- Rychel, S.; Książkiewicz, M.; Tomaszewska, M.; Bielski, W.; Wolko, B. FLOWERING LOCUS T, GIGANTEA, SEPALLATA and FRIGIDA homologs are candidate genes involved in white lupin (Lupinus albus L.) early flowering. Mol. Breed. 2019, 39, 43. [Google Scholar] [CrossRef]
- Surma, A.; Książkiewicz, M.; Bielski, W.; Kozak, B.; Galek, R.; Rychel-Bielska, S. Development and validation of PCR marker array for molecular selection towards spring, vernalization-independent and winter, vernalization-responsive ecotypes of white lupin (Lupinus albus L.). Sci. Rep. 2025, 15, 2659. [Google Scholar] [CrossRef] [PubMed]
- Plewiński, P.; Rychel-Bielska, S.; Kozak, B.; Maureira-Butler, I.J.; Iqbal, M.M.; Nelson, M.N.; Książkiewicz, M. FLOWERING LOCUS T indel variants confer vernalization-independent and photoperiod-insensitive flowering of yellow lupin (Lupinus luteus L.). Hortic. Res. 2022, 9, uhac180. [Google Scholar] [CrossRef] [PubMed]
- Rychel-Bielska, S.; Plewiński, P.; Kozak, B.; Galek, R.; Książkiewicz, M. Photoperiod and vernalization control of flowering-related genes: A case study of the narrow-leafed lupin (Lupinus angustifolius L.). Front. Plant Sci. 2020, 11, 572135. [Google Scholar] [CrossRef] [PubMed]
- Plewiński, P.; Ćwiek-Kupczyńska, H.; Rudy, E.; Bielski, W.; Rychel-Bielska, S.; Stawiński, S.; Barzyk, P.; Krajewski, P.; Naganowska, B.; Wolko, B.; et al. Innovative transcriptome-based genotyping highlights environmentally responsive genes for phenology, growth and yield in a non-model grain legume. Plant Cell Environ. 2020, 43, 2680–2698. [Google Scholar] [CrossRef] [PubMed]
- Plewiński, P.; Książkiewicz, M.; Rychel-Bielska, S.; Rudy, E.; Wolko, B. Candidate domestication-related genes revealed by expression quantitative trait loci mapping of narrow-leafed lupin (Lupinus angustifolius L.). Int. J. Mol. Sci. 2019, 20, 5670. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.N.; Książkiewicz, M.; Rychel, S.; Besharat, N.; Taylor, C.M.; Wyrwa, K.; Jost, R.; Erskine, W.; Cowling, W.A.; Berger, J.D.; et al. The loss of vernalization requirement in narrow-leafed lupin is associated with a deletion in the promoter and de-repressed expression of a Flowering Locus T (FT) homologue. New Phytol. 2017, 213, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Książkiewicz, M.; Rychel, S.; Nelson, M.N.; Wyrwa, K.; Naganowska, B.; Wolko, B. Expansion of the phosphatidylethanolamine binding protein family in legumes: A case study of Lupinus angustifolius L. FLOWERING LOCUS T homologs, LanFTc1 and LanFTc2. BMC Genom. 2016, 17, 820. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.M.; van der Zanden, J.; Saradadevi, R.; Berger, J.D.; Kamphuis, L.G.; Pradhan, A.; Sharma, D.; Nelson, M.N.; Cowling, W.A. A multiplex PCR marker distinguishes between a series of four LanFTc1 alleles regulating flowering time in narrow-leafed lupin (Lupinus angustifolius). Plant Breed. 2021, 140, 1090–1101. [Google Scholar] [CrossRef]
- Taylor, C.M.; Kamphuis, L.G.; Zhang, W.; Garg, G.; Berger, J.D.; Mousavi-Derazmahalleh, M.; Bayer, P.E.; Edwards, D.; Singh, K.B.; Cowling, W.A.; et al. INDEL variation in the regulatory region of the major flowering time gene LanFTc1 is associated with vernalization response and flowering time in narrow-leafed lupin (Lupinus angustifolius L.). Plant Cell Environ. 2019, 42, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Hufnagel, B.; Soriano, A.; Taylor, J.; Divol, F.; Kroc, M.; Sanders, H.; Yeheyis, L.; Nelson, M.; Péret, B. Pangenome of white lupin provides insights into the diversity of the species. Plant Biotechnol. J. 2021, 19, 2532–2543. [Google Scholar] [CrossRef] [PubMed]
- Pecetti, L.; Annicchiarico, P.; Crosta, M.; Notario, T.; Ferrari, B.; Nazzicari, N. White lupin drought tolerance: Genetic variation, trait genetic architecture, and genome-enabled prediction. Int. J. Mol. Sci. 2023, 24, 2351. [Google Scholar] [CrossRef] [PubMed]
- Annicchiarico, P.; de Buck, A.J.; Vlachostergios, D.N.; Heupink, D.; Koskosidis, A.; Nazzicari, N.; Crosta, M. White Lupin Adaptation to Moderately Calcareous Soils: Phenotypic Variation and Genome-Enabled Prediction. Plants 2023, 12, 1139. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.M.; Garg, G.; Berger, J.D.; Ribalta, F.M.; Croser, J.S.; Singh, K.B.; Cowling, W.A.; Kamphuis, L.G.; Nelson, M.N. A Trimethylguanosine Synthase1-like (TGS1) homologue is implicated in vernalisation and flowering time control. Theor. Appl. Genet. 2021, 134, 3411–3426. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.M.; Huynh, M.; Udall, J.A.; Kilian, A.; Adhikari, K.N.; Berger, J.D.; Erskine, W.; Nelson, M.N. The first genetic map for yellow lupin enables genetic dissection of adaptation traits in an orphan grain legume crop. BMC Genet. 2019, 20, 68. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.T.T.; Ellwood, S.R.; Adhikari, K.; Nelson, M.N.; Oliver, R.P. The first genetic and comparative map of white lupin (Lupinus albus L.): Identification of QTLs for anthracnose resistance and flowering time, and a locus for alkaloid content. DNA Res. 2007, 14, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, D.E.; Wang, C.-T.; Zheng, Y.; Adamczyk, B.J.; Singhal, R.; Hall, P.K.; Perry, S.E. The MADS-domain factors AGAMOUS-LIKE15 and AGAMOUS-LIKE18, along with SHORT VEGETATIVE PHASE and AGAMOUS-LIKE24, are necessary to block floral gene expression during the vegetative phase. Plant Physiol. 2014, 165, 1591–1603. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, B.J.; Lehti-Shiu, M.D.; Fernandez, D.E. The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. Plant J. 2007, 50, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
- Mateos, J.L.; Madrigal, P.; Tsuda, K.; Rawat, V.; Richter, R.; Romera-Branchat, M.; Fornara, F.; Schneeberger, K.; Krajewski, P.; Coupland, G. Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis. Genome Biol. 2015, 16, 31. [Google Scholar] [CrossRef] [PubMed]
- Bouché, F.; Woods, D.P.; Amasino, R.M. Winter Memory throughout the Plant Kingdom: Different Paths to Flowering. Plant Physiol. 2017, 173, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Searle, I.; He, Y.; Turck, F.; Vincent, C.; Fornara, F.; Kröber, S.; Amasino, R.A.; Coupland, G. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 2006, 20, 898–912. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Wang, Y.; He, Y. Photoperiodic regulation of flowering time through periodic histone deacetylation of the florigen gene FT. PLoS Biol. 2013, 11, e1001649. [Google Scholar] [CrossRef] [PubMed]
- Hecht, V.; Foucher, F.; Ferrandiz, C.; Macknight, R.; Navarro, C.; Morin, J.; Vardy, M.E.; Ellis, N.; Beltran, J.P.; Rameau, C.; et al. Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol. 2005, 137, 1420–1434. [Google Scholar] [CrossRef] [PubMed]
- Hufnagel, B.; Marques, A.; Soriano, A.; Marquès, L.; Divol, F.; Doumas, P.; Sallet, E.; Mancinotti, D.; Carrere, S.; Marande, W.; et al. High-quality genome sequence of white lupin provides insight into soil exploration and seed quality. Nat. Commun. 2020, 11, 492. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, J.; Zhao, T.; Gomez, A.; Li, C.; Yu, C.; Li, H.; Lin, J.; Yang, Y.; Liu, B.; et al. A Drought-Inducible Transcription Factor Delays Reproductive Timing in Rice. Plant Physiol. 2016, 171, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Magome, H.; Yamaguchi, S.; Hanada, A.; Kamiya, Y.; Oda, K. dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J. 2004, 37, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Sanagi, M.; Aoyama, S.; Kubo, A.; Lu, Y.; Sato, Y.; Ito, S.; Abe, M.; Mitsuda, N.; Ohme-Takagi, M.; Kiba, T.; et al. Low nitrogen conditions accelerate flowering by modulating the phosphorylation state of FLOWERING BHLH 4 in Arabidopsis. Proc. Natl. Acad. Sci. USA 2021, 118, e2022942118. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Song, Y.H.; Josephson-Day, A.R.; Miller, R.J.; Breton, G.; Olmstead, R.G.; Imaizumi, T. FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis. Proc. Natl. Acad. Sci. USA 2012, 109, 3582–3587. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhou, B.; Kang, Y.; Cui, X.; Liu, A.; Deleris, A.; Greenberg, M.V.C.; Cui, X.; Qiu, Q.; Lu, F.; et al. C-terminal domains of histone demethylase JMJ14 interact with a pair of NAC transcription factors to mediate specific chromatin association. Cell Discov. 2015, 1, 15003. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.Q.; Ma, Z.Y.; Huang, H.W.; Mo, H.; Zhao, T.T.; Li, L.; Cai, T.; Chen, S.; Ma, L.; He, X.J. Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14. Nucleic Acids Res. 2015, 43, 1469–1484. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Lee, J.; Kim, B.; Shin, J.; Kang, T.-A.; Kim, W.-C. GATA25, a novel regulator, accelerates the flowering time of Arabidopsis thaliana. Appl. Biol. Chem. 2022, 65, 28. [Google Scholar] [CrossRef]
- Chu, L.; Yang, C.; Zhuang, F.; Gao, Y.; Luo, M. The HDA9-HY5 module epigenetically regulates flowering time in Arabidopsis thaliana. J. Cell. Physiol. 2022, 237, 2961–2968. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, Z.; Feng, Q.; Long, T.; Ding, J.; Shu, P.; Deng, H.; Yu, P.; Tan, W.; Liu, S.; et al. ELONGATED HYPOCOTYL 5a modulates FLOWERING LOCUS T2 and gibberellin levels to control dormancy and bud break in poplar. Plant Cell 2024, 36, 1963–1984. [Google Scholar] [CrossRef] [PubMed]
- Dorca-Fornell, C.; Gregis, V.; Grandi, V.; Coupland, G.; Colombo, L.; Kater, M.M. The Arabidopsis SOC1-like genes AGL42, AGL71 and AGL72 promote flowering in the shoot apical and axillary meristems. Plant J. 2011, 67, 1006–1017. [Google Scholar] [CrossRef] [PubMed]
- Young Hun, S.; Na Young, S.; Su Young, S.; Hye Jin, K.; Dae-Jin, Y.; Chae Oh, L.; Sang Yeol, L.; Kyu Young, K.; Jong Chan, H. Isolation of CONSTANS as a TGA4/OBF4 Interacting Protein. Mol. Cells 2008, 25, 559–565. [Google Scholar] [CrossRef]
- Sun, B.; Fan, Y.; Duan, H.; Liu, X.; Chen, Y.; Shang, G.; Liu, Y.; Yang, H.; Qu, C.; Li, J.; et al. Genome-wide characterization of Brassica napus INDETERMINATE DOMAIN genes reveals a negative role for BnA08.IDD7 in plant development. Ind. Crop. Prod. 2022, 175, 114263. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.; Adrian, J.; Gissot, L.; Coupland, G.; Yu, D.; Turck, F. Elevated levels of MYB30 in the phloem accelerate flowering in Arabidopsis through the regulation of FLOWERING LOCUS T. PLoS ONE 2014, 9, e89799. [Google Scholar] [CrossRef] [PubMed]
- Chae, J.; Han, S.J.; Karthik, S.; Kim, H.J.; Kim, J.H.; Yun, H.R.; Chung, Y.S.; Sung, S.; Heo, J.B. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) partially inhibits the transcriptional activation of FT by MYB73 and regulates flowering in Arabidopsis. Plant J. 2024, 120, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Le Sech, L.; Huyghe, C. Diallel analysis in white lupin: Consequences for breeding. Agronomie 1991, 11, 719–726. [Google Scholar] [CrossRef]
- Cowling, W.A. Genetic diversity in narrow-leafed lupin breeding after the domestication bottleneck. In The Lupin Genome; Singh, K.B., Kamphuis, L.G., Nelson, M.N., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–17. [Google Scholar]
- Mousavi-Derazmahalleh, M.; Bayer, P.E.; Nevado, B.; Hurgobin, B.; Filatov, D.; Kilian, A.; Kamphuis, L.G.; Singh, K.B.; Berger, J.D.; Hane, J.K.; et al. Exploring the genetic and adaptive diversity of a pan-Mediterranean crop wild relative: Narrow-leafed lupin. Theor. Appl. Genet. 2018, 131, 887–901. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.D.; Buirchell, B.J.; Luckett, D.J.; Nelson, M.N. Domestication bottlenecks limit genetic diversity and constrain adaptation in narrow-leafed lupin (Lupinus angustifolius L.). Theor. Appl. Genet. 2012, 124, 637–652. [Google Scholar] [CrossRef] [PubMed]
- Stefanova, K.T.; Buirchell, B. Multiplicative mixed models for genetic gain assessment in lupin breeding. Crop Sci. 2010, 50, 880–891. [Google Scholar] [CrossRef]
- Adhikari, K.N.; Buirchell, B.J.; Thomas, G.J.; Sweetingham, M.W.; Yang, H. Identification of anthracnose resistance in Lupinus albus L. and its transfer from landraces to modern cultivars. Crop Pasture Sci. 2009, 60, 472–479. [Google Scholar] [CrossRef]
- Schwertfirm, G.; Schneider, M.; Haase, F.; Riedel, C.; Lazzaro, M.; Ruge-Wehling, B.; Schweizer, G. Genome-wide association study revealed significant SNPs for anthracnose resistance, seed alkaloids and protein content in white lupin. Theor. Appl. Genet. 2024, 137, 155. [Google Scholar] [CrossRef] [PubMed]
- Rychel-Bielska, S.; Nazzicari, N.; Plewiński, P.; Bielski, W.; Annicchiarico, P.; Książkiewicz, M. Development of PCR-based markers and whole-genome selection model for anthracnose resistance in white lupin (Lupinus albus L.). J. Appl. Genet. 2020, 61, 531–545. [Google Scholar] [CrossRef] [PubMed]
- Jacob, I.; Feuerstein, U.; Heinz, M.; Schott, M.; Urbatzka, P. Evaluation of new breeding lines of white lupin with improved resistance to anthracnose. Euphytica 2017, 213, 236. [Google Scholar] [CrossRef]
- Ruge-Wehling, B.; Dieterich, R.; Thiele, C.; Eickmeyer, F.; Wehling, P. Resistance to anthracnose in narrow-leafed lupin (Lupinus angustifolius L.): Sources of resistanceand development of molecular markers. J. Für Kult. 2009, 61, 62–65. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Romani, M.; Pecetti, L. White lupin (Lupinus albus) variation for adaptation to severe drought stress. Plant Breed. 2018, 137, 782–789. [Google Scholar] [CrossRef]
- Christiansen, J.L.; Raza, S.; Jørnsgård, B.; Mahmoud, S.A.; Ortiz, R. Potential of landrace germplasm for genetic enhancement of white lupin in Egypt. Genet. Resour. Crop Evol. 2000, 47, 425–430. [Google Scholar] [CrossRef]
- Raza, S.; Abdel-Wahab, A.; JØrnsgård, B.; Christiansen, J.L. Calcium tolerance and ion uptake of Egyptian lupin landraces on calcareous soils. Afr. Crop Sci. J. 2001, 9, 393–400. [Google Scholar] [CrossRef]
- Kerley, S.J.; Norgaard, C.; Leach, J.E.; Christiansen, J.L.; Huyghe, C.; Römer, P. The development of potential screens based on shoot calcium and iron concentrations for the evaluation of tolerance in Egyptian genotypes of white lupin (Lupinus albus L.) to limed soils. Ann. Bot. 2002, 89, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Mancinotti, D.; Czepiel, K.; Taylor, J.L.; Golshadi Galehshahi, H.; Møller, L.A.; Jensen, M.K.; Motawia, M.S.; Hufnagel, B.; Soriano, A.; Yeheyis, L.; et al. The causal mutation leading to sweetness in modern white lupin cultivars. Sci. Adv. 2023, 9, eadg8866. [Google Scholar] [CrossRef] [PubMed]
- Rychel, S.; Książkiewicz, M. Development of gene-based molecular markers tagging low alkaloid pauper locus in white lupin (Lupinus albus L.). J. Appl. Genet. 2019, 60, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Renshaw, D.; Luckett, D.; Clements, J.; Yan, G.; Adhikari, K.; Buirchell, B.; Sweetingham, M.; Yang, H. Development of a sequence-specific PCR marker linked to the gene “pauper” conferring low-alkaloids in white lupin (Lupinus albus L.) for marker assisted selection. Mol. Breed. 2009, 23, 153–161. [Google Scholar] [CrossRef]
- Harrison, J.E.M.; Williams, W. Genetical control of alkaloids in Lupinus albus. Euphytica 1982, 31, 357–364. [Google Scholar] [CrossRef]
- Raman, R.; Vipin, C.A.; Luckett, D.J.; Cowley, R.B.; Ash, G.J.; Harper, J.D.I.; Kilian, A.; Raman, H. Localisation of loci involved in resistance to Diaporthe toxica and Pleiochaeta setosa in white lupin (Lupinus albus L.). Open J. Genet. 2014, 4, 210–226. [Google Scholar] [CrossRef]
- Cowley, R.; Luckett, D.J.; Ash, G.J.; Harper, J.D.I.; Vipin, C.A.; Raman, H.; Ellwood, S. Identification of QTLs associated with resistance to Phomopsis pod blight (Diaporthe toxica) in Lupinus albus. Breed. Sci. 2014, 64, 83–89. [Google Scholar] [CrossRef] [PubMed]
- González-Andrés, F.; Casquero, P.A.; San-Pedro, C.; Hernández-Sánchez, E. Diversity in White Lupin (Lupinus albus L.) Landraces from Northwest Iberian plateau. Genet. Resour. Crop Evol. 2007, 54, 27–44. [Google Scholar] [CrossRef]
- Georgieva, N.A.; Kosev, V. Phenotypic Variability of White Lupine (Lupinus albus L.) Germplasm. Not. Sci. Biol. 2017, 9, 397–403. [Google Scholar] [CrossRef]
- Mikić, A.; Mihailović, V. Significance of genetic resources of cool season annual legumes: III: Locally cultivated and maintained crop landraces. Ratar. Povrt. 2014, 51, 190–203. [Google Scholar] [CrossRef]
- Minoli, S.; Jägermeyr, J.; Asseng, S.; Urfels, A.; Müller, C. Global crop yields can be lifted by timely adaptation of growing periods to climate change. Nat. Commun. 2022, 13, 7079. [Google Scholar] [CrossRef] [PubMed]
- Tourville, J.C.; Murray, G.L.D.; Nelson, S.J. Distinct latitudinal patterns of shifting spring phenology across the Appalachian Trail Corridor. Ecology 2024, 105, e4403. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Bonilla, D.; Arista, M.; Morellato, L.P.C.; Ortiz, P.L. Better soon than never: Climate change induces strong phenological reassembly in the flowering of a Mediterranean shrub community. Ann. Bot. 2023, 135, 239–254. [Google Scholar] [CrossRef] [PubMed]
- Geissler, C.; Davidson, A.; Niesenbaum, R.A. The influence of climate warming on flowering phenology in relation to historical annual and seasonal temperatures and plant functional traits. PeerJ 2023, 11, e15188. [Google Scholar] [CrossRef] [PubMed]
- Austin, M.W.; Smith, A.B.; Olsen, K.M.; Hoch, P.C.; Krakos, K.N.; Schmocker, S.P.; Miller-Struttmann, N.E. Climate change increases flowering duration, driving phenological reassembly and elevated co-flowering richness. New Phytol. 2024, 243, 2486–2500. [Google Scholar] [CrossRef] [PubMed]
- Menzel, A.; Yuan, Y.; Matiu, M.; Sparks, T.; Scheifinger, H.; Gehrig, R.; Estrella, N. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 2020, 26, 2599–2612. [Google Scholar] [CrossRef] [PubMed]
- Annicchiarico, P.; Harzic, N.; Carroni, A.M. Adaptation, diversity, and exploitation of global white lupin (Lupinus albus L.) landrace genetic resources. Field Crop. Res. 2010, 119, 114–124. [Google Scholar] [CrossRef]
- McGaughey, K.D.; Yilmaz-Swenson, T.; Elsayed, N.M.; Cruz, D.A.; Rodriguez, R.R.; Kritzer, M.D.; Peterchev, A.V.; Gray, M.; Lewis, S.R.; Roach, J.; et al. Comparative evaluation of a new magnetic bead-based DNA extraction method from fecal samples for downstream next-generation 16S rRNA gene sequencing. PLoS ONE 2018, 13, e0202858. [Google Scholar] [CrossRef] [PubMed]
- Darling, A.C.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Nijveen, H.; Rao, X.; Bisseling, T.; Geurts, R.; Leunissen, J.A.M. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007, 35, W71–W74. [Google Scholar] [CrossRef] [PubMed]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Massey Jr, F.J. The Kolmogorov-Smirnov Test for Goodness of Fit. J. Am. Stat. Assoc. 1951, 46, 68–78. [Google Scholar] [CrossRef]
- Chow, C.-N.; Yang, C.-W.; Wu, N.-Y.; Wang, H.-T.; Tseng, K.-C.; Chiu, Y.-H.; Lee, T.-Y.; Chang, W.-C. PlantPAN 4.0: Updated database for identifying conserved non-coding sequences and exploring dynamic transcriptional regulation in plant promoters. Nucleic Acids Res. 2024, 52, D1569–D1578. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.N.; Lee, T.Y.; Hung, Y.C.; Li, G.Z.; Tseng, K.C.; Liu, Y.H.; Kuo, P.L.; Zheng, H.Q.; Chang, W.C. PlantPAN3.0: A new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Nucleic Acids Res. 2019, 47, D1155–D1163. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, A.; Richter, R. Genetic and molecular basis of floral induction in Arabidopsis thaliana. J. Exp. Bot. 2020, 71, 2490–2504. [Google Scholar] [CrossRef] [PubMed]
Marker Name | Max Distance to TSS (bp) 1 | Min Distance to TSS (bp) 1 | Score “0” | Score “1” | Score “2” | MAF 190 | MAF 626 |
---|---|---|---|---|---|---|---|
PR_01 | −8280 | −7770 | 511 bp | - | - | 0.0 | - |
PR_02 | −7874 | −7160 | 715 bp | - | - | 0.0 | - |
PR_03 | −7327 | −6626 | 702 bp | - | no product | 1.1 | 0.5 |
PR_04 | −6980 | −6109 | 872 bp | - | no product | 1.1 | 0.8 |
PR_05a | −6203 | −5430 | 774 bp or no product | - | ~850 bp or 2207 bp | 5.3 | 5.4 |
PR_05b | −6203 | −5430 | 774 or ~850 bp or 2207 bp | - | no product | 1.6 | 0.5 |
PR_06 | −5519 | −4763 | 757 bp | - | - | 0.0 | - |
PR_07 | −4848 | −4401 | 448 bp | - | - | 0.0 | - |
PR_08 | −4848 | −4079 | 770 bp | - | - | 0.0 | - |
PR_09 | −4161 | −3336 | 826 bp | heterozygote | 736 bp | 28.2 | 22.5 |
PR_10 | −3526 | −2733 | 794 bp | - | - | 0.0 | - |
PR_11 | −2800 | −2128 | 673 bp | - | - | 0.0 | - |
PR_12 | −2258 | −1509 | 750 bp | - | - | 0.0 | - |
PR_13 | −1725 | −1096 | 630 bp | - | ~401 bp | 48.9 | 43.0 |
PR_14 | −1241 | −442 | 800 bp | - | - | 0.0 | - |
PR_15 | −511 | 229 | 741 bp | - | - | 0.0 | - |
QTL11 | 3390 | 1169 | 2218 bp | heterozygote | 1535 bp 2 | 2.1 | 1.9 |
PR_74 | −6980 | −6029 | 951 bp | heterozygote | 380 bp | 2.4 | 1.7 |
PR_75 | −6057 | −5739 | 319 bp | heterozygote | 1523 bp | 2.9 | 1.4 |
PR_76 | −5732 | −5430 | 303 bp | heterozygote | 362 bp | 7.9 | 6.9 |
Marker Name | Max Distance to TSS (bp) 1 | Min Distance to TSS (bp) 1 | Score “0” | Score “1” | Score “2” | MAF 190 | MAF 626 |
---|---|---|---|---|---|---|---|
PR_16 | −7866 | −7163 | 704 bp | heteorzygote | 676 bp | 14.5 | 13.8 |
PR_17 | −7287 | −6615 | 673 bp | - | - | 0.0 | - |
PR_18a | −6826 | −6120 | 707 bp or heterozygote | - | 950 bp | 4.2 | 2.4 |
PR_18b | −6826 | −6120 | 950 bp or heterozygote | - | 707 bp | 6.8 | 3.2 |
PR_19a | −6214 | −5515 | 700 bp or heterozygote | - | 927 bp or no product | 4.2 | 2.4 |
PR_19b | −6214 | −5515 | 927 bp or heterozygote or no product | - | 700 bp | 6.3 | 3.2 |
PR_20 | −5626 | −4914 | 713 bp | heterozygote | 661 bp | 5.8 | 3.2 |
PR_21 | −5014 | −4345 | 700 bp | - | - | 0.0 | - |
PR_22 | −4626 | −3893 | 734 bp | - | - | 0.0 | - |
PR_23 | −3965 | −3266 | 700 bp | - | - | 0.0 | - |
PR_24 | −3383 | −2783 | 601 bp | - | - | 0.0 | - |
PR_25 | −2880 | −2101 | 780 bp | - | no product | 0.0 | - |
PR_26 | −2182 | −1409 | 774 bp | - | - | 0.0 | - |
PR_27 | −1691 | −1137 | 555 bp | - | - | 0.0 | - |
PR_28 | −1279 | −428 | 852 bp | - | - | 0.0 | - |
PR_29 | −564 | 275 | 840 bp | - | - | 0.0 | - |
PR_77a | −1279 | −1137 | 157 bp and/or “longer” | - | 143 bp | 6.8 | 3.4 |
PR_77b | −1279 | −1137 | 157 bp | - | 143 bp and/or “longer” | 7.4 | 4.8 |
PR_78 | 1335 | 1050 | 286 bp | - | 360 bp | 3.7 | 2.2 |
PR_79 | 2074 | 1854 | 249 bp | - | 271 bp | 1.3 | 0.5 |
Marker Name 1 | Min Distance to TSS (bp) 2 | Max Distance to TSS (bp) | Score “0” | Score “1” | Score “2” | MAF 190 | MAF 626 |
---|---|---|---|---|---|---|---|
PR_30 | −8065 | −7254 | 812 bp | - | no product | 6.8 | 9.1 |
PR_58a | −8065 | −5562 | 2504 bp | heterozygote | 378 bp | 7.1 | 12.5 |
PR_58b | −8065 | −5562 | 2504 or 378 bp | - | no product or 116 bp | 7.9 | 5.6 |
PR_58c | −8065 | −5562 | 2504 or 378 bp or no product | - | 116 bp | 22.6 | 20.0 |
PR_60a | −8065 | −4899 | no product | - | 1041 bp, 779 bp, or heterozygote | 33.2 | 36.4 |
PR_60b | −8065 | −4899 | no product or 1041 bp | - | 779 bp or heterozygote | 24.7 | 20.6 |
PR_60c | −8065 | −4899 | no product or 1041 bp or heterozygote | - | 779 bp | 24.7 | 19.3 |
PR_31 | −7312 | −6553 | 760 bp | - | no product | 6.8 | - |
PR_66 | −7312 | −4320 | 2993 bp | - | no product | 11.1 | - |
PR_33 | −6242 | −5562 | 681 bp | - | no product | 10.0 | - |
PR_34 | −5694 | −4899 | 796 bp | - | no product | 4.2 | - |
PR_80 | −5202 | −4944 | 259 bp | - | 204 bp | 12.4 | 10.9 |
PR_35a | −4968 | −4320 | 649 bp or no product | heterozygote | 625 bp | 3.7 | 2.6 |
PR_35b | −4968 | −4320 | 649 bp | - | 625 bp, heterozygote or no product | 6.3 | 5.6 |
PR_61 | −4968 | −3254 | 1715 bp | - | no product | 4.2 | - |
PR_36a | −4585 | −3860 | 726 bp or heterozygote | - | 482 bp or no product | 1.6 | 2.2 |
PR_36b | −4585 | −3860 | 482 bp or heterozygote | - | 726 bp or no product | 22.1 | 20.1 |
PR_37 | −3965 | −3254 | 712 bp | - | no product | 1.6 | - |
PR_38 | −3403 | −2695 | 709 bp | - | no product | 1.6 | - |
PR_67 | −3403 | −451 | 2953 bp | - | no product | 31.1 | - |
PR_39 | −2908 | −2262 | no product | - | 647 bp | 32.1 | 35.3 |
PR_62 | −2908 | −1179 | 1730 bp or no product | - | 647 bp | 30.5 | - |
PR_40 | −2365 | −1591 | 775 bp | - | no product | 1.1 | - |
PR_41 | −1944 | −1179 | no product | - | 766 bp | 37.4 | 40.3 |
PR_42a | −1259 | −451 | 802 or 809 bp | - | 774 or 781 bp | 12.6 | 6.0 |
PR_42b | −1259 | −451 | other variants | - | ~850 bp | 10.5 | 19.6 |
PR_71a | −970 | −714 | 222 or 229 or 250 bp | heterozygote | 257 bp | 27.1 | 25.2 |
PR_71b | −970 | −714 | 250 or 257 bp | heterozygote | 222 or 229 bp | 11.3 | 4.6 |
PR_71c | −970 | −714 | other variants | - | ~280 bp | 17.9 | 22.7 |
PR_71d | −970 | −714 | 250 bp | - | other variants | 45.3 | 41.2 |
PR_70 | −875 | −600 | no product | - | 276 bp | 32.6 | 35.5 |
PR_43 | −560 | 140 | 701 bp | - | - | 0.0 | - |
Marker Name | Min Distance to TSS (bp) 1 | Max Distance to TSS (bp) 1 | Score “0” | Score “1” | Score “2” | MAF 190 | MAF 626 |
---|---|---|---|---|---|---|---|
PR_44 | −7711 | −7066 | 646 bp | - | - | 0.0 | - |
PR_45 | −7161 | −6557 | 605 bp | - | - | 0.0 | - |
PR_46 | −6635 | −6022 | 614 bp | - | - | 0.0 | - |
PR_47 | −6109 | −5353 | 757 bp | - | - | 0.0 | - |
PR_48 | −5413 | −4692 | 722 bp | - | - | 0.0 | - |
PR_49 | −4787 | −4340 | 448 bp | - | - | 0.0 | - |
PR_50 | −4454 | −3722 | 733 bp | - | - | 0.0 | - |
PR_51 | −3822 | −3088 | 735 bp | - | - | 0.0 | - |
PR_52 | −3180 | −2641 | 540 bp | - | - | 0.0 | - |
PR_53 | −2745 | −1984 | 762 bp | - | - | 0.0 | - |
PR_54 | −2087 | −1331 | 757 bp | - | - | 0.0 | - |
PR_55 | −1418 | −951 | 468 bp | - | - | 0.0 | - |
PR_56 | −1095 | −252 | 844 bp | - | - | 0.0 | - |
PR_57 | −263 | 355 | 619 bp | - | no product | 1.1 | 0.9 |
PR_64 | 1899 | 355 | 1588 bp | - | no product | 6.8 | 2.2 |
PR_73 | 2567 | 4624 | 2058 bp or no product | - | 600 bp | 10.5 | 17.4 |
Transcription Factor or Motif Name | Sequence | Position | Indel | Strand 1 | Score |
---|---|---|---|---|---|
AT1G49720; AT3G19290 (ABF1; ABF4) | Chr14, GR38 | 557 | 2126 bp, 2388 bp | − | 0.96 |
P27174, GR38 | 7369 | 3800–3877 bp | − | 0.92 | |
AT1G55110 (IDD7) | Chr14, GR38 | 1942 | 2126 bp, 2388 bp | + | 0.90 |
Chr14, GR38, LD37, P27174, LAP022B | 3936 | 264 bp | + | 0.86 | |
AT1G63030 (DDF2) | GR38, LD37, P27174 | 7430 | 3800–3877 bp | − | 0.99 |
GR38, LD37, P27174 | 8053 | 3800–3877 bp | + | 0.89 | |
AT2G42280 (FBH4) | Chr14, GR38 | 892 | 2126 bp, 2388 bp | − | 0.98 |
Chr14, GR38 | 908 | 2126 bp, 2388 bp | + | 0.98 | |
Chr14, GR38 | 1085 | 2126 bp, 2388 bp | + | 0.98 | |
Chr14, GR38 | 1401 | 2126 bp, 2388 bp | + | 0.96 | |
Chr14, GR38 | 1408 | 2126 bp, 2388 bp | − | 1.00 | |
AT3G10480 (NAC050) | GR38, LD37, P27174 | 6631 | 3800–3877 bp | + | 0.95 |
GR38, LD37, P27174 | 7067 | 3800–3877 bp | − | 0.88 | |
AT3G28910 (MYB30) | GR38, LAP022E | 3560 | SNP | + | 0.92 |
AT4G24470 (GATA25) | Chr14, GR38 | 460 | 2126 bp, 2388 bp | − | 0.86 |
GR38, LD37, P27174 | 7432 | 3800–3877 bp | + | 0.99 | |
GR38, LD37, P27174 | 7434 | 3800–3877 bp | − | 0.97 | |
GR38, LD37, P27174 | 8237 | 3800–3877 bp | + | 0.86 | |
AT4G37260 (MYB73) | LAP022E | 3592 | SNP | − | 0.96 |
AT5G10030 (OBF4) | GR38, LD37, P27174 | 9392 | 3800–3877 bp | + | 0.89 |
AT5G11260 (HY5) | GR38, LD37, P27174 | 9390 | 3800–3877 bp | − | 0.89 |
AT5G13790 (AGL15), CARGNCAT | Chr14, GR38 | 161 | 2126 bp, 2388 bp | +/− | 1 |
Chr14, GR38, P27174 | 2302 | 2388 bp | +/− | 1 | |
LAP022E | 4200 | SNP | − | 0.96 | |
GR38, LD37, P27174 | 6325 | 3800–3877 bp | +/− | 1 | |
GR38, LD37, P27174 | 6929 | 3800–3877 bp | − | 0.96 | |
GR38, LD37, P27174 | 7821 | 3800–3877 bp | +/− | 1 | |
AT5G51870 (AGL71) | GR38, LD37, P27174 | 6928 | 3800–3877 bp | + | 0.88 |
SORLIP2AT (phyA-induced motif) | Chr14, GR38 | 1735 | 2126 bp, 2388 bp | − | 1 |
LD37 | 7572 | 3800–3877 bp | + | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielski, W.; Surma, A.; Książkiewicz, M.; Rychel-Bielska, S. Evaluation of the Global White Lupin Collection Reveals Significant Associations Between Homologous FLOWERING LOCUS T Indels and Flowering Time, Providing Validated Markers for Tracking Spring Ecotypes Within a Large Gene Pool. Int. J. Mol. Sci. 2025, 26, 6858. https://doi.org/10.3390/ijms26146858
Bielski W, Surma A, Książkiewicz M, Rychel-Bielska S. Evaluation of the Global White Lupin Collection Reveals Significant Associations Between Homologous FLOWERING LOCUS T Indels and Flowering Time, Providing Validated Markers for Tracking Spring Ecotypes Within a Large Gene Pool. International Journal of Molecular Sciences. 2025; 26(14):6858. https://doi.org/10.3390/ijms26146858
Chicago/Turabian StyleBielski, Wojciech, Anna Surma, Michał Książkiewicz, and Sandra Rychel-Bielska. 2025. "Evaluation of the Global White Lupin Collection Reveals Significant Associations Between Homologous FLOWERING LOCUS T Indels and Flowering Time, Providing Validated Markers for Tracking Spring Ecotypes Within a Large Gene Pool" International Journal of Molecular Sciences 26, no. 14: 6858. https://doi.org/10.3390/ijms26146858
APA StyleBielski, W., Surma, A., Książkiewicz, M., & Rychel-Bielska, S. (2025). Evaluation of the Global White Lupin Collection Reveals Significant Associations Between Homologous FLOWERING LOCUS T Indels and Flowering Time, Providing Validated Markers for Tracking Spring Ecotypes Within a Large Gene Pool. International Journal of Molecular Sciences, 26(14), 6858. https://doi.org/10.3390/ijms26146858